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Abstract
With the extensive production and consumption of sulfonamide antibiotics, their existence in aquatic environments has received
increasing attention due to their acute and chronic toxic effects. In this study, graphene was characterized and applied for
sulfamethazine (SMT) removal from aqueous solution. The effect of the contact time (0–1440 min), initial concentration (2–
100 mg L−1), and temperature (298–318 K), as well as pH (2–9) and ionic strength (0–0.2 M NaNO3), have been examined. The
maximum adsorption capacity was calculated to be 104.9 mg g−1 using the Langmuir model. The endothermic adsorption process
(△H = 10.940 kJ mol−1) was pH- and temperature-dependent, and the adsorption data fitted well with the Langmuir isothermal
and the pseudo second-order kinetic models. Additionally, ionic strength (0.01 to 0.2 M NaNO3) had no obvious influence on
SMTadsorption by graphene. Ultimately, graphene proved to be an effective adsorbent for sulfonamide antibiotics removal from
aqueous solutions.
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Introduction

Sulfonamides (SAs) is a general term that describes a class of
drugs with the structure of sulfanilamide. It has been exten-
sively used in chemical therapy for the prevention and treat-
ment of bacterial infectious diseases (Aminov 2017). In spite
of its extraordinary antibacterial effect, there are concerns over
the drug abuse, which may result in super bacteria and effica-
cy failure. However, its extensive application in livestock pro-
duction accompanied by substantial unabsorbed SAs
discharging to waters has aroused much attention. As the big-
gest producer and user of SAs, China is in great potential risks
of this pollution, for more and more SAs have been detected in

the environments (Bu et al. 2013; Gao et al. 2016; Zhao et al.
2016; Chen et al. 2017; Ren et al. 2018; Wang et al. 2019).
Concerns arising from exposure to sulfonamide antibiotics in
aquatic environments, which may lead to toxic effects and
microorganism antibiotic resistance, have stimulated the de-
velopment of its removal technology. It is of great significance
to develop an effective and economical technology to remove
the SA residue from water (Wang and Wang 2016).

Various technologies have been studied for the removal
of antibiotics from water and wastewater, including phys-
ical, chemical, and biological methods, which have the
potential to remove pathogens, antibiotic resistance genes
(ARG), and emerging contaminants in an environmental
and economical manner (Pang et al. 2016; Wang and Chu
2016; Ducey et al. 2017; Liu et al. 2017a, b, 2018; Song
et al. 2017; Tang and Wang 2018; Wang and Wang
2018a). A series of technologies have been developed
for SA removal, such as adsorption and advanced oxida-
tion processes (AOPs) (Homem and Santos 2011; Wang
and Bai 2017). Compared with physical and chemical
methods, the biological treatment (e.g., activated sludge
method) has been recognized as the most economical and
effective one for most organic pollutants (Wang and Wang
2018b). Whereas, there is a controversy over the potential
cultivation of resistance gene and spread risks. Previously,
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our research group has conducted a series of studies on
AOPs for SMA degradation, including Fenton-like reac-
tion (Wan et al. 2016; Bai et al. 2017; Wan and Wang
2017a, b), and gamma irradiation (Liu and Wang 2013;
Liu et al. 2014; Chu et al. 2015). Although known for its
degradation capacity, AOPs suffer from its relatively high
cost. Among all these methods, adsorption has been ex-
tensively studied due to its ease of operation, as well as
the overcoming of these above discussed disadvantages
(Chi et al. 2017; Wang et al. 2018).

Various kinds of adsorbents have been used for SA removal
(Zhang et al. 2016), such as resin, organophilic zeolite Y,
carbon-based adsorbents, and metal-organic frameworks
(MOF). Although MOF exhibited a potential for sulfametha-
zine (SMT) removal, its cost is still too high (Azhar et al.
2017). As for resin, its removal efficiency for SMT is still
not yet satisfactory and its adsorption process is pH- or ionic
strength-depending (Yang et al. 2011). The adsorption of sul-
fonamides onto organophilic zeolite Y was irreversible, which
is not favorable for regeneration (Braschi et al. 2010). Among
these adsorbents, carbon-based adsorbent is one category that
is economical and easy to be obtained (Xu and Wang 2017).
There have been lots of researches on the application of acti-
vated carbon for water purification, including the removal of
SAs (Choi et al. 2008; Nam et al. 2014; Liu et al. 2017a, b).
Considering the uniform and high surface area of the structure,

the other carbon-based material, graphene, is regarded as an
alternative adsorbent for the removal of SAs.

As a two-dimensional honeycomb-like material,
graphene is composed of carbon atoms that covalently
connect each other via sp2 hybrid orbitals (Allen et al.
2010). This unique structure enriches itself with a high
surface area and high surface hydrophobicity, which is
good for adsorption. The application of graphene family
for organic compound adsorption (e.g., antibiotics) has
been well summarized by Perreault et al. (2015).
Previously, the adsorption of bisphenol A and triclosan
into graphene has been studied by the comparison of
using activated carbon. The results showed that graphene
was superior to activated carbon for triclosan adsorption,
but not for bisphenol A (Wang et al. 2017). Rostamian
and Behnejad (2018) utilized graphene nanosheet as an
effective adsorbent for doxycycline removal. A maximum
adsorption capacity of 110 mg g−1 was achieved accord-
ing to the Hill equation. Furthermore, Das et al. (2017)
found that π-π and hydrophobic forces were mainly re-
sponsible for adsorption using pristine graphene. These
previous studies using graphene for various antibiotics
indicate great potential of graphene as an adsorbent for
SAs removal. However, there is a lack of related knowl-
edge. The fundamental study of SAs into the pristine
graphene can provide further insight into adsorption per-
formance, which is good for future modification and
application.

In this study, sulfamethazine (SMT), which belongs to
SAs, was chosen as target pollutant. Its structure is shown in
Fig. 1. We intended to investigate the performance of SMT
adsorption onto graphene. The physicochemical and morpho-
logical properties of graphene were studied using SEM, BET,
and zeta potential measuring equipment. The effect of
contacting time, adsorbent dosage, temperature, pH, and ionic
strength on SMT adsorption was also investigated.
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Fig. 1 Chemical structure of SMT

(a) (b)
Fig. 2 SEM (a) and TEM (b)
images of graphene
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Materials and methods

Chemicals

The graphene was obtained from The Sixth Element
(Changzhou) Materials Technology Co., Ltd. (China). SMT
was obtained from the Thermo Fisher Scientific Inc.
(America). The other chemical reagents of analytical grade
were purchased from Sinopharm Chemical Reagent Co.,
Ltd. (China). Meanwhile, all solutions were prepared with
deionized water without further purification.

Characterization of adsorbents

The morphologies of graphene were characterized by a
field emission scanning electron microscope (Hitachi
SU-8010) and high-resolution transmission electron mi-
croscope (JEM-2010). The Brunauer–Emmett–Teller
(BET) surface area was examined by nitrogen sorption/
desorption isotherm measurements at 77 K on a NOVA
3200e surface area and porosity analyzer. The zeta po-
tential of graphene in aqueous solution was determined
by zeta potential measuring instrument (JS94H2,
Powereach, Shanghai).

Adsorption experiments

SMT adsorption experiments were performed in a batch
system. Graphene was added into 25-mL conical flasks
which contained SMT solutions. The pH value was adjust-
ed with 0.1 M HCl or 0.1 M NaOH, and the ionic strength
of solution was adjusted by NaNO3. Besides, the conical
flasks were all shaken in a water-bath shaker at 150 rpm
and room temperature (about 25 °C). The other conditions
were given in the figure legends.

The adsorption capacity of the adsorbent was calculated
according to the following equation:

qt ¼
C0−Ct

m

� �
V

where C0 is the initial SMT concentration, Ct is the concen-
tration of SMTat time t, m is the mass of the adsorbent, and V
is the volume of the solution.

Fig. 3 N2 sorption/desorption isotherms (a) and pore size distribution
curves (b) of graphene

Table 1 Physical property of the graphene

SABET (m
2 g−1) Mesopore (cm3 g−1) Average pore size (nm)

271.10 1.13 3.78

Fig. 4 Zeta potential curves vs. pH of graphene
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Analytical methods

SMTconcentrations were quantified by high-performance liq-
uid chromatograph (HPLC) (Agilent 1200 Series, Agilent,
USA) equipped with a diode array detector (DAD) and an
XDB-C18 (4.6 × 150 mm) column. The detection wavelength
was 255 nm and the column temperature was 30 °C. The
mobile phase was a mixture of distilled water and ethanol in
a ratio of 55:45 (v/v).

Results and discussion

Characterization of sorbents

The morphologies of graphene were shown in Fig. 2. There
were typical ripples on its surfaces. Graphene nanosheet films
were transparent and slightly aggregated with the wrinkles
loosely distributed on the basal planes forming groove re-
gions. The potential adsorption sites could be divided into flat
surfaces and groove regions.

The N2 sorption/desorption isotherms, as well as the pore
size-distribution curves of graphene, were presented in Fig. 3.
According to the Brunauer–Deming–Deming–Teller (BDDT)
classification, the isotherms and hysteresis loops were type IV
and type H3, respectively (Zhu andWang 2017). This indicat-
ed that the pore size was relatively uniform and the pores were
mesoporous (1.126 cm3 g−1), as confirmed by the correspond-
ing pore size-distribution curves. The feature analysis data, as
presented in Table 1, showed that the average pore size was
3.78 nm. While the specific surface area was 271.10 m2 g−1,
which was lower than the theoretical value (2600 m2 g−1)
(Park and Ruoff 2009) due to the blending and curling of the
graphene sheets.

Zeta potential is the potential difference between the dis-
persion medium and the stationary layer of fluid attached to
the dispersed particle, which can express the acidity or ba-
sicity of the sorbent surfaces (Xing et al. 2016). The varia-
tion of the zeta potentials of graphene samples with pH was
presented in Fig. 4, indicating that zeta potential gradually
changed from positive to negative as the increase of pH
values. While the surface charges of the samples changed
from positive to negative at the same time. In neutral

Fig. 5 Sorption kinetics of SMT
by graphene. Conditions: V =
10 mL, C0 = 20 mg/L, I = 0.02 M
NaNO3, pH = 7, dosage = 0.2 g/L,
T = 298 K, and r = 150 rpm

Table 2 Kinetics parameters for
SMT adsorption by graphene Pseudo first-order Pseudo second-order

k1
(min−1)

qe(cal)
(mg g−1)

qe(exp)
(mg g−1)

R2 k2
(g mg−1 min−1)

qe(cal)
(mg g−1)

k
(mg g−1 min−1)

R2

0.165 – 58.05 0.534 2.953 × 10−3 58.14 9.98 > 0.999
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condition, graphene, with negative charge, was more likely
to adsorb cationic molecules, which was suitable for SMT
adsorption in this study. Additionally, the potential of zero
charge (pHPZC) of graphene was 4.83, indicating the exis-
tence of substantial acidic functional groups on its surface
(Ding et al. 2013).

Effect of contact time on SMT adsorption

The absorption kinetic curve of SMT onto graphene was
shown in Fig. 5a. At first, owing to the abundant unoccupied
adsorption sites, as well as the high concentration gradient
(Zhuang et al. 2017), the adsorption of SMT onto graphene
was very fast within the first 10 min. Then, the adsorption
amount plateaued and reached its maximum in 4 h with an
adsorption capacity of 58.05 mg g−1.

To investigate the kinetic sorption mechanism and the rate-
limiting step during the process, the pseudo first-order, pseudo
second-order, and Weber–Morris models were adopted to an-
alyze the effect of contact time on the adsorption of SMT, and
the corresponding curves were shown in Fig. 5b–d.

The pseudo first-order equation can be expressed as

log qe−qtð Þ ¼ logqe−k1t ln qe−qtð Þ ¼ lnqe−k1t ð1Þ
where qe and qt are the amount of SMT adsorbed at equilibri-
um and time t, respectively, and k1 is the rate constant.

The pseudo second-order equation can be described as

t
q
¼ 1

k2qe2
þ t

qe
ð2Þ

where k2 is the rate constant of the pseudo second-order
equation.

The related parameters were calculated and presented in
Table 2. The correlation coefficient (R2) of the pseudo first-
and pseudo second-order equations was 0.534 and > 0.999,
respectively. In addition, the calculated adsorption capacity
(qe(cal) = 58.14 mg g−1) obtained from the pseudo second-
order equation was very close to the experimental one (qe(-
exp) = 58.05 mg g−1), which indicated that the pseudo second-
order kinetic model was more suitable to this adsorption pro-
cess (Zhuang et al. 2018). While this adsorption process was
assumed to be chemical sorption (Ho and McKay 1999).

The Weber–Morris equation can be expressed as

qt ¼ kWMt1=2 þ C ð3Þ
where C is the constant that involves thickness and boundary
layer, and kWM is the constant of the intraparticle diffusionmodel.

The application of this model for data fitting was presented
in Fig. 5d and its parameters were shown in Table 3. The
whole adsorption process could be divided into three process-
es, including the surface adsorption, channel slow diffusion,
and equilibrium. As the curves did not go through the origin, it
was induced that the intraparticle diffusion was not the only
rate-limiting step during the adsorption process. Meanwhile,
the intercept (C) was positive value, revealing that
intraparticle diffusion was not disturbed by boundary layer.

Adsorption isotherms and thermodynamics of SMT

Combining with the characteristics of the data of the present
study, the Langmuir, Freundlich, Henry, and Temkin isother-
mal models were used to fit the sorption isotherm and sorption
process was studied through the parameters obtained by the
fitting curves. The linear relation formulas of these four
models are as follows (Wang and Zhuang 2017):

Langmuir equation :
Ce

qe
¼ Ce

qmax
þ 1

kLqmax
ð4Þ

Freundlich equation : lnqe ¼ lnk F þ nlnCe ð5Þ
Henry equation : qe ¼ kHCe ð6Þ
Temkin equation : qe ¼ kT lnCe þ kT ln f ð7Þ
where Ceis the concentration of SMT at equilibrium, qe is the
amount of SMTadsorbed at equilibrium, and qmax (mg g−1) is
the theoretical maximum sorption capacity per unit weight of
adsorbent. kL, kF, kH, and kT are sorption constants of the

Table 3 Parameters of intraparticle diffusionmodel for SMTadsorption
by graphene

Phase C (mg g−1) kWM (mg g−1 min−0.5) R2

1 31.97 4.199 –

2 0.599 0.985

3 0.051 0.930

Fig. 6 Sorption isotherms of SMT by graphene at 298, 308, and 318 K.
Other conditions: V = 10 mL, C0 = 2–100 mg/L, I = 0.02 M NaNO3,
pH = 7, dosage = 0.2 g/L, and r = 150 rpm
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Langmuir, Freundlich, Henry, and Temkin models, respectively.
The sorption isotherms of SMT were shown in Fig. 6 and

the fitting results of these models were shown in Table 4. As
shown in Fig. 6 and Table 4, the adsorption capacity of SMTat
equilibrium increased with increasing SMT concentration and
reached equilibration progressively. The maximum adsorption
capacity was approximately 104.93 mg g−1 at 318 K. In the
scope of measured concentration, only the Langmuir model
fitted all experimental data very well (R2 > 0.97), indicating a
monolayer adsorption process (Xu and Wang 2017). In addi-
tion, the Temkin model fitted reasonably, implicating the im-
portance of electrostatic interaction in this process. Although
the correlation coefficients (R2) of the Freundlich model var-
ied significantly at different temperatures, the fact that values
of n were all between 0.1 and 0.5 can still illustrate that the
adsorbent had high sorption capacity and the distribution of
sorption energy was highly heterogeneous.

The relation of standard Gibbs free energy change and stan-
dard equilibrium constant under standard state is as follows:

ΔG ¼ −RTlnkH ð8Þ
where R (8.314 J mol−1 K−1) is gas constant, T is absolute
temperature, and kH is equilibrium sorption constant of the
Henry model.

Sorption enthalpy is associated with van der Waals force be-
tween adsorbate and sorbent. While the sorption entropy mea-
sures the freedom of adsorbate molecules. The formula including
Gibbs free energy change quantity, enthalpy change, and entropy
change can be calculated according to following equation

ΔG ¼ ΔH−TΔS ð9Þ

Combining Eqs. (8) and (9), it can be inferred that:

lnkH ¼ −ΔG
RT

¼ −ΔH
RT

þ ΔS
R

ð10Þ

The value of kH in Table 4 was substituted into the above
equation to calculate the free energy change (△G), enthalpy
change (△H), and entropy change (△S), and the results were
listed in Table 5. The values of △H (10.94 kJ mol−1) were
significantly larger than zero, illustrating that the sorption
was endothermic process. Besides, △S (0.44 kJ mol−1 K−1)
was greater than zero, revealing that the contribution of

entropy change in sorption course for free energy quantity
cannot be ignored. At the given temperature (298–318 K),
the △G was less than zero, indicating that the adsorption of
SMT on graphene is a spontaneous process.

Effect of pH on SMT adsorption

The value of solution pH plays an important role in the ad-
sorption process, involving not only the species of adsorbates
but also the surface charge state of the adsorbent. The effect of
pH on the adsorption of SMT was studied and presented in
Fig. 7. Results showed that the optimal pHwas between 5 and
8, and neutral condition (pH = 7) exhibited highest adsorption
capacity for SMTaccording to the given data. Higher or lower
pH would result in lower adsorption capacity, which indicated
that electrostatic interaction may dominate the adsorption pro-
cess. For the adsorbates, the pKa of SMTwere 2.28 (pKa1) and
7.42 (pKa2), suggesting that there are zwitterionic species
when pH was in the range of 2.28–7.42, positively charged
species when pH < 2.28 and negatively charged species when
pH > 7.42 (Kurwadkar et al. 2007).

When pH > 7.42, negatively charged species of SMT dom-
inated in solution, while the surface of graphene was also
negatively charged (pHPZC = 4.83). The electrostatic repulsion
between the adsorbent and adsorbate of the same negative
charges may account for the suppressed sorption. On the other
hand, at lower pH, SMT mainly presented in neutral form at
pH 2.28–7.42, but there are also other small portion of cationic
and anionic forms. At the optimal pH range (5–8), the adsor-
bents were positively charged, leading to the electrostatic at-
traction for anionic SMT, but electrostatic repulsion for cat-
ionic SMT, as shown in Fig. 8. Additionally, there were elec-
trostatic interactions between the zwitterionic SMTand adsor-
bents. Furthermore, the hydrophobic property of protonation
of zwitterionic SMT was stronger than deprotonation of

Table 4 Isotherm parameters for adsorption of SMT by graphene

Temperature (K) Langmuir Freundlich Henry Temkin

qmax (mg g−1) kL (L mg−1) R2 kF n R2 kH (L g−1) R2 kT R2

298 91.08 0.201 0.969 26.491 0.311 0.744 2.471 0.768 14.998 0.842

308 87.79 0.238 0.996 24.028 0.343 0.901 2.353 0.796 16.438 0.977

318 104.93 0.234 0.991 27.110 0.372 0.890 3.262 0.826 20.180 0.968

Table 5 Thermodynamic parameters for SMT sorption by graphene

Temperature (K) △G (kJ mol−1) △H(kJ mol−1) △S (kJ mol−1 K−1)

298 − 2.241 10.94 0.44
308 − 2.191
318 − 3.126
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anionic SMT. The increase of neutral SMT for attracting π
electron will lead to strengthening of π-π EDA interaction
between the deionization group and graphite carbon structure
with π electron (Lertpaitoonpan et al. 2009).

Effect of ionic strength on SMT adsorption

To study the effect of ionic strength, the adsorption of SMT
experiments were conducted with the electrolyte, NaNO3,

ranging from 0 to 0.2 mol L−1. These ions (Na+ and NO3−)
may affect SMT adsorption by competing with SMT for
adsorption sites or creating general effect of Bionic
atmosphere^ or saline effect^ (Radovic et al. 2001).
However, as shown in Fig. 9, ionic strength did not have
obvious effect on SMT adsorption. This phenomena clearly
indicated that the added ions did not compete with SMT for
adsorption sites, and the electrostatic shielding effect did
not affect adsorption capacity obviously.

Fig. 7 Effect of pH on the equilibrium sorption capacity of SMT by
graphene. Conditions: V = 10 mL, C0 = 20 mg/L, I = 0.02 M NaNO3,
pH = 2–9, dosage = 0.2 g/L, T = 298 K, and r = 150 rpm

Fig. 8 The proposed adsorption mechanism of SMT onto graphene at pH 5–8

Fig. 9 Effect of ionic strength on the equilibrium sorption capacity of
SMT by graphene. Conditions: V = 10mL,C0 = 20mg/L, I = 0.01–0.2M
NaNO3, pH = 7, dosage = 0.2 g/L, T = 298 K, and r = 150 rpm
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Conclusions

Graphene was favorable for adsorbing SMT from aqueous
solution. With a high specific surface area (271.10 m2 g−1)
and a low pHPZC (4.83), graphene could adsorb SMTwith a
capacity of 104.9 mg g−1. This adsorption process was
greatly influenced by solution pH and temperature, and less
affected by ionic strength. Neutral pH condition was more
suitable for SMT adsorption due to the charge states of the
adsorbates and adsorbents, as well as the π-π interaction.
The measured data of the kinetic and equilibrium experi-
ments fitted well with the pseudo second-order kinetic and
the Langmuir isothermal models. According to the thermo-
dynamics, △H and △S was calculated to be 10.94 kJ mol−1

and 0.44 kJ mol−1 K−1, respectively. The findings in this
study highlight graphene as a potential adsorbent for the
removal of SMT from aqueous solution.
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