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Abstract
Persistent organic pollutants are compounds used for various everyday purposes, such as personal care products, food, pesticides,
and pharmaceuticals. Decomposition of considerable part of the above pollutants is a long-time process. Under such circum-
stances, estimation of toxicity for large arrays of organic substances corresponding to the above category of pollutants is a
necessary component of theoretical chemistry. The CORAL software is a tool to establish quantitative structure—activity
relationships (QSARs). The index of ideality of correlation (IIC) was suggested as a criterion of predictive potential of QSAR.
The statistical quality of models for eco-toxicity of organic pollutants, which are built up, with use of the IIC is better than
statistical quality of models, which are built up without use of data on the IIC.
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Introduction

Eco-toxicity of nonreactive organic pollutants (personal care
products, food, pesticides, and pharmaceuticals) is important
data for development and improvement of chemical technol-
ogy (Concu et al. 2017; Castillo-Garit et al. 2016; Kleandrova
et al. 2014a, b). Exposure of chemical contaminants to the
aquatic environment (Baun et al. 2000; Sánchez-Bayo 2006;
Parvez et al. 2008) to air (Raevsky et al. 2011) poses serious
threats to the preservation of environmental quality and to
human health and is recognized as a global problem
(Kleandrova et al. 2014a, b; Castillo-Garit et al. 2008; Papa
et al. 2005; de Morais e Silva et al. 2018). In addition, ionic
liquids are important class of the organic pollutants caused by
their use of everyday life (Peric et al. 2015; Ma et al. 2015).
Other source of eco-toxicologic pollutants is associated with

the massive use of petroleum-derived organic solvents
(Perales et al. 2017). Finally, nanomaterials become additional
source of eco-toxic effects (Nowack andMitrano 2018). Thus,
the development of databases together with predictive models
related to eco-toxicity data for nonreactive pollutants becomes
an important task of biochemistry and medicinal chemistry.

The aim of this study is estimation of the CORAL software
(Toropova and Toropov 2014) as a possible tool to build up
predictive models for eco-toxicity. The index of ideality of
correlation (IIC) (Toropova and Toropov 2017; Toropov and
Toropova 2017; Toropov et al. 2018; Toropov and Toropova
2018) is examined as a criterion of predictive potential of the
CORAL model of eco-toxicity.

Method

Data

The experimental values measured for EC50 (effective molar
concentration) (mol/L) are represented by negative decimal
logarithm pEC50. The data taken in the literature (de Morais
e Silva et al. 2018). These numerical data (n = 111) were ran-
domly distributed into the training (n = 28), invisible training
(n = 27), calibration (n = 29), and external validation (n = 27)
sets. Table 1 confirms that the percentage of the identical
distribution is not large.
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Optimal descriptor

The optimal descriptor (Toropova and Toropov 2014) used
here is calculated as the following:

DCW T*;N*� � ¼ ∑
NA

k¼1
CW Skð Þ þ ∑

NA−1

k¼1
CW SSkð Þ ð1Þ

The Sk is the BSMILES-atom,^ i.e., one symbol or two
symbols (e.g.. BC,^ BN,^ and BO^) which cannot be examined
separately (e.g., BCl^ and BSi^); the SSk is a combination of
two SMILES-atoms. The CW(Sk) and CW(SSk) are so-called
correlation weights of the above-mentioned attributes of
SMILES. The numerical data on the CW(Sk) and CW(SSSk)
are calculated with the Monte Carlo method, i.e., the optimi-
zation procedure which gives maximal value of a target func-
tion (TF).

QSAR models, calculated with the Monte Carlo optimiza-
tion of target functions TF1 and TF2:

TF1 ¼ rTRN þ riTRN− rTRN−riTRNj j*0:1 ð2Þ
TF2 ¼ TF3 þ IICCLB*0:1 ð3Þ

The rTRN and riTRN are correlation coefficient between ob-
served and predicted endpoint for the training and invisible
training sets, respectively.

The IICCLB is calculated with data on the calibration (CLB)
set as the following:

IICCLB ¼ rCLB
min

�
−MAECLB;

þMAECLB

�

max
�
−MAECLB;

þMAECLB

� ð4Þ

−M AECLB ¼ 1
−N

∑
�N

k¼1
j Δk j;Δk < 0; −N

is the number of Δk < 0

ð5Þ

þ M AECLB ¼ 1
þN

∑
þN

k¼1
j Δk j;Δk⩾0; þN is the number of Δk⩾0 ð6Þ

Δk ¼ observedk−calculatedk ð7Þ

The observed and calculated are corresponding values of
pEC50.

Having the numerical data on the CW(Sk) and CW(SSk), the
predictive model is calculated by the least squares method
with compounds from the training set:

pEC50 ¼ C0 þ C1*DCW T*;N*� � ð8Þ

Results and discussion

Three models for pEC50 are built up using three random splits
with two versions of target function TF1 calculated with Eq. 2
and TF2 calculated with Eq. 3.

In the case of TF1 these models are the following:

pEC50 ¼ 1:732 �0:027ð Þ
þ 0:3695 �0:0047ð Þ*DCW 1; 2ð Þ ð9Þ

pEC50 ¼ 1:842 �0:042ð Þ
þ 0:3694 �0:0063ð Þ*DCW 1; 6ð Þ ð10Þ

pEC50 ¼ 1:784 �0:023ð Þ
þ 0:4488 �0:0046ð Þ*DCW 1; 2ð Þ ð11Þ

In the case of TF2, these models are the following:

pEC50 ¼ 1:582 �0:048ð Þ
þ 0:3745 �0:0069ð Þ*DCW 1; 15ð Þ ð12Þ

pEC50 ¼ 1:366 �0:054ð Þ
þ 0:2766 �0:0052ð Þ*DCW 1; 15ð Þ ð13Þ

pEC50 ¼ 2:009 �0:036ð Þ
þ 0:4891 �0:0091ð Þ*DCW 1; 15ð Þ ð14Þ

Table 2 contains the statistical characteristics of the
models calculated with Eqs. 3–5. Comparison of these

Table 1 Percentage of identical distribution of compounds into the
training, invisible training, calibration, and validation sets

Set Split 1 Split 2 Split 3

Split 1 Training 100 28.6 25.0

Invisible training 100 18.5 29.6

Calibration 100 20.7 24.1

Validation 100 37.0 22.2

Split 2 Training 100 28.6

Invisible training 100 40.7

Calibration 100 27.6

Validation 100 44.4

Split 3 Training 100

Invisible training 100

Calibration 100

Validation 100

Identify %ð Þ ¼ Ni; j

0:5* NiþN jð Þ � 100

whereNi, j is the number of substances which are distributed into the same
set for both i-th split and j-th split (set = training, invisible training,
calibration, and validation); Ni is the number of substances which are
distributed into the set for i-th split; Nj is the number of substances which
are distributed into the set for j-th split
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models with model from the literature (de Morais e Silva
et al. 2018) shows that the CORAL-models are better for
the external validation set.

Figure 1 contains comparison of co-evolutions of corre-
lations between observed and calculated pEC50 for train-
ing, invisible training, and calibration sets. The absence of
overtraining is the main difference between the optimiza-
tion with TF2 and optimization with TF1. Factually, this is
an advantage of the optimization with TF2.

Concordance correlation coefficient (CCC) (I-Kuei Lin
1989) and average <Rm

2> (Roy et al. 2009; Ojha et al. 2011)
are widely used criteria of predictive potential of a QSAR
model. In other words, if there are model-1 and model-2
and CCC-1 is larger than CCC-2, then the model-1 should
has better predictive potential for external compounds.
Analogically, if there are model-1 and model-2 and Rm

2-1
is larger than Rm

2-2, then the model-1 should has better
predictive potential for external compounds. The same
principle is related to IIC: larger value of IIC should be

observed for model with better predictive potential. The
CCC and <Rm

2> give correct recommendation for pair of
models built up with TF1 and TF2 for split #1 and #3, but for
split #2 these criteria give wrong recommendation
(Table 2). The IIC gives correct recommendations for all
splits #1, #2, and #3. Thus, CCC (I-Kuei Lin 1989),
<Rm

2> (Roy et al. 2009; Ojha et al. 2011) and IIC
(Toropova and Toropov 2017; Toropov and Toropova
2017; Toropov et al. 2018; Toropov and Toropova 2018)
are different criteria of predictive potential.

Supplementary materials contain confirmation of the
compliances of the CORAL approach to OECD principles:
Table S1 contains definition of the domain of applicability;
Table S2 contains mechanistic interpretation of the
CORAL model in terms of SMILES-attributes, which are
promoters of increase or decrease for pEC50. Table S3
contains observed and calculated pEC50 together with dis-
tribution into the training, invisible training, calibration,
and validation sets.

Table 2 The statistical characteristics of models for eco-toxicity

Split TF Set n r2 RMSE CCCa <Rm
2>b IIC

1 TF1 Training 28 0.8921 0.291

Invisible training 27 0.8699 0.378

Calibration 29 0.7248 0.446 0.8343 0.5840 0.4738

Validation 27 0.9062 0.267

TF2 Training 28 0.7877 0.409

Invisible training 27 0.8157 0.420

Calibration 29 0.8162 0.345 0.8937 0.7068 0.9028

Validation 27 0.9515 0.223

2 TF1 Training 28 0.8431 0.326

Invisible training 27 0.8166 0.424

Calibration 29 0.8878 0.295 0.9417 0.8376 0.6284

Validation 27 0.8556 0.322

TF2 Training 28 0.8633 0.304

Invisible training 27 0.7251 0.476

Calibration 29 0.8718 0.315 0.9330 0.8152 0.9325

Validation 27 0.9224 0.228

3 TF1 Training 28 0.9062 0.262

Invisible training 27 0.9060 0.297

Calibration 29 0.6890 0.454 0.8080 0.5310 0.6061

Validation 27 0.8454 0.368

TF2 Training 28 0.8346 0.348

Invisible training 27 0.8433 0.407

Calibration 29 0.8312 0.283 0.9078 0.7584 0.9113

Validation 27 0.9335 0.225

a The CCC is concordance correlation coefficient (I-Kuei Lin 1989); b<Rm
2> is Rm2 metric (Roy et al. 2009; Ojha et al. 2011)

Model suggested in the literature (de Morais e Silva et al. 2018) has the following statistical quality n=86, r2 =0.8221, RMSE=0.353 (training set) and
n=25, r2 =0.8981, RMSE=0.299 (validation set)
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Fig. 1 Co-evolution of correlations between pEC50observed and pEC50calculated for training (white circle), invisible training (dark circle), and calibration
(white triangle) sets with applying target function TF1 (Eq. 2) and TF2 (Eq. 3)



Conclusions

The CORAL software factually is a tool to build up predictive
models for eco-toxicity of compounds examined here. The
target function TF2 gives models with better predictive poten-
tial in comparison with models based on the Monte Carlo
optimization with TF1. In other words, the IIC is checked up
with three random splits. Hence, the IIC can be a useful crite-
rion of the predictive potential of QSAR models of eco-
toxicity.
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