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Abstract
Ammonium (NH4

+) in biogas slurries is readily nitrified into very mobile soil nitrate (NO3
−) to promote nitrogen (N) leaching

concerningwhich a few studies, however, have been reported. These slurries are regularly applied through irrigation to purple soil in
the Three Gorges Reservoir Area, and therefore we explored the consequent N leaching there with a plot experiment. Biogas slurry
irrigation was carried out with nitrogen application rates of 0, 48, 144, 240, 336, and 480 kg N/ha. As a result, the last two rates have
triggered N leaching being detrimental to groundwater safety. In addition, N leaching was negatively correlated with soil microbial
biomass, diversity, and respiration, indicating a potential technique to prevent it with soil heterotrophs activated by increased ratios
of carbon to nitrogen (C/N) in biogas slurries.
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Introduction

Biogas slurries, a by-product of biogas projects, contain nutri-
ents and thus are recycled as fertilizers to increase crop
yields. However, significant gaps persist in our knowl-
edge on their environmental impacts. To bridge these gaps, the
scientific community has been making efforts, but to date

researches are far from complete (Insam et al. 2015; Möller
and Müller 2012; Nkoa 2014). A few studies have dealt with
the nitrogen (N) leaching in soils following application of
biogas slurries, although it may pose risks to groundwater. It
mainly derives from very mobile nitrate (NO3

−), into which
the ammonium (NH4

+) in biogas slurries, accounting for a
large percentage (35 to 81%) of total nitrogen (Möller and
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Highlights
• Applying biogas slurry at common nitrogen application rates triggered
N leaching.
• The N leaching was due to soil nitrification promoted by the biogas
slurry.
• Increasing slurry C/N might prevent the N leaching but needs further
confirmation.
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Müller 2012; Nkoa 2014), is readily nitrified (Abubaker et al.
2013; Abubaker et al. 2012; Alburquerque et al. 2012;
Goberna et al. 2011; Gomez-Brandon et al. 2016; Grigatti et
al. 2011; Johansen et al. 2013; Sanger et al. 2014; Sawada and
Toyota 2015; Senbayram et al. 2009).

Academic works have measured higher and lower rates of
N leaching in the absence and presence of plants, respectively.
After entering some bared soils, the biogas slurries resulted in
three times as much NO3

− leaching as the manure led to
(Goberna et al. 2011), and in the N leaching accounting
for 31% (Cheng et al. 2017) or 16% (Sänger et al. 2011) of the
applied rate of nitrogen. However, if the maize or
grasses were included, such ratios would be lower at 6 to
12% (Matsunaka et al. 2006), 8% (Svoboda et al. 2013a, b),
or 1% (Svoboda et al. 2013a).

The two levels of N leaching may confuse questions as to
which of them to refer to and then whether the other carries
weight despite in fact the vital information provided by both.
The less alarming level seems to outweigh because the usage
of plants makes conditions more real. However, the other is
also essential for our understanding of the processes that bio-
gas slurry NH4

+ go through, including volatilization, adsorp-
tion, immobilization, nitrogen uptake, and nitrification
(Amlinger et al. 2003). In addition, it enables a simpler fate
of NH4

+ for exploration that getting rid of crops to separate the
nitrogen uptake from other processes. Moreover, the clearer
fate better fits experiments on the N leaching derived from
biogas slurries per se, and on potential (the maximum likeli-
hood) and risk of N leaching (USEPA 1998).

Here, we investigate the N leaching in purple soil following
biogas slurry irrigation of the Three Gorges Reservoir Area. This
area is critical for the water quality of the Yangtze River, the
world’s third longest river, because it covers a 660-km stretch
(Gao 2017;Gleick 2009). It however is vulnerable toN leaching,
because the purple soil accounts for 69% of arable lands (Guan
et al. 2014), and is characterized by shallow depths of up to
50 cm. According to reports, recent years have witnessed in-
creasing environmental concerns raised by agricultural nitrogen
loads there (Gao 2017; Ma et al. 2016; Zhang et al. 2015).

Biogas slurry irrigation was carried out with nitrogen ap-
plication rates of 0 to 480 kg N/ha to analyze the consequent
leachate and soil for experimental results, which may lead to
sensible precautions against unawareness undermining the
safety of the environment.

Material and methods

Soil and biogas slurry

Both purple soil and biogas slurry were similar to those in a
study, with respect to the sources and characteristics (Table 1)
(Cheng et al. 2017). The silty clay loam was collected at the

National Monitoring Station of Purple Soil Fertility and
Fertilizer Efficiency, Chongqing, China (106° 25′ 45 ″ N, 29°
49′ 18″ E), being located in the Three Gorges Reservoir Area.
The slurry was collected from a cattle farm in Banan,
Chongqing, China. After sedimentation, slurry in the upper lay-
er was passed through a 1-mm sieve and diluted with tap water.

Experimental plot setup

Smaller plots (SPs) measuring 24 cm long × 18 cm wide ×
20 cm deep and larger plots (LPs) measuring 60 cm long ×
40 cm wide × 60 cm deep were employed (Fig. 1). In order to
achieve a density of 1.25 g/cm3 in all plots, they were homo-
geneously packed with the air-dried aggregates of diameter
less than 5 mm rather than intact soil. They were run outside
but shielded from rains and kept bare during this experiment.

Experimental design

Biogas slurry irrigation with a rate of 25 mm/week lasted for
12 weeks, equivalent to 0 (tap water), 144, and 336 kg N/ha
for the SPs (r0 to r336) and 0, 48, 144, 240, 336, and
480 kg N/ha for the LPs (R0 to R480). Both the irrigation rate
(Fessehazion 2012) and the nitrogen application rates (Amon
et al. 2006; Bertora et al. 2008; de la Fuente et al. 2012;
Gericke et al. 2012; Köster et al. 2011; Monaco et al. 2011;
Quakernack et al. 2012; Svoboda et al. 2013a, b; Win et al.
2014; Wu et al. 2013) are commonly used. SPs had two rep-
licates while the repetition of LPs was impossible to perform
due to high consumption of air-dried soil (2.2 to 3.2 tons).
This is consistent with some studies suffering from shortages
of materials (e.g., soil, wastewater) (Castillo et al. 2001;
Hedström and Amofah 2008; Jellali et al. 2010).

Sampling and analysis

Leachate was collected under plots by containers to determine
pH (PB-10; Sartorius, Göttingen, Germany), total nitrogen
(TN) (MEPC 1990), ammonium nitrogen (NH4

+-N) (MEPC

Table 1 Characteristics of soil and biogas slurry

Soil Clay Silt Sand FC pH CaCO3

30% 42% 28% 38.3% 6.81 1.13%

CEC
(cmol (+)/kg)

TOC
(g/kg)

TN
(mg/kg)

NH4
+-N

(mg/kg)
NO3

−-N
(mg/kg)

SMBN
(mg/kg)

18.29 4.15 501.3 10.73 7.36 2.3

Slurry pH TN
(mg/L)

NH4
+-N

(mg/L)
NO3

−-N
(mg/L)

NO2
−-N

(mg/L)
COD
(mg/L)

7.73 949.1 761.0 37.66 7.70 7888

Methods of analysis reported (Cheng et al. 2017)

FC field capacity; CEC cationic exchange capacity; TOC total organic
carbon; TN total nitrogen; SMBN soil microbial biomass nitrogen; COD
chemical oxygen demand
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2009), nitrite nitrogen (NO2
−-N) (MEPC 1987), nitrate nitro-

gen (NO3
−-N) (CNEMC 2007), and chemical oxygen demand

(COD) (COD DRB 200 and COD DR1010; Hach, Loveland,
USA). Each parameter was determined by triplicate measure-
ments. Sampling took place on the first day and the last day
each week after each irrigation. The first days could represent
their weeks as regards the quality of leachate, since they con-
tributed about 100% and 69% to the weekly volumes for LPs
and SPs, respectively.

Each layer of soil (0 to 20 cm; 20 to 40 cm; and 40 to
60 cm) was analyzed once a month for pH-water (1:5) (Pansu
and Gautheyrou 2003), total organic carbon (TOC) (Cao
et al. 1983), total nitrogen (TN) (Xu 1992), ammonium
nitrogen (NH4

+-N) (MEPC 2012), nitrate nitrogen (NO3
−-N)

(MEPC 2012), and soil microbial biomass nitrogen (SMBN)
(Cabrera and Beare 1993). Phospholipid fatty acid (PLFA) in
the surface soil (0 to 20 cm) sampled from LPs at the end of
experiment was determined (Wang et al. 2016). The measure-
ment of any soil indicator was performed in triplicate or
quadruplicate.

Statistical analysis

The C respired, N nitrified, TN leached, NO3
−-N leached, and

N denitrified were calculated to indicate soil respiration, nitri-
fication, N leaching, NO3

− leaching, and denitrification, re-
spectively (Cheng et al. 2017). Then, ordination analysis
(Canoco CCA) was applied, across the gradient of nitrogen
application rates, to nitrogen leaching-related indices (e.g., N
nitrified, TN leached, and NO3

−-N leached), soil microbial
indices (e.g., SMBN, PLFA, and C respired), and experimen-
tal treatments (as r0 to r336 and R0 to R480) (Palmer 2015).
One-way analysis of variance (ANOVA) followed by post hoc
test was used to determine differences between treatments.

Results and discussion

N leaching raised environmental concern

None of total nitrogen loads, leachate nitrogen concentrations
(as TN and NO3

−-N), temporal trends in the concentrations,
and soil temperature conditions were suggestive of low risks
of N leaching, when the nitrogen application rates of 336 and
480 kg N/ha had been employed (as r336, R336, and R480).

N leaching was relatively undesirable, given total nitrogen
loads accounting for 13 ± 3% and 20 ± 11% of the nitrogen
applied to SPs and LPs, respectively. These proportions, along
with 16 to 30% for the bare soils (Cheng et al. 2017; Sänger et
al. 2011), varied in excess of 1 to 12% for the soils with herbs
(Matsunaka et al. 2006; Svoboda et al. 2013a, b). This is
because immediate infiltration of irrigation water left little
time for denitrification of soil NO3

− and no chance of NO3
−

uptake was provided in this study. However, if restored, the
nitrogen uptake might blind one to the environmental impacts
and risks of biogas slurries per se.

N leaching raised environmental concerns as the nitrogen
application rate achieved 336 kg N/ha (r336, R336, and
R480). Meanwhile, the leachate TN became significantly
higher than the counterparts in the other treatments (Sig.<
0.05, Fig. 2(a and b)), together with the leachate NO3

−-N of
23.07 ± 18.12 mg/L and 45.47 ± 22.08 mg/L for SPs and LPs,
respectively (Fig. 2(e and f)). The NO3

−-N concentrations
were far short of the reported around 100 mg/L (Goberna et
al. 2011). However, substantial proportions of them were be-
yond the local threshold for groundwater (30 mg/L) (MEPC
1994), 30% and 73% for SPs and LPs, respectively; and the
nitrate can have an easy access to groundwater due to the
limited depths of purple soil. In addition, N leaching (leachate
TN and NO3

−-N) was positively correlated to nitrogen

Fig. 1 Experimental plot, design,
sampling, and analysis
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application rates (N applied) and in close proximity to the
higher ones (r336, R336, and R480) as demonstrated
in ordination analysis (Fig. 4). In fact, nitrogen applica-
tion rates of over 336 kg N/ha are highly likely to occur in the
Three Gorges Reservoir Area employing an average rate of
287 kg N/ha, and particularly in the upstream regions where
flooded arable lands (or paddy fields) receiving little biogas
slurry take, however, larger proportions than their counterparts
in the downstream regions; accordingly, groundwater quality in
the upstream area is worth investigating in further studies. The
average rate was estimated according to that 20% of
about 350,000 t of the manure TN load produced by
livestock and poultry is processed in anaerobic digesters and
then applied to a total area of 243,940 ha of available and
arable lands (Chen et al. 2008; Huang et al. 1999, 2017; Wei
et al. 2013; Yang et al. 2012).

N leaching increased over time once the higher rates of
nitrogen were applied (r336, R336, and R480), as indicated

by very high correlations between leachate TN and time (R2 >
0.91, Fig. 2(a and b)). Leachate TN increased by 4.07, 2.57,
and 7.97 mg/(L × week) for r336, R336, and R480, respec-
tively. Such high correlations were interesting but seldom
reported.

The N leaching could be even greater due to in-
creased soil temperatures and intensified application of
biogas slurries. Soil temperatures were recorded three
times per day as 9.8 ± 2.6 °C and 10.0 ± 2.8 °C for SPs and
LPs, respectively. They were much colder than 25 to 35 °C,
the optimum range for nitrification promoting N leaching
(Harmsen and Kolenbrander 1965). Therefore, the observed
N leaching was conservative compared with its potential. In
addition, it could be enhanced during autumn plowing in the
Three Gorges Reservoir Area, provided that this monsoon
season has witnessed air temperatures averaging out to
32 °C (TQW 2018) and a vast majority of annual output of
biogas slurries being applied.

Fig. 2 Nitrogen content (as total nitrogen, ammonium nitrogen, nitrate
nitrogen and nitrite nitrogen, a to h) and chemical oxygen demand (COD,
i and j) of leachate from smaller plots (SP) and larger plots (LP) by

nitrogen application rates. Leachate was sampled in the first day after
each irrigation; and sampling did not take place in the first week; and
analysis was not performed for the treatment r336 in the eighth week
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N leaching was due to soil nitrification

The escalated N leaching accompanied by the higher nitrogen
application rates was because of the high potential of digestate
NH4

+ to be nitrified into the very mobile NO3
− in soils

(Abubaker et al. 2012, 2013; Alburquerque et al. 2012;
Goberna et al. 2011; Gomez-Brandon et al. 2016; Grigatti et
al. 2011; Johansen et al. 2013; Sanger et al. 2014; Sawada and
Toyota 2015; Senbayram et al. 2009).

It indicated soil nitrification that the predominant nitrogen
changed from NH4

+ in biogas slurry into NO3
− in leachate.

The principal form was NH4
+ accounting for 80 ± 13%

of TN in the biogas slurries, which fell into 35 to 81%
in the reviews (Möller and Müller 2012; Nkoa 2014).
But after irrigation, it was transformed into NO3

− in the
leachate with ratios of NO3

−-N to TN being 56 ± 23%
and 90 ± 20% for SPs and LPs (Fig. 2(a–f)), respectively, in
line with several studies (Matsunaka et al. 2006; Sänger
et al. 2011; Svoboda et al. 2013a, b). Some percentages
exceeded 100% due to the incomplete recovery of the method
for determining TN (Cabrera and Beare 1993; Hagedorn and
Schleppi 2000).

Another evidence of the nitrification was accumulations of
NO3

− in soil. Decreases in soil NO3
− continued through the

experiment when nitrogen was applied at the rates below
240 kg N/ha. However, as soon as that rate was achieved, they
turned into increases accounting for 16% and 22% of the
nitrogen inputs to SPs and LPs, respectively (Fig. 4(c and i)).

N leaching would be deterred by enlarged ratio of C/N
in biogas slurry

Inactivated heterotrophs were responsible for the soil nitrifi-
cation and consequent N leaching; therefore, activating them

through enlarging the ratios of carbon to nitrogen (C/N) in
biogas slurries may deter the N leaching.

Soil heterotrophs were influential in nitrogen dynamics of
this study. They are able to break down organic matters to
obtain carbon sources and release NH4

+ during mineraliza-
tion, thus influencing TOC in arable soils (Waksman and
Starkey 1931). They were formidable compared with the car-
bon inputs through biogas slurries of this study, since interplot
standard deviations of carbon applied to LPs accounted for
only 4% of that of soil ΔTOC, consistent with a reported
finding (Gomez-Brandon et al. 2016). Moreover, the increase
of 26 kg N/ha in SMBN coincided with the TOC consumption
of 12 t C/ha and the NH4

+ accumulation of 16.5 kg N/ha in the
treatment R0, although no biogas slurry was applied at all.

Soil heterotrophs were inactivated to free N leaching in
treatments with the higher nitrogen application rates (r336,
R336, and R480), as indicated by the microbial biomass
(SMBN and PLFA contents), diversity (Shannon Index of
PLFA), and respiration (C respired). These indicators
each were negatively correlated to nitrogen application
rates (Applied N) and distanced from the higher ones
(r336, R336, and R480, Fig. 4), probably due to negative
effects on heterotrophs of both a lack of carbon sources and
an oversupply of biogas slurry NH4

+ (Jansson et al. 1955;
Kangmeznarich and Broderick 1980; Recous et al. 1990;
Ricke and Schaefer 1991). As a result, redundant biogas slurry
NH4

+ for the inactive heterotrophs had promoted autotrophic
nitrifiers, nitrification, NO3

− accumulation, and the conse-
quent N leaching.

The soil heterotrophs would be reactivated to deter N
leaching through increasing biogas slurry C/N, because car-
bon sources assist heterotrophs to compete with autotrophic
nitrifiers for NH4

+ (Kaye and Hart 1997) and to denitrify
NO3

− (Broadbent and Clark 1965). The soil respiration (C

Fig. 3 Nitrogen content (as total nitrogen, ammonium nitrogen, nitrate
nitrogen and soil microbial biomass nitrogen) and total organic carbon
(TOC) of soil within smaller plots (SP, a to e) and larger plots (LP, f to j)

by nitrogen application rates. Numbers 1, 2, and 3 indicate layers of 0 to
20 cm, 20 to 40 cm, and 40 to 60 cm, respectively (a and f); and letters a
and b following a nitrogen application rate indicate its replicates (a to e)
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respired) was negatively correlated with the N leaching-
related indices (as N nitrified, TN leached, and NO3

−-N
leached, Fig. 4). In addition, negative correlations also
persisted between the ratios of dissolved organic carbon
(DOC) to TN in biogas slurries and the soil NO3

− of an incu-
bation experiment (Alburquerque et al. 2012).

In fact, it has been proved effective in a further test to
prevent the N leaching with enlarged biogas slurry C/
N ratios (Cheng et al. 2017). However, further confir-
mations are still needed.

Uncertainties in results

Measures, concerning negative impacts of the repacked soil
and the lack of repetition for LPs, were taken to alleviate or
recognize uncertainties in the results.

Not until 4 months after packing the plots did the experi-
ment begin. During that time, the plots were exposed to rains.
Therefore, soil processes such as mineralization, nitrifi-
cation, and denitrification could be restored prior to the
experiment to avoid unfavorable effects of the air-dried
soil on the results (e.g., the priming effect derived from satu-
ration (Kuzyakov et al. 2000)).

Comparability between LPs was monitored during the
4 months, so as to reasonably cancel the usage of LPs once
any significant deterioration of it had been detected. The com-
parability was reflected by interplot standard deviations (SDs)
of leachate quality. The leachate was collected after four rains
varying from 7 to 32 mm, and analyzed for pH, TN, NH4

+-N,
and NO3

−-N, each of the four SDs averaged out to as low as
0.07, 1.91mg/L, 0.07mg/L, and 2.16mg/L, respectively. As a
result of the small SDs, LPs were considered suitable and
subsequently put into operation.

SPs were regarded as a practical expedient for repeating
LPs or, at least, a means to prove the reliability of the findings
from LPs, due to two reasons. SPs were a scaled-down version
of LPs. Besides, they repeated some nitrogen application rates
of LPs. After experiment, the results from LPs were consid-
ered reliable. This is because they bear resemblance to those
from SPs in respect of their temporal trends and the influences
of nitrogen application rates on them (Figs. 2, 3, 4), and to
their counterparts in two further studies including one pub-
lished (Cheng et al. 2017) with reference to the significant N
leaching and the preventive measure that they indicated.

Conclusions

Concern over N leaching in purple soil was raised by the
biogas slurry irrigation employing nitrogen application rates
of 336 and 480 kg N/ha; and one option is to increase biogas
slurry C/N to prevent N leaching, but needs further
confirmations.

Considerable percentages, 30 and 73% for SPs and LPs,
respectively, of leachate samples were beyond the local
threshold for NO3

− in groundwater. Besides, the observed N
leaching might be conservative compared with its potential,
considering the soil temperatures remaining around 10 °C
which was well below 25 to 35 °C, the optimum range for
soil nitrification to produce very mobile NO3

− and then facil-
itate N leaching. The upstream regions of the Three Gorges
Reservoir Area are of interest to further studies investigating
groundwater quality because possibly high nitrogen applica-
tion rates occur there.

The N leaching-related indices (as N nitrified, TN leached,
and NO3

−-N leached) were negatively correlated with the soil

Fig. 4 Ordination analysis (Canoco CCA) of nitrogen leaching-related
index (as nitrogen nitrified, total nitrogen leached, nitrate nitrogen
leached, and nitrogen denitrified), soil microbial index (as Δ SMBN,
PLFA content, SI and carbon respired) and experimental treatment (as
r0 to r336 and R0 to R480) across the nitrogen application rate gradient

for smaller plots (a) and larger plots (b). Note: ΔSMBN indicates the
change in soil microbial biomass nitrogen in the surface layer (0 to
20 cm); and SI indicates Shannon Diversity Index of phospholipid fatty
acid (PLFA) (b)
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microbial biomass (SMBN and PLFA contents), diversity
(Shannon Index of PLFA), and respiration (C respired), prob-
ably due to the situations for NH4

+ either feeding autotrophic
nitrifiers or heterotrophs and for NO3

− either being leached or
feeding heterotrophic denitrifiers.
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