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Abstract
Designing optimization models and meta-heuristic algorithms for minimization of traveling routes of vehicles in solid waste
collection has been gaining interest in environmental modeling. The computer models and methods are useful to bring out
specific strategies for prevention and precaution of possible disasters that could be foreseen worldwide. This paper proposes a
new Spatial Geographic Information System (GIS)-based Genetic Algorithm for optimizing the route of solid waste collection.
The proposed algorithm, called SGA, uses a modified version of the original Dijkstra algorithm in GIS to generate optimal
solutions for vehicles. Then, a pool of solutions, which are optimal routes of all vehicles, is encoded in Genetic Algorithm. It is
iteratively evolved to a better one and finally to the optimal solution. Experiments on the case study at Sfax city in Tunisia are
performed to validate the performance of the proposal. It has been shown that the proposed method has better performance than
the practical route and the original Dijkstra method.

Keywords Genetic algorithm . Solid waste collection . Heuristics . Routing problem

Introduction

Solid waste is an increasing concern to policy makers nowa-
days. It has been reported by the World Bank that the current
global solid waste is approximately 1.3 billion tons and will
approach 2.2 billion tons per year by 2025 (Hoornweg and

Tata 2012). In developing countries, 80–90% of municipality
budgets are reserved for collection services, while keeping
lower collection frequency and efficiency (Ding et al. 2018).
An important matter for municipality control is frequency of
waste collection (Awasare and Sutar 2015). According to UN-
Habitat, areas having high density of waste contain diarrhea
six times higher than those where collection is frequent
(Habitat 2010). Environmental threats such as contamination
of groundwater and air pollution may happen if waste is not
disposed (Bartolozzi et al. 2018). This raises an alarm of req-
uisition of specific strategies for prevention and precaution of
possible disasters that could be foreseen worldwide. Many
studies that considered waste management as a strategy to
minimize these effects can be seen in Han et al. (2018);
Horodytska et al. (2018); and Yadav and Samadder (2018).

In order to reduce the negative effects solid waste can have
on the environment, modeling and planning of solid waste
collection is often performed in a computer before deploying
to real cases (Das and Bhattacharyya 2015). The process of
municipal solid waste (MSW) collection modeling is divided
into two main phases: designing an optimization model and
proposing a meta-heuristic algorithm to determine (near-) op-
timal collection routes of vehicles for minimization of collect-
ed time and distance. Following this strategy, many studies
have been conducted. Cruz et al. (2015) designed a mixed
integer optimization model for domestic solid waste
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collection. Yu et al. (2015) presented a bi-objective dynamic
linear programming model which is lately given to a meta-
heuristic algorithm to find optimal solutions. A 3D model,
including conditions of driving, vehicle load, and road status,
was designed to find routes having minimum fuel consump-
tion (Tavares et al. 2009).

Buhrkal et al. (2012) proposed a mathematical formulation
and a meta-heuristic algorithm to solve the waste collection
routing in a time window. Das and Bhattacharyya (2015) di-
vided the entire waste management system into three stages by
formulizing collection and transportation into a mixed integer
program. Heuristic solutions for waste collection were
induced to identify optimal waste collection. Huang and Lin
(2015) proposed a formulation with multiple trips for deter-
mining minimum routes in time constraints. Ant colony opti-
mization was used to minimize distance traveled and time
interval. Our previous works proposed a model for waste col-
lection with particle swarm optimization in ArcGIS (Son
2014; Son and Louati 2016; Louati et al. 2018). Other relevant
works can be found in Benjamin and Beasley (2010), Jiao et
al. (2013), Elsayed et al. (2014), Zsigraiova et al. (2013),
Khan and Samadder (2014), Malakahmad et al. (2014),
Awasare and Sutar (2015), Sanjeevi and Shahabudeen
(2016), Onan et al. (2015), and Cheng et al. (2017a, 2017b).

This research aims to propose a new Genetic Algorithm
called SGA for determining optimal solutions for solid waste
collection. The purpose of the new algorithm is to overcome
drawbacks of previous works regarding the use of a local
search algorithm. Specifically, that research utilized a local
search algorithm associated within ArcGIS to generate an op-
timal path of a vehicle (Sanjeevi and Shahabudeen 2016). It
should be noted that the path of a vehicle can be determined by
local search (e.g., Dijkstra) but the optimal paths of many

vehicles have to be found by an evolutionary algorithm
(e.g., Genetic Algorithm). This clearly affirms that a fusion
methodology between local search and an evolutionary algo-
rithm should be set up for optimizing the entire systems.

Motivated by this idea, this paper proposes SGA—a new
Spatial Geographic Information System (GIS)-based Genetic
Algorithm for route optimizing of solid waste collection. The
proposed algorithm uses a modified version of the original
Dijkstra algorithm in GIS to generate optimal solutions of
vehicles. Then, a pool of solutions which are optimal routes
of all vehicles is encoded in Genetic Algorithm. It is iteratively
evolved to a better one and finally to the optimal solution.

The reason Genetic Algorithm (GA) was selected in this
research can be demonstrated as follows. It is known that GA
is an optimization method to search for good solutions for
complex problems by applying genetic operations such as
population representation, selection, crossover, and mutation
(Hemanth et al. 2018b). The selection (reproduction) copies
high-quality chromosomes in the next generation for improv-
ing the quality of the population. The next step is the crossover
operator that combines two parent individuals by exchanging
some parts of these chromosomes to create a new offspring.
The crossover in the routing problems selects each partial
route of the two solutions to produce one route. After cross-
over, mutation operators are utilized to preserve diversifica-
tion of the population. It involves the random change of a
chromosome. All genetic operations are utilized to gain better
solutions in the proposed method.

In order to validate the performance of the proposal, a case
study at Sfax City in Tunisia will be performed. Comparison
between the proposed method and the practical route is also
given. The remainder is organized as follows: the BProposed
method^ section presents the hybrid method, the

Fig. 1 Waste collection process
(Son and Louati 2016)
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BExperimental evaluation^ section demonstrates the case
study and experiments, and the BConclusions^ section high-
lights the conclusions and further works of this study.

Proposed method

Problem statement

The waste collection system involves a collection of ve-
hicles starting at the depot (D). A vehicle travels gather

sites (G) or handcart (H) to collect waste until its capacity
is full. Then, it goes to the landfill (L) or transfer station
(TS) to unload waste and then starts a new trip.
Meanwhile, another vehicle can start its own trip until
the total waste of all gather sites is zero. The problem is
how to plan a schedule for all vehicles that can minimize
the total traveling time and distances of the vehicles to
save energy and reduce environmental emission caused
by the vehicles (Son and Louati 2016; Louati et al.
2018). Figure 1 illustrates the problem.

Fig. 2 Flowchart of the proposed
algorithm
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Proposed framework

The flow to solve this problem consists of four main steps:

1) Data preparation: Use ArcGIS to calculate distances and
locations of nodes and combine them with attribute data.

2) Local search: Use Smart routing, which is an improved
Dijkstra method in GIS (Louati et al. 2018), to set up a
collection of solutions, including routes of vehicles.

3) Evolutionary: Use GA to determine the best solution.
4) Route display: Use ArcGIS with Python script to display

the best solution on a map.

Steps 2 and 3 are illustrated in Fig. 2. In this method,
we use the local search (Smart routing) to set up a pool of
solutions. GA evaluates these solutions by calculating
their fitness and selects the best chromosomes for the next

generation followed by the genetic operators. The iterative
procedure continues until a step condition is satisfied
(Table 1).

Smart routing

Dijkstra is used in GIS software such as ArcGIS to determine
for shortest paths from a starting location to a destination
(Desai et al. 2018). Nonetheless, in order to use Dijkstra with-
in the context of real-world transportation data, it must be
modified to represent user settings such as waste quantity
and network constraints while minimizing a user-specified
cost attribute. Recently, Louati et al. (2018) proposed a new
extension of the Dijkstra algorithm in ArcGIS called Smart
Routing. In what follows, we present the main steps of that
algorithm (Table 2).

Table 1 Pseudo code of the proposed algorithm

Input: Capacity waste of the gather sites

Node location

Vehicle capacity: C

Initialize for vehicles at the depot and their current wastes: Q(i) = 0,
(i = 1;K )

Current waste quantities of vehicles i after leaving node a: Q[i][a]

Current waste quantities of gather site: Z

Number of chromosomes in the beginning population (P)

Maximal number of iteration steps (MaxStep)

Output: Best routes with minimum traveling time for serving nodes

Algorithm

1: Randomly initialize P chromosomes with each created by Smart
routing (BSmart routing^ section)

2: Repeat

3: For each chromosome i

4: Compute the fitness: Fitness (i) (BFitness function^ section)

5: Update the best chromosome in this population

6: End For

7: Selection: Select P/2 best chromosomes (BSelection^ section)

8: For each particle i = P/2 + 1 to 3P/4

9: Apply crossover from the P/2 best chromosomes to obtain new child
(BCrossover^ section)

10: Apply mutation to the child (BMutation^ section)

11: If the child violates the waste constraints, apply Smart routing to
get a new child

12: End For

13: For each particle i = 3P/4 + 1 to P

14: Apply Smart routing to get a new child

15: End For

16: Until MaxStep

17: Calculate time and distance of vehicles of best chromosome in
current population

Table 2 The smart routing algorithm (Louati et al. 2018)

Input: Capacity waste of the gather sites

Node location

Vehicle capacity: C

Initialize for vehicles at the depot and their current wastes: Q(i) = 0, (i =
1;K )

Current waste quantities of vehicles i after leaving node a: Q[i][a]

Current waste quantities of gather site: Z

Output: The best solution: (routes with minimum total traveling time for
serving nodes)

Smart routing

1: While total quantity of waste > 0

2: For each vehicle i:

3: While (C(i) > Q(i)) & (!(Z(i) = 0))): #Vehicle not Full &Gather
sites not empty

4: a = get node of vehicle i #Find the location of vehicle i

5: Mark = false

6: Neighbor(a) #Find its neighbors from Node Location

7: For b = neighbor of a #Check the possibility to move to neighbor

8: verify Constraint (a, b, i) #Check constraints of the model

9: if(true) then move

10: Mark node b as visited

11: Update current waste of vehicle i: Q(i) = Q[i][b]

12: Update the waste quantity of gather site b and the total waste
quantity

13: Mark = true #Show that the vehicle can continue collecting

14: end if

15: end for

16: if Mark = false #If the vehicle cannot go to any node,

17: move it to Transfer Station

17: end if

18: end while

19: end for #Start with another vehicle

20: End while
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Genetic algorithm

Solution representation

An example is illustrated in Fig. 3 where solution x is repre-
sented by one vectors P(x) containing the routes of all vehicles

in a trip. It shows the order in which each vehicle must visit a
set of nodes.

The solution representation is: {[(no. trip, ID of ve-
hicle): (list of nodes of trip)] [(no. trip, ID of vehicle):
(list of nodes of trip)]…..}, where (no. trip) is the num-
ber of Trip and (ID of vehicle) is an identifier of a

Fig. 4 An example of crossover

Fig. 3 An example of
representation
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vehicle. A population consists of P chromosomes
(solutions) as follows:

P xð Þ ¼ p1; p2;…; pPf g
with pi = P(x) represented as above.

Figure 3 presents a waste collection system of two vehicles
and eight nodes (depot, transfer stations, and bins), in which
node 1 is the depot (the starting node of all vehicles) and the
others are gather sites containing waste. A chromosome p1 is
encoded as in this figure. In this solution, three trips of vehi-
cles 1 and 2 are executed.

– The first trip of vehicle 1 (trip 11): vehicle 1 starts from
the depot node (ID = 1) and then goes to node ID = 8 to
load waste. It then moves to node ID = 6 to load waste
and finally ends up at node ID = 2 (transfer station) to
dump waste.

– The second trip of vehicle 1 (trip 21): the vehicle starts
from transfer station (ID = 2) and moves to gather sites
IDs = 7 and 9 to collect waste and then go to the transfer
station (ID = 2) again to dump waste. Finally, it arrives to
the depot (ID = 1) to end its trip.

– The first trip of vehicle 2 (trip 12): vehicle 2 also makes
the similar routes (1➔5➔3➔3➔1).

– Finally, all vehicles stop collection routes at the depot.

Here are some remarks for this representation:

Firstly, it is an ordered list of all nodes to be visited by
vehicles in the system. Thus, changing the order of nodes
will bring a new solution, but we have to ensure that the
waste constraints such as the current waste quantities of

vehicles must be greater than the current waste quantities
of gather sites so that the vehicles can load waste.
Secondly, the total distance and time of vehicles can be
computed by this representation.

Fitness function

The main objective is to minimize the waste collection time of
all vehicles as follows:

Min Fitness ið Þ ¼ ∑
k∈V

∑
i; j∈2;Nþ

tij kð Þ xij kð Þ ð1Þ

where tij(k) is the traveling time between nodes i and j of
vehicle k and X i

j kð Þ measures the capability of vehicle k to

Fig. 5 An example of mutation

Table 3 Vehicles and bins of MSW scenario at Sfax

Name Capacity (ton) Quantity Time

Nodes

Depot 0 1 Start time 06:00 am
End time 1:00 pm

Transfer station 1 250 1 Waiting time 0

Transfer station 2 60 1 Waiting time 0

Gather site 0.4 39 Load/unload time 15 min
for each gather site

Vehicles

Compactor
vehicle

7.4 1 –

Dumper truck 2.3 1 –

Agricultural
tractor

1.6 2 –
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travel from node i to node j. X i
j kð Þ ¼ 1, ixij kð Þ f vehicle k is

able to travel this arc and xij kð Þ in otherwise.

Remarks Although the objective function is to minimize the
waste collection time of all vehicles, it is further induced that

Table 4 Notations of the model
Term Definition and explanation

num_ts The number of transfer stations

num_gs The number of gather sites

N ¼ 1; 2; 3; 4; ::;Nþf g
Z1;Z2;Z3;Z4;…;ZNþf g

An ordered list of nodes representing for the MSW collection system
including

• B1^: ID of the depot,

• B2^: ID of the first transfer station,

• B2^: ID of the second transfer station,

• B4^,…,^N+^: IDs of the gather sites.

Z ¼ Z1; Z2; Z3; Z4; ::;ZNþf g Waste capacity of all nodes:

• Z1 = 0: waste capacity of depot,

• Z2, Z3: waste capacities of the first and second transfer stations,
respectively,

•Z4; ::;ZNþ : waste capacity of gather sites.

V = {1, 2, 3, 4} An ordered list of vehicles including

• B1^: ID of the first agricultural tractor,

• B2^: ID of the second agricultural tractor,

• B3^: ID of the dumper truck,

• B4^: ID of the compactor vehicle.

C = {C1,C2,C3,C4} The capacity of vehicles, where

• C1, C2: capacity of the agricultural tractor,

• C3: capacity of the dumper truck,

• C4: capacity of the compactor vehicle.

Q ¼ Qi
k

� �
k: ID of a vehicle and i: ID of a node.

Qi
k : Current waste quantities of vehicles k after leaving node i.

X i
j kð Þ An arc’s weight that measures the capability of vehicle k to travel

from node i to nodej.

• xij kð Þ if vehicle k is able to travel this arc.

• xij kð Þxij kð Þ otherwise
tij(k) Traveling time between nodes i and j of the vehicle k

Table 5 The optimization model
Objective function Explanation

A0 min ∑
k∈V

∑
i; j∈2;Nþ

tij kð Þ xij kð Þ (2) Minimize the traveling time

Constraints:

Network

A1 ∑Nþ
j¼4x

1
j kð Þ ¼ 1 ∀k∈Vð Þ (3) Each route starts from the depot

A2 ∑3
i¼2x

i
1 kð Þ ¼ 1 ∀k∈Vð Þ (4) The last trip from a node in that route should return to

the depot

Waste volume

A3 ∑i¼1;2;3∑ j∈NQi
kx

i
j kð Þ ¼ 0 ∀k∈Vð Þ (5) Waste volume of each vehicle leaving the depot and

the transfer station equals to zero

A4 ∑∀i; j∈NQ
i
kx

i
j kð Þ≤Ck ∀k∈Vð Þ s (6) The total current waste quantities of a vehicle after

leaving a node must be less than or equal to the
capacity of that vehicle

A5 Qj
k−Q

i
k

� �
xij kð Þ ¼ Z j ∀k∈V ;∀i; j∈N

� �
(7) The waste quantities loaded at a node must be less

than or equal to the capacity of that node
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the function can be extended to minimize the traveling dis-
tance and other environmental emission factors. For simplic-
ity, we use the fitness function as in Eq. (1).

Selection

In this approach, the best chromosomes are selected by the
order of fitness. Firstly, fitness value of each chromosome in
the actual population is computed. Afterwards, the candidate
solutions are ordered by fitness in the descending order.
Around 50% of chromosomes in the population with the
highest fitness are selected to be reproduced in the next
generation.

Crossover

We follow the crossover procedure of Murata and Ishibuchi
(1994). Firstly, one-point crossover is used by selecting the
starting node on the new trip as a crossover point. The permu-
tation is copied from the first parent at it. Then, the second
parent is scanned. If the nodes do not exist in the child, they
will be added in the same order.

As shown in Fig. 4, we consider an example with one depot
(ID = 1), one transfer station (ID = 2), and six gather sites
(IDs = 3–9). A crossover point is marked on the first node of
the second trip of vehicle 1. We have two parents: Bparent1^
and Bparent2.^ An offspring is created by considering the first
node in the new trip of vehicle 1 as a crossover point. The first
part of the child is formed by taking by the left part on the
crossover point of parent1. The second part of the child is
accomplished by taking from the right part on the crossover
point of parent2 in the same order.

Mutation

In our approach, we use the swap mutation. We randomly
select two positions of nodes and swap their values to get
diversification in the population by creating a new solution
(Fig. 5).

Experimental evaluation

Case study at Sfax City

Sfax is the second largest populated city and among the most
polluted cities in Tunisia. The republic is located in North
Africa and consists of 24 regions. Tunisia contains 10.778
million inhabitants and generates 2.423 million tons and
0.815 kg/day per capita. Tunisia has a 2.5% of MSW genera-
tion growth, and the final destination of 70% MSW is the
landfill (Wilson et al. 2012). Sfax has a high pollution rate
and high quantity of population with 272,801 inhabitants

living in the city center (urban Sfax) which explains the high
average waste quantity (0.702 h kg/hab./day).

The municipality solid waste sources at Sfax are called the
gather sites. The current real scenario of Sfax, especially at
borough Belboustène,^ includes a depot (the starting place of
vehicles), many gather sites, and many collection centers (or
transfer stations). The vehicles collect waste to transfer sta-
tions. An agricultural tractor can carry up to 1.6 t of waste. A
dumper truck can transport 2.3 t of waste and a compactor
vehicle can carry 7.4 t of waste. Drivers start the first trip from
the depot at the same time. After loading waste, and total load
reaches the vehicle’s capacity, each vehicle unloads it at a
collection center and starts a new route. Inhomogeneous ve-
hicles are used. The case study contains one depot, two trans-
fer stations, and four vehicles, including two agricultural trac-
tors, one dumper truck, and one compactor vehicle (Table 3).

The vehicles start at 06:00 am from the depot and finish the
trip at the depot again but they must go to transfer station 1 or
transfer station 2 before coming back the depot before
1:00 pm. The collecting waste process has two steps. In the
first step, the vehicles start at the depot, collect waste at the
gather sites, and then unload it at a transfer station. In the
second step, the vehicles start at the transfer station and come
back the depot. We have three types of vehicles, namely, ag-
ricultural tractor, dumper truck, and compactor vehicle, that
have capacities of 3528, 5071, and 16,315 kg, respectively.
There are 39 gather sites and three nodes being the depot,
transfer station 1 and transfer station 2. The optimization mod-
el for solid waste collection in Sfax is given in Tables 4 and 5.

Waste collection is modeled by (N+, Z, V, Q), where N+ is a
collection of nodes; Z and Q change dynamically by time.
When vehicles in V move to gather sites to load waste and
dump them at a transfer station, waste quantities of those
nodes decrease. Partial loads are not allowed, which means
that a vehicle should load the total waste quantity in a gather
site without exceeding the capacity of the vehicle (consider

Table 6 The traveling time for each type of vehicles (h) where bold
values indicate the best

Type of vehicle Practical routes ArcGIS on the
new model

SGA

Compactor 39 35.4 36.6

Dumper truck 41 19.7 19.1

Agricultural tractor 1 57.7 20.4 19.6

Agricultural tractor 2 29.05 21 20.2

Table 7 The average truck release coefficients (Hokkanen and
Salminen 1997)

Component CO NOx HC Particles

Emission factor (g/km) 5.0 15.5 1.3 1.7

27576 Environ Sci Pollut Res (2018) 25:27569–27582



100% of vehicle capacity). The objective of the waste collec-
tion problem is to minimize the traveling (operational) time
which indirectly implies the minimum of total traveling dis-
tances of vehicles.

Results

In this section, we compare the proposed SGA method with
the practical routes (Wilson et al. 2012) and the ArcGIS
Desktop 10.1 with the original Dijkstra function (Karadimas
et al. 2007) on the model in Tables 4 and 5 of Sfax City. All
algorithms are implemented in Python using a computer with
configuration of Intel Core 1.9-GHz PC with 4 GB of mem-
ory. Vehicle Routing is solved by using the ArcGIS solver
(Desai et al. 2018). Genetic Algorithm is run for 10 iterations
and with 30 solutions for each population. The best solutions
are reported.

The criteria for evaluation are traveling distances (km),
operational time (h), fuel consumption (L), and average truck

release (g/km) of all vehicles after finishing the waste
collection.

The BComparative results^ section, firstly, presents the
comparative results in tables. BInterpretation onmaps^ section
shows the route maps of all methods. BSensitivity analysis^
section performs the sensitivity analysis.

Comparative results

Table 6 demonstrates the comparative results on each type of
vehicle. It has been shown that the total traveling time of the
proposed method is better than those of the practical route and
the ArcGIS.

In what follows, we compare all methods by the total trav-
eling distances (km), operational time (h), fuel consumption
(L), and average truck release (g/km) of all vehicles. In order
to compute the average fuel consumption of vehicles, we refer
to the benchmark indices in Hickman et al. (1999) and Kholod
et al. (2016). That is to say, the fuel consumptions are 53 L/
100 km for dumper truck and agricultural tractors and 39 L/
100 km for compactor vehicle. Analogously, the emission gas
for calculating average truck release of all vehicles is shown in
Table 7.

It has been shown from Table 8 that the proposed method
achieves better values than the other algorithms. Specifically,
the SGA method collects waste in 10.914 h and optimizes the
traveling time by saving 4.28 h less than that of the practical
routes. This is 5 min less than that of the optimized route of
ArcGIS on the proposed model. The traveling time of the
optimized route of ArcGIS on the proposed model is smaller

Fig. 6 Routes map from the
practical scenario

Table 8 The comparative results (bold values refer to the best)

Criteria Practical routes ArcGIS on the
new model

SGA

Traveling distances (km) 166.75 155.2 153.68

Operational time (h) 15.20 10.98 10.91

Fuel consumption(L) 70.49 68.54 68.18

Average truck release (g/km) 3918.6 3649.5 3611.7
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than that of the practical routes by 4.21 h. Nevertheless, the
total traveling times of bothmethods are still larger than that of
the proposed one.

The proposed method has the smallest total collected trav-
eling distance among all. According to Table 8, the traveling
distance of SGA is 13 km shorter than that of the practical
routes, and 1.5 km shorter than that of the ArcGIS. The same
results have been found with the fuel consumption and aver-
age truck release. It is, indeed, evidence to show the efficiency
of the proposed SGA method.

Interpretation on maps

Figures 6, 7, and 8 show the maps of the practical scenario,
ArcGIS and SGA. The process for mapping routes on the map
of Sfax is as follows.

Firstly, data is collected from the municipality of Sfax,
including locations of nodes (depot, transfer stations, and
gather site), road network, the basemaps of Sfax, and borough
BElboustene.^ Secondly, the network database is created with
many layers being identified such as a line layer for the road, a

Fig. 7 Route map from the
ArcGIS

Fig. 8 Route maps from the
proposed SGA method
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point layer for nodes, and a gather site layer. Lastly, optimal
routes of all vehicles generated from Python code are
displayed on the map through Arcpy library in ArcGIS
(Desai et al. 2018).

Figure 6 shows the nodes located, the gather sites, and the
route of each vehicle. Herein, all vehicles start from the depot,
collect garbage from the gather sites, and unload waste at
transfer stations. A tour consists of one trip or many trips for
a vehicle. For instance, dumper truck in the first trip loads
waste from five gather sites (IDs = 15, 14, 11, 5, 29, and 41).
It then goes to transfer station 1 to unload waste. In the second
trip, the dumper truck loads waste from gather sites (IDs = 22,
23, 24, 28, 27, and 26) and unloads waste in the transfer
station. After finishing trip 2, it returns to the depot and fin-
ishes its tour.

Figure 7 shows the result of ArcGIS in which all vehicles
start from the depot, collect garbage from the gather sites, and
unload it at transfer station 2. Agricultural tractor 1 visits four
gather sites like agricultural tractor 2. Dumper truck visits five
gather sites, and compactor vehicle visits 18 gather sites.
There are eight gather sites (IDs = 32, 36, 37, 38, 39, 34, 33,
35) that are not visited because of the capacity constraints.
Thus, there is a need of the second trip visited by dumper
truck and agricultural tractor 1.

Figure 8 shows the result from the proposed SGA method.
All vehicles start from the depot. The compactor vehicle loads
waste from gather sites (IDs = 18, 17, 20, 21, 16, 4, 25, 41, 40,
29, 42, 38, 39, 35, 34, 33, 31, 30) and goes to the transfer
station 2 to unload waste. Then, it starts the second trip from
transfer station 2 and visit nodes (IDs = 24, 28, 27, 26, 32, 36,
37, and 22). Finally, it unloads waste again in the transfer
station and goes to the depot. The dumper truck starts its trip
from the depot, loads waste from gather sites (IDs = 19, 15,
14, 11), and goes to transfer station 2 to unload waste and
finishes trip in the depot. Agricultural tractor 1 visits nodes

(IDs = 5, 12, 7, and 9) and returns to the depot. Finally, agri-
cultural tractor 2 loads waste from nodes (IDs = 8, 6, 23, 13)
and goes to transfer station to unload and finishes its tour in
the depot.

Sensitivity analysis

In order to verify efficiency of the proposed method, we per-
form the sensitivity analysis in this section regarding bin ca-
pacity, vehicle capacity, and the number of vehicles.

Sensitivity analysis regarding bin capacity An important as-
pect for a waste collection scenario is the waste capacity of
gather sites (or bin capacity) denoted by Z4; ::; ZNþ in Table 4.
In Table 8, we compare all methods by the same bin capacity
of 0.4 t of 39 gather sites (see Table 3 for these values). Here,
we examine two other cases such as case 2 (35 gather sites—
GS with 0.4 t and 4 GS with 0.7 t) and case 3 (35 GS with
0.4 t, 3 GS with 0.3 t, and 1 GS with 0.7 t). It can be seen from
Table 9 that the total traveling time of SGA is smaller than that
of ArcGIS in all cases. This shows the efficiency of SGA even
by variation of the bin capacity.

Sensitivity analysis by vehicle types In our real-life case, we
have four vehicles: agricultural tractor (denoted as T), dumper
truck (D), and compactor vehicle (C). To evaluate the impact
of different vehicle types, we consider two cases: the first case
has one compactor vehicle, one dumper truck, and two agri-
cultural tractors with the total capacity of 12.9 t; the second
case has four agricultural tractors. The number of gather sites
(bins) and their capacities are kept intact as in Table 3 (39 and
0.4, respectively).

Table 10 shows in the first case that the distance of SGA is
154.6 km and the traveling time is 10.83 h. In the second case,
the distance is 246.4 km and the traveling time is 11.55 h. The

Table 10 The comparative results
by vehicle types Vehicles types Total capacity (t) SGA ArcGIS

C D T Distance (km) Traveling
time (h)

Distance (km) Traveling time (h)

1 1 2 12.9 154.6 10.83 155.2 10.98

0 0 4 6.4 246.4 11.55 247.1 11.58

Table 9 The comparative results by bin capacity

Types of bin SGA ArcGIS

Case 0.3 (t) 0.4 (t) 0.6 (t) 0.7 (t) Distance (km) Traveling time (h) Distance (km) Traveling time (h)

1 39 GS 153.68 10.91 155.2 10.98

2 35 GS 4 GS 162.7 10.91 160.6 11.14

3 3 GS 35 GS 0 1 GS 155.2 10.84 184.8 11.57
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distance and traveling time of SGA with different types of
vehicles increases because the number of trips also increase,
meaning that waste collection takes more time to process.
However, they are still better than those of ArcGIS.

Sensitivity analysis by both the number of vehicles and bin
capacity Here, we change the number of vehicles and the
capacity of bins in Table 11. Firstly, consider two compactors
with total capacity of 14.8 t and bin capacity of 0.6 t. SGA has
a distance of 114.0 km and traveling time of 10.51 h.
Secondly, three types of vehicles are considered with the total
capacity of 11.3 t and bin capacity of 0.4 t. The results show
that the distance and traveling time of SGA are 123.6 km and
10.59 h. Thirdly, one compactor vehicle and one dumper truck
with bin capacity of 0.4 t are considered. The results show that
the distance and traveling time of SGA are 92.6 km and
10.34 h.

From Table 11, it can be seen that using a large capacity
and small number of vehicles is better than using a large num-
ber of vehicles with small capacity because it minimizes the
number of trips as well as the total traveling time and distances
of the vehicles. In general, SGAwith a fixed number of gather
sites has better results than ArcGIS.

Sensitivity analysis by the number of bins Here, we consider
variations for the number of bins. Table 12 shows the results
by different numbers of bins. The bin capacity and vehicles’
capacity are also changed to measure their impact to the per-
formance of methods. For the SGA algorithm, the traveling

time and distance almost increase when the number of bins
increases. SGA gets better results than the ArcGIS algorithm.

Conclusions

In this paper, we proposed a new Spatial Geographic
Information System (GIS)-based Genetic Algorithm called
SGA for the route optimization of municipal solid waste col-
lection. SGA uses a modified version of the original Dijkstra
algorithm in GIS to generate optimal solutions of vehicles
which are then evolved by Genetic Algorithm to choose an
optimal solution with respect to the traveling time and dis-
tances of vehicles in the waste collection system. The best
solution was shown on the map interface using ArcGIS
software.

The proposed approach was extensively validated on the
real dataset of Sfax City, Tunisia. It has been shown that
adopting meta-heuristic approaches in which capacity routing
decisions are simultaneously evaluated has a great potential
impact with respect to the current scenario of waste collection
routes. The proposed method obtains a better total traveling
time than the practical routes currently applied in Sfax as well
as the Network Analysis ArcGIS with our model result. The
time saved showed the efficiency of the proposed method.
Sensitivity analysis also suggested the efficiency by parameter
changing.

Further works of this study will investigate another im-
provement of vehicle routing algorithms to get better planning

Table 12 The comparative results
by the number of bins Bin

capacity (t)
Bin
number

Total capacity of
vehicles (t)

SGA ArcGIS

Distance
(km)

Traveling
time (h)

Distance
(km)

Traveling
time (h)

0.4 29 12.9 132.0 8.19 125.1 8.4

0.4 32 12.9 152.3 9.08 155.2 9.1

0.2 50 12.9 103.42 16.63 115.79 17.38

0.2 100 29.6 106.7 29.29 117.1 30.91

0.15 150 14.3 198.1 45.46 208.1 46.09

0.15 248 14.3 300.7 73.55 302.5 73.92

Table 11 The comparative results
by number of vehicles and bin
capacity

Bin
capacity
(t)

Vehicle
number of
vehicles

Vehicle
types

Total
capacity
(t)

SGA ArcGIS

C D T Distance
(km)

Traveling
time (h)

Distance
(km)

Traveling
time (h)

0.6 2 2 14.8 114.0 10.51 125.9 10.62

0.4 3 1 1 1 11.3 123.6 10.59 123.8 10.62

0.4 2 1 1 9.7 92.6 10.34 93.1 10.39
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results of the waste collection scenario as well as to resource
allocation by evolutionary approaches (Hemanth et al. 2018a,
b; Son et al. 2018; Singh et al. 2018; Tam et al. 2018; Thong
and Son 2016), neural networks (Giap et al. 2018), and infor-
mation systems (Ali et al. 2018).
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