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Abstract
In the context of non-point source pollution management and algal blooms control, the reliable nutrient forecasting is of critical
importance. Considering the highly stochastic, non-linear, and non-stationary natures involved in riverine total nitrogen (TN)
load time series data, some traditional statistical and artificial intelligence models are inherently unable to give accurate nutrient
forecasts due to their mechanism and structure characteristics. In this study, based on the wavelet analysis (WA) and support
vector regression (SVR), a promising combined WA-SVR model was proposed for forecasting riverine TN loads. The data pro-
processing tool WA was employed to decompose the time series data of riverine TN load for revealing its dominator.
Subsequently, all wavelet components were used as inputs to SVR for WA-SVR model. The continuous riverine TN loads
during 2004–2012 in the ChangLe River watershed of eastern China were estimated by using a calibrated Load Estimator model.
Performance criteria, namely, determination coefficient (R2), Nash-Sutcliffe model efficiency (NS), and mean square error (MSE)
were applied to assess the performance of the developed models. The effects of different mother wavelets on the efficiency of the
conjunction model were investigated. The results demonstrated that the mother wavelet played a crucial role for the successful
implementation of the WA-SVR model. Among the 23 selected mother wavelet functions, dmey wavelet performed best in
forecasting the daily and monthly TN loads. Furthermore, the performance of the optimal WA-SVR model was compared with
that of single SVR model without wavelet decomposition. The comparison indicated that the hybrid model provided better
accuracy than that of single SVRmodel. For daily riverine TN loads, the R2, NS, and MSE values of WA-SVRmodel during the
test stage were 0.9699, 0.9658, and 0.4885 × 107 kg/day, respectively. For monthly riverine TN loads, the R2, NS, and MSE
values of the model during the test stage were 0.9163, 0.9159, and 0.3237 × 1010 kg/month, respectively. The overall results
strongly suggested that the combined WA-SVR method can successfully forecast riverine TN loads in agricultural watersheds.
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Introduction

Surface water quality impairment is one of the most preva-
lent environmental problems worldwide (Houser and

Richardson 2010; Li and Zhang 2010; Morse and
Wollheim 2014). In the last two decades, the increasing
nutrients in the receiving water have been commonly
attributed to non-point source (NPS) pollution from ag-
ricultural and human living systems (Wang et al. 2011).
The excess nitrogen and phosphorus in rivers decrease
the water quality, degrade aquatic ecosystem health, and
induce anoxia and harmful algal blooms in several fresh
water and coastal ecosystems (Bowes et al. 2010; Gao
and Zhang 2010; Howarth et al. 2012; Ryusuke et al.
2002). The accurate nutrient load forecasts are particu-
larly important to inform future policy and management
decisions in terms of prioritizing water quality manage-
ment and algal blooms control. But now, riverine total
nitrogen (TN) load time series forecasting is still one of
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the most difficult and challenging issues for water re-
source managers and government agencies because riv-
erine TN loads are closely related to anthropogenic ac-
tivities as well as dynamic, non-linear, and complex
natural processes involved in NPS pollution.

Complex mechanistic models such as Hydrological
Simulation Program-Fortran (HSPF), Soil and Water
Assessment Tool (SWAT), and Agricultural Non-Point
Source Pollution Model (AGNPS) have been developed
in the past few decades to obtain quantitative information
of NPS pollution loads (Arnold and Fohrer 2005; Borah
and Bera 2004; Donigian et al. 1984). These watershed
scale models have been widely used for forecasting nutri-
ent loads under various climate, management, and
pollutant loads scenarios. For example, Shen et al.
(2014) used SWAT model to simulate the spatial and tem-
poral distribution of NPS pollution loads in the Three
Gorges Reservoir Region (China). The results exhibited
that the NPS pollution loads in the western area were
the highest and an upward trend existed in recent years.
Coffey and Line (1998) predicted nutrient loads export
from dairies to Cane Creek Reservoir (USA) through
AGNPS model, and the results indicated that annual TN
and total phosphorus (TP) export from entire farms varied
from 1.0 to 3.7 kg/ha and 0.7 to 1.8 kg/ha, respectively.
Chou et al. (2007) employed HSPF model to estimate
watershed pollutant loads from NPS in the Feitsui
Reservoir watershed (China), and found that NPS pollu-
tion contributed ~ 85% of the annual average TP loads
into the reservoir. However, these models are unable to
provide defensible and quantifiable future nutrient loads
which are required for developing early warning systems.

Traditionally, researchers have utilized statistical models
on the basis of time series analysis (e.g., autoregressive,
autoregressive moving average, and autoregressive integrat-
ed moving average) to cope with forecasting problems
(Belayneh et al. 2014; Huang et al. 2004; Kothyari and
Singh 1999; Mishra and Desai 2005; Wu et al. 2009a).
Nevertheless, stochastic models have linear structures that
prevent these models from dealing with highly non-linear
processes. In the past two decades, artificial neural network
(ANN) has gained significant attention and been widely
used in various configuration to perform a range of tasks
including forecasting, classification, pattern recognition, data
mining, and non-linear process modeling (Chen and Chau
2016; Nabavi-Pelesaraei et al. 2017; Sefeedpari et al. 2016;
Wang et al. 2014; Wu et al. 2009b; Yoon et al. 2011). It
should be noted that ANN has shortcomings inherent in its
architecture, like over-fitting, slow training speed, and vul-
nerability to being trapped in the local optimum (Chau
2017). The support vector regress (SVR) method, presented
by Vapnik (1995, 1998), has been attracting a great deal of
interest because of the following advantages: (1)

simultaneous minimization of model complexity and predic-
tion error since the use of kernel trick in building expert
knowledge, (2) good generalization ability can be achieved
due to the adoption of structural risk minimization (SRM)
principle (Chau and Wu 2010), (3) good performance can be
obtained with relatively small data sets, and (4) prevention
of over-fitting problem which is the critical drawback of
ANN. SVR model utilizes appropriate kernel function to
map the original data sets from the input space into a higher
dimensional space, from where the non-linear problem
changed into linear problem. Consequently, SVR model is
capable of modeling non-linear data. Recently, the SVR
model has been widely applied to various scenarios, such
as stream flow forecasting (Lin et al. 2006), water level
prediction (Khan and Coulibaly 2006; Yoon et al. 2011),
and water quality parameters modeling (Noori et al. 2015).

The aforementioned data-driven models are advantageous
because they require less information, do not necessitate a
full understanding of underlying processes in mathematical
forms, and are easy to implement. Furthermore, they are
capable of addressing forecasting problems. Yet, their ability
is limited when dealing with non-stationary data
(Adamowski and Sun 2010; Cannas et al. 2006). To over-
come this drawback, some researchers explored wavelet
analysis (WA) in hydrologic forecasting (Belayneh et al.
2014). WA is recognized as an effective tool for analyzing
trends, periodicities, and variations in time series (Chou and
Wang 2002; Lu 2002; Partal and Kucuk 2006; Simith et al.
1998). A non-stationary time series signal can be
decomposed into several different resolution levels by WA
to reveal the useful information involved in original time
series. Because of this, WA has a significant advantage in
handling non-stationary processes. In addition, the wavelet
method is robust since any potentially parametric testing
procedures or erroneous assumptions are included (Kisi
and Cimen 2011). WA is often used as a data pre-
processing tool for revealing hidden information and captur-
ing both the periodic and chaotic behaviors of a time series
otherwise not captured by other signal processing techniques
(Adamowski and Sun 2010; Shoaib et al. 2014). In recent
years, several studies have demonstrated the successful ap-
plications of WA combined with data-driven models (e.g.,
ANN and SVR) in hydrologic forecasting. For example,
Wang and Ding (2003) first explored the ability of ANN
model coupled with WA (WA-ANN) in short and long-
term prediction of hydrological time series. They found that
the suggested WA-ANN model absorbed several advantages
of WA and ANN and was capable of forecasting daily river
discharge with high accuracy. Similarly, Liu et al. (2013)
proposed a WA-ANN model to predict suspended sediment
concentration (SSC) in the Kuye River, a representative
hyper-concentrated river in the middle Yellow River catch-
ments of China. Results revealed that the proposed model
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obtained better SSC predicts than ANN model or sediment
rating curve (SRC) model in a hyper-concentrated river set-
ting, with highly non-linear and non-stationary time series.
Olyaie et al. (2015) compared the accuracy of three different
soft computing methods, namely ANN, adaptive neuro-
fuzzy inference system (ANFIS), WA-ANN, and conven-
tional SRC approach for estimating the daily SSC in two
gauging stations in USA. Results indicated that the WA-
ANN was the most accurate model in SSC estimation in
comparison to other models. Kisi and Cimen (2011) used
WA and SVR conjunction model (WA-SVR) to illustrate
that the forecast accuracy was higher in monthly stream flow
forecasting compared with the single SVR model. Kalteh
(2013) applied two hybrid models (WA-ANN and WA-
SVR) for monthly river flow prediction and investigated
their accuracy, indicating the wavelet decomposition and
artificial intelligence (AI) combination models could pro-
duce better efficiency than conventional forecasting models.
Results also demonstrated that the WA-SVR model
outperformed the WA-ANN model. Despite the applications
of coupled WA-ANN or WA-SVR model to a multitude of
hydrologic cases, no attempt has been performed on NPS
load forecasting with the WA-ANN or WA-SVR model in
highly agricultural watersheds for guiding NPS pollution
remediation efforts and algal bloom control until now.
Rather, only few mother wavelets were included in the
abovementioned studies, which rarely consider the effect of
different mother wavelets on accuracy of the combined
models. Thus, forecasting of NPS loads by using WA-SVR
model and investigation of the different mother wavelets’
impact on established model performance are required in
terms of NPS pollution management.

NPS pollution processes are influenced by both natural
and human factors; as such, riverine TN load time series
often display highly stochastic, non-linear, and non-
monotonic characteristics. Therefore, the supporting assump-
tions of TN load data cannot match well with the traditional
stochastic and single ANN or SVR model. This might yield
invalid results when these data-driven models are employed
to forecast riverine TN loads. Through combining WA with
SVR model, the WA-SVR model has the merits of both
techniques and thus can effectively address the stochastic,
non-linear, and non-stationary issues. For this reason, WA-
SVR model was first proposed for pollutant load estimation
in this study, with the purpose to overcome the difficulties
associated with riverine TN load forecasting. Specifically,
the main objectives of this study were to (1) obtain the
riverine TN load time series in the ChangLe River from
the years 2004 to 2012, (2) apply the WA-SVR hybrid mod-
el to forecast the short-term (daily) and long-term (monthly)
riverine TN loads, (3) examine the effects of mother wave-
lets on the performance of constructed models, and (4) val-
idate the performance of WA-SVR model by comparing it

with that of single SVR model. It is expected that the results
can provide accurate forecasts of riverine TN loads and early
warning for water quality agencies and thus facilitate algal
bloom control and water pollution remediation.

Study area and data collection

Study area

The ChangLe River watershed (29° 27′ 98″–29° 35′ 12″ N,
120° 35′ 56″–120° 49′ 03″ E) has a drainage area of
864 km2 in Zhejiang Province that lies in eastern China
(Fig. 1). This region is characterized by subtropical monsoon
climate, receiving 1228 mm of annual precipitation with
70% falls during summer (April–September). The average
monthly air temperature ranges from 4 °C (in January) to
28 °C (in July). The river traverses a total distance of
70.5 km before merging with the Cao-E River, which ulti-
mately drains into the East China Sea. The width of the river
varies from 40 to 70 m, with an average value of 55 m. The
ChangLe River watershed is located in the most intensive
agricultural regions in China (Chen et al. 2011, 2013). The
primary land use categories are woodland and farmland,
accounting for around 48 and 42% of the entire watershed,
respectively. Approximately 92% of the river water comes
from catchment runoff, and the remainder originates as the
headwater streams (Nanshan Reservoir) drainage. The
ChangLe River watershed was selected because (1) this re-
gion represents a typically agricultural watershed in eastern
China. The NPS pollution is the primary source of nitrogen
in the river systems, and (2) the long period of observations
for TN concentration and stream flow are available.

Data collection

River water quality samples were collected every month
(n = 106 sampling times total) at Yazhi station (Fig. 1) from
January 2004 to December 2012. Water samples were col-
lected at a depth of ~ 20 cm in the middle of the river and
stored in 0.5 L high-density polyethylene bottles.
Subsequently, the samples were acidified with sulfuric acid
(H2SO4) and immediately chilled by placing ice packs in the
cold closet. The concentration of TN in water samples was
determined within 24 h of sampling campaign by alkaline
potassium persulfate method (State Environment Protection
Bureau of China 2002). The continuous daily stream dis-
charges at Yazhi station were obtained from the hydrological
bureau of Zhejiang Province, China. The time series of
stream flow and observed TN concentrations are illustrated
in Fig. 2.
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Model development

Continuous time series data of riverine TN loads

Generally, river discharge is daily recorded by hydrology
monitoring stations. Nevertheless, monthly or bimonthly

sampling is often employed as the standard sampling frequen-
cy for water quality monitoring since the limitations of cost
and time. Given this dilemma, the Load Estimator
(LOADEST) model was presented to estimate daily nutrient
loads over time from relatively infrequent discrete water qual-
ity samples and high frequency discharge measurements

Fig. 1 Location of ChangLe River watershed in China and Zhejiang Province and the river hydrology and water quality sampling site
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Fig. 2 Stream flow and observed TN concentrations in the ChangLe River during 2004–2012
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(Runkel et al. 2004). This method sufficiently considers the
correlation between the pollutant loads and concentration, dis-
charge, and time. It has many advantages such as low data
dependency, stable result, and ease of operation. Therefore,

LOADEST model software was adopted in this study.
LOADEST has 11 regression models, and one of the most
common models is listed as follows:

ln Loadð Þ ¼ aο þ a1 ln Qð Þ ln Qð Þc
� �þ a2 ln Qð Þ–ln Qð Þc

� �2 þ a3sin 2π t–tcð Þð Þ
þ a4cos 2π t–tcð Þð Þ þ a5 t–tcð Þ þ a6 t–tcð Þ2 ð1Þ

where ln is the natural logarithm function; Load is the mea-
sured riverine TN loads (kg/day); Q is the measured daily
average discharge (m3/s); ln(Q)c is a centering term of the
study period (a constant) to ensure that the linear and quadratic
discharge terms are independent (m3/s); t is time in decimal
days; tc is a centering time of the study period (a constant) to
ensure that the linear and quadratic time terms are indepen-
dent; α0...α6 are the fitted parameters in the multiple regres-
sion model; α1 and α2 describe the relation between loads and
discharge; α3 and α4 describe seasonal variation in loads data;
α5 and α6 describe the relation between loads and time.

SVR model

The SVR model was chosen since it exhibited better results
than the ANN model, as indicated by the results of previous
works (He et al . 2014; Kalteh 2013; Kisi 2012;
Mohammadpour et al. 2015). The SVR model, which
employed the principle of SRM, was developed on the basis
of machine-learning process (Mohammadpour et al. 2015). A
more detailed information on SVR can be found in published
literature (Cristianine and Taylor 2000; Raghavendra and
Deka 2014; Vapnik 1998). Thereby, only a short explanation
regarding SVR was given as below, and the network architec-
ture of SVR model is shown in Fig. 3.

Consider a data set {(xi, yi), i = 1,…,n}, where xi refers to
the input vector, yi is the desired value, and n refers to the total
number of data patterns, the regression function of SVR is
formulated as follows:

f xð Þ ¼ w⋅ϕ xð Þ þ b ð2Þ
where w and b denote the weight vector and bias, respectively,
and φ(x) denotes the non-linear mapping function. Parameters
w and b are estimated by solving the following optimization
problem:

Minimize :
1

2
wk k2 þ C∑

n

1
ξi þ ξ*i
� � ð3Þ

Subject to yi−w⋅ϕ xð Þ−b≤εþ ξi
w⋅ϕ xð Þ þ b−yi≤εþ ξ*i
ξi≥0; ξ

*
i ≥0

ð4Þ

where ξi and ξ*i are slack variables, and C is the penalty
parameter.

Equation (3) can be solved by using Lagrangian theory and
imposing Karush-Kuhn-Tucker optimality condition.

The final form of the SVR model can be expressed as the
following:

f xð Þ ¼ ∑
n

i¼1
αi−α*

i

� �
⋅K xi; xð Þ þ b ð5Þ

There are four possible choices for the kernel func-
tion of SVR model, involved sigmoid, linear, polynomi-
al, and radial basis function (RBF). RBF is by far the
most popular kernel function (Zhang et al. 2008) due to
the following reasons: (1) RBF has the ability to model
non-linear relationships by mapping inputs vectors into
a high-dimensional feature space in a non-linear fashion;
(2) the number of tuning parameters in RBF is fewer
than those in sigmoid and polynomial kernels, making
RBF more easy-to-use (Keerthi and Lin 2001); and (3)
the superior performances of RBF have been demon-
strated in numerous studies (Dibike et al. 2001;
Keerthi and Lin 2001). Thus, RBF was taken as the
kernel function for riverine TN flux forecasting in this
study. The RBF is defined as follows:

K xi; xð Þ ¼ exp −γ xi−x 2
����� � ð6Þ

where γ is the adjustable kernel parameter.
Data normalization is a common step prior to pro-

cessing AI model for scaling raw data into a more us-
able form for the model to utilize. There are four com-
monly used methods for performing data normalization,
such as min-max, median, logarithmic function, and z-
score transformation (Antanasijević et al. 2014; Feng et
al. 2015; He et al. 2014; Najah et al. 2014; Ravansalar
et al. 2017). The four normalization techniques were
tested using the single SVR model for daily TN load
forecasting and the values of the performance metrics
are illustrated in Fig. 11. Obviously, the model con-
structed using z-score normalized input values yielded
the best performance; as such, the z-score normalization
was selected to perform transformation on all time
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series data in this study. The mathematical formula for
z-score method is the following:

xn ¼ x−xmean

xSD
ð7Þ

where xn is the normalized value; x is the original val-
ue; xmean and xSD are the mean and standard deviation
of the original data sets.

Wavelet analysis

WA is regarded as a powerful tool for extracting the useful
information in stationary or non-stationary data (Nourani et al.
2014). Short intervals are generally used to capture high fre-
quency information, whereas long intervals are typically used
to capture low frequency information inherent to the time
series during WA (Shoaib et al. 2014). The WA decomposes
a time series into approximation (e.g., a3) and details (e.g., d1,
d2, and d3) by translating, stretching, or squeezing the wavelet
(Seo et al. 2015). It can provide good localization characteris-
tics in both time and frequency domains. Additionally, the
choice of the mother wavelet in wavelet decomposition is
flexible in terms of the time series properties (Adamowski
and Sun 2010). Twomain wavelet transforms present, namely,
the continuous wavelet transform (CWT) and discrete wavelet
transform (DWT) (Wei et al. 2013). The CWT of signal x(t)
can be expressed as the following:

CWTψ
x τ ; sð Þ ¼ 1ffiffiffiffiffi

sj jp ∫þ∞
−∞ x tð Þψ* t−τ

s

� �
dt ð8Þ

where ψ is the mother wavelet; s is the scale parameter; τ is the
translation parameter; * is the complex conjugate. The math-
ematical formula for the DWT is listed in the following equa-
tion:

ψ j;k tð Þ ¼ 1ffiffiffiffiffiffiffi
s j0
�� ��q ψ

t−kτ0s j0
s j0

 !
ð9Þ

where j and k are the integers that control the wavelet dilation
and translation, respectively. s0 > 1 is the fixed dilation step,
and τ0 is the location parameter. The CWT needs a significant
amount of computation time since it calculates wavelet coef-
ficients at every possible scale. In addition to time consuming,
CWT might produce abundant and invalid data. Compare
with CWT, DWT is simpler to implement and requires less
computation time and resources (Kalteh 2013). Therefore,
DWTwas adopted to couple with SVR to develop the hybrid
WA-SVR model. The decomposition result of the original
signal(s) by DWT satisfies the following: s = d1 + a1 = d1 +
d2 + a2 = d1 + d2 + d3 + a3 and so on (Shoaib et al. 2014).

WA-SVR model

The flowchart of the WA-SVR model for forecasting
riverine TN loads is illustrated in Fig. 4. The hybrid
model was completed in five steps that were listed as
follows: (i) estimation of daily and monthly TN load
time series, (ii) selection of suitable input variables
and identification of the optimal lag times for the in-
puts, (iii) implementation of DWT to decompose
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an

Lagrange 

multipliers 

Kernel function 
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support vectors) 
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Loads t-3 

Loads t-n 

Fig. 3 Network architecture of the SVR model for riverine TN flux forecasting
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original time series into approximation (ai) and details
(d1, d2,…, di), where i is the number of decomposition
level, (iv) SVR model training and testing wherein ap-
proximation and details are used as inputs, and (v) eval-
uation of the developed WA-SVR model performance.

Model performance and execution

The performances of the established model can be eval-
uated using the following criteria: efficiency coefficient,
determination coefficient (R2), agreement index, Nash-
Sutcliffe model efficiency (NS), mean absolute error,
mean square error (MSE), standard error of prediction,
mean absolute relative error, and so on. A good exam-
ination of model performance should contain at least
one absolute error measure (e.g., MSE) and at least
one goodness-of-fit or relative error measure (e.g., NS)
(Legates and McCabe Jr 1999). Additionally, R2, as the
widely applied statistical score metric, is often used to
estimate the model performance. A model can be ade-
quately assessed by R2, NS, and MSE, and thus, the
model performances in this study were evaluated using
these performance indexes. R2 indicates the percentage
of variability that can be explained by the model (Singh
et al. 2011). NS, an indicator of the model fit, is typi-
cally used for assessing the performance of hydrological
models (Adamowski et al. 2012; Shoaib et al. 2016).
MSE measures the absolute error regarding dependent
variable forecasting (Legates and McCabe Jr 1999). If
the R2 = 1, NS = 1, and MSE = 0, the model presents the
perfect performance. These criteria can be computed as
the following:

R2 ¼
∑
n

i¼1
Pi−P
� �

Oi−O
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
Pi−P
� �2

∑
n

i¼1
Oi−O
� �2r

0
BB@

1
CCA

2

ð10Þ

NS ¼ 1−
∑
n

i¼1
Oi−Pið Þ2

∑
n

i¼1
Oi−O
� �2 ð11Þ

MSE ¼ 1

n
∑
n

i¼1
Oi−Pið Þ2 ð12Þ

where n is the number of observations; Oi and Pi denote the
observed and forecasted ith values of TN loads, respectively;
O̅ and P̅ are the mean values of observed and forecasted TN
loads, respectively.

In this study, LOADEST model software (United
States Geological Survey 2004) was used to estimate
the continuous daily riverine TN loads. Wave toolbox
in MATLAB 2014a (Mathworks Inc., Natick, USA)
was used to perform WA. The SVR model was con-
structed using the LIBSVM toolbox, which is a soft-
ware package of support vector machine algorithms
working in MATLAB environment (Chang and Lin
2011). All the other computations were also conducted
in MATLAB.
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Fig. 4 Flowchart of the WA-SVR model for riverine TN load forecasting
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Results and discussion

Estimation of daily riverine TN loads

LOADEST model was employed to estimate the continuous
daily riverine TN loads in ChangLe River from 2004 to 2012
using the discrete monitoring data and continuous daily flow
data. The available data for a period of 6 years from 2004 to
2009 was used for calibrating LOADEST model parameters
(i.e., α0…α6), whereas the remaining data for a period of
3 years from 2010 to 2012 was used for validation purpose.
The calibration and estimation procedures within LOADEST
are based on the adjusted maximum likelihood estimation
(AMLE), maximum likelihood estimation (MLE), and least
absolute deviation (LAD) methods (Runkel et al. 2004).
AMLE and MLE are appropriate when the calibration model
residuals are normally distributed. Of the two, AMLE is the
suitable method when the calibration data set contains cen-
sored data. If the censored data is not contained in calibration
data set, MLE is equal to AMLE. LAD can be applied when
the residuals are not normally distributed (Runkel et al. 2004).
Therefore, the appropriate estimation method can be deter-
mined by evaluating the statistical distributions of residuals
and the types of calibration data. The probability plot correla-
tion coefficient (PPCC) was calculated to estimate the residual
distribution. A PPCC of 1.00 represents a perfect normal prob-
ability of residuals (Helsel and Hirsch 2002). In this work, the
PPCC value was 0.988 (Table 1), indicating the model resid-
uals were normally distributed. For the above reasons, AMLE
was adopted for the calibration and estimation procedures
within LOADEST.

The plot of the modeled and observed daily riverine TN
loads in the ChangLe River is illustrated in Fig. 5. HighR2 and
NS implied that the established LOADEST model can be

successfully applied to estimate daily riverine TN loads in
the ChangLe River. The monthly TN loads were calculated
via summation of the corresponding daily TN loads.

The performances of WA-SVR and single SVR models
were examined on riverine TN loads. To achieve this, the
available riverine TN loads data was divided into a training
data set from 2004 to 2009 and testing data set from 2010 to
2012. All the models were first trained using the training data
set to obtain the optimum values of the parameters (C and γ)
and then tested using the testing data set. The statistical pa-
rameters of the riverine TN loads data are given in Table 2.

Application of the WA-SVR model

Model inputs

The previous riverine TN loads were considered as in-
put variables in this paper. Appropriate lag times must
be determined in advance for developing WA-SVR
model. This is because the response of a hydrological
system is inherently relied upon their previous states, so
the use of time lagged data is necessarily required with
aim to encode temporal features of the input data
(Shoaib et al. 2016). The optimal lag time for the inputs
can be identified through the statistical analysis of data
series such as auto-correlation function, partial auto-
correlation function (PACF), cross-correlation function,
and average mutual information. PACF has the capabil-
ity for removing the dependence on intermediate ele-
ments (those within lags interpreted as a regression of
time series against its past lagged value) and identifying
the extent to which current TN loads is correlated to
past days (Yaseen et al. 2016). At present, this approach
has been successfully applied in many hydrological

Table 1 The calibrated
LOADEST parameters for
riverine TN loads in the ChangLe
River

Parameters Values Std. Dev. t-ratioa P valueb Performance assessment

α0 7.6854 0.0717 107.14 0.0000 AICc = 0.929

α1 1.0083 0.0572 17.62 0.0000 SPPCd = −41.424
α2 0.0339 0.0290 1.17 0.2216 PPCCe = 0.988

α3 0.1666 0.0664 2.51 0.0099

α4 0.1071 0.0624 1.72 0.0739

α5 − 0.0116 0.0255 − 0.46 0.6313

α6 − 0.0183 0.0160 − 1.14 0.2311

aWhen the absolute value of t-ratio is less than 1, the estimated coefficient is highly uncertain
b High value of P value indicated that the estimated coefficient may not be significantly difference than zero
c Akaike information criterion
d Schwarz posterior probability criterion
e Probability plot correlation coefficient, if PPCC = 1, the residuals in the model follow a perfect normally
distributed
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studies including He et al. (2014), Kalteh (2016), Seo et
al. (2015), Shiri and Kisi (2010), Yaseen et al. (2016),
etc. Hence, the PACF method was employed here to
determine the numbers of lags. The PACF values, cal-
culated for a lag range of 1–16, are presented in Fig. 6.
It could be seen from the figure that first 4 lags and 10
lags had the most amount of information that could be
used to forecast short-term and long-term riverine TN
loads, respectively. Consequently, 4 and 10 previous
lags for daily and monthly forecasting, respectively,
were selected as inputs to the WA-SVR model. It may
be argued that the selection of 4 lags and 10 lags was
not optimum. Nevertheless, the aim of this paper was
limited to evaluation of the WA-SVR model perfor-
mance and examination of the effects of mother wave-
lets on developed model efficiency rather than the se-
lection of optimal inputs. This might be a subject of
another study.

Wavelet analysis

The riverine TN load time series were decomposed into ap-
proximation (low frequency, large scale) and details (high fre-
quency, small scale) by DWT, which requires less computa-
tional effort and simpler implementation than the CWT
(Adamowski et al. 2012). The selection of the efficient mother
wavelet and determination of the decomposition level are two
important issues in WA (Nourani et al. 2014). Many types of
wavelet families exist, including Haar wavelet (haar),
Daubechies wavelet (dbN), Coiflet wavelet (coifN), Mexican
hat wavelet, Gaussian wavelet, Morlet wavelet, and so on
(Minu et al. 2010). Haar, which was invented by Haar
(1910), is a single symmetry orthogonal and discontinuity
wavelet (Stolojescu 2012) and the simplest of all available
wavelets (Shoaib et al. 2014). The dbN was proposed by
Ingrid Daubechies. It is one of the most commonly used wave-
lets. In dbN, N denotes the number of vanishing moments.
Symmlet wavelet (SymN), which was also proposed by
Ingrid Daubechies, is a modification to the dbN and has im-
proved symmetry (Seo et al. 2015). The coifN was named
after R. Coifman who demanded Ingrid Daubechies to con-
struct this wavelet (Daubechies 1992). The wavelet and scal-
ing functions both considered in coifN have vanishing mo-
ments. Moreover, the Coiflet is a continuous, compact sup-
ported, orthogonal, and nearly symmetric mother wavelet.
Meyer wavelet, also called mey, was designed by Meyer
(1985). The dmey denotes the discrete approximation of the
Meyer wavelet. In order to cover maximum range of wavelets
in the current study, we surveyed effects of 23 mother wave-
lets which are from the 5 most frequently used wavelet fam-
ilies on the performance of developed WA-SVR model. A
summary of mathematical properties of these mother wavelets
is presented in Table 3.

Another important issue that should be considered inWA is
the selection of suitable decomposition level. To the authors’

Table 2 The riverine TN loads statistical parameters of each data set

Lmean Lmin Lmax Lsd Lske

Daily

Training
data

4324.54 26.06 233,030.00 9632.92 9.55

Testing data 6190.23 438.73 140,100.00 11,964.19 5.70

Whole data 4946.43 26.06 233,030.00 10,502.92 9.55

Monthly

Training
data

131,658.16 24,951.54 602,944.60 112,936.08 2.18

Testing data 188,458.03 24,675.72 855,061.02 198,933.60 1.99

Whole data 150,591.45 24,675.72 855,061.02 148,767.94 2.43

Lmean, Lmin, Lmax, Lsd, and Lske denote the mean, minimum, maximum,
standard deviation, and skewness coefficient of the riverine TN load data.
The units of statistical parameters (i.e., Lmean, Lmin, Lmax, Lsd) for daily
riverine TN load data set are kilograms per day, for monthly riverine TN
load data set are kilograms per month
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Fig. 5 Plot of the modeled and observed daily riverine TN loads in the ChangLe River in a 2004–2009 and b 2010–2012
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best knowledge, there is no standard method for determining
the decomposition level. Partal and Kisi (2007), Adamowski
and Sun (2010), and Kisi and Shiri (2011) used trial and error
method to select decomposition level and employed level 10,
level 8, and level 3 decomposition, respectively. According to
regression analysis, Shoaib et al. (2014, 2016) favored the use
of decomposition level 9. Yet, Kisi (2010) suggested that
using a large number of inputs should be avoided in order to
save computational time and effort. Furthermore, the higher
level of decomposition, the less likely the transformed signals
represent the original time series (Belayneh et al. 2014). At
present, an effective and operable empirical formula has been
used in many studies to choose suitable decomposition level
(Adamowski and Chan 2011; Aussem et al. 1998; Nourani et
al. 2009a, 2009b; Tiwari and Chatterjee 2010). Here, we also
used the following empirical formula to obtain the decompo-
sition level:

L ¼ int log Nð Þ½ � ð13Þ

where int is the integer-part function; L is the number of
decomposition level; N is the number of time series data.
According to the time series number, L was equal to 3
and 2 for daily and monthly riverine TN load forecasting,
respectively. Consequently, daily and monthly riverine TN
load time series were decomposed into sub-series at three
and two resolution levels using DWT, respectively. The
original riverine TN load time series, as well as the ap-
proximations and details are shown in Fig. 7. Considering
that all sub-series contain information related to the orig-
inal time series (Adamowski and Sun 2010), the new in-
puts to SVR for the WA-SVR model were set by using all
wavelet components.

Parameter optimization of the SVR model

The key step for constructing a high-performance SVR model
is the determination and optimization of the penalty parameter
(C) as well as adjustable kernel parameter (γ). Parameter C
controls the empirical error in optimization problems (Singh et

Table 3 Mathematical properties
of selected mother wavelets Mother wavelets Abbreviations Number Mathematical properties

A B C D E F G

Haar haar 1 √ √ 1 √ √ 1 2

Daubenchies dbN 9 √ – N √ √ 2N-1 2N

Symlets SymN 7 √ √* N √ √ 2N-1 2N

Coiflers CoifN 5 √ √* 2N √ √ 6N-1 6N-1

Dmeyer dmey 1 – √ – √ √ Finite length [−8,8]

A compact support, B symmetry, C vanishing moments, D orthogonality, E biorthogonality, F supporting length,
G filter length. √ have the property,√* have the nearly property, − does not have the property
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Fig. 6 Partial auto-correlation function of a daily and b monthly riverine TN load time series
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al. 2011). Too small value will lead to an under-fitting prob-
lem, whereas too large value will result in an over fit of train-
ing data (Wang et al. 2007). Parameter γ, which determines

the amplitude of kernel function, is the only parameter in the
RBF kernel function (Noori et al. 2011). The LIBSVM tool-
box provides cross validation with grid search algorithm to
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Fig. 7 Original(s) and decomposed time series (a2, a3, d1, d2, and d3) of a daily and b monthly riverine TN loads using dmey wavelet
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find the optimal pairwise C and γ, and the MSE value is used
as the criterion. In fivefold cross validation, the data points in
the training set are divided into five equal size sub-sets. In the
next stage, four sub-sets are used to train the model, and the
rest one sub-set is used for the testing. All instances in the
entire training set can be forecasted once (Singh et al. 2014).
The advantage and characteristic of the cross validation meth-
od is that it avoids the over-fitting problem (Hsu and Chang
2003). The algorithm of grid search divides the search range to

be optimized into grids. All grid points are then traversed to
derive the best results. The parameter ranges along with inter-
val size determine the accuracy of grid search optimization
(Singh et al. 2011). A higher accuracy can be achieved by
decreasing step size and increasing parameters range (Wang
et al. 2007). In this work, the most appropriate C and γ were
obtained through the grid search over a range from 2−10 to 210

with a step size of 21. The optimal parameters were subse-
quently employed to train the SVR model. Figure 8 illustrates

Fig. 8 Three dimension view of the optimization results for parameters C and γ (take the WA-SVR with dmey for monthly riverine TN load forecasting
for example, best C = 512, γ = 0.00097656)

Table 4 Comparison of
performance of the WA-SVR
model with different mother
wavelets during testing stage

Daily Monthly

R2 NS MSE (107 kg/day) R2 NS MSE (1010 kg/month)

coif1 0.8613 0.8452 2.2133 0.6990 0.6457 1.3633

coif2 0.9057 0.9016 1.4078 0.8039 0.7934 0.7948

coif3 0.9219 0.9084 1.3093 0.8623 0.8550 0.5577

coif4 0.9323 0.9291 1.0142 0.8837 0.8767 0.4744

coif5 0.9439 0.9346 0.9357 0.8935 0.8870 0.4348

db2 0.9027 0.8955 1.4938 0.5939 0.5359 1.7858

db3 0.8999 0.8977 1.4629 0.7269 0.7080 1.1234

db4 0.8845 0.8818 1.6902 0.8355 0.8350 0.6349

db5 0.9000 0.8898 1.5765 0.7465 0.7432 0.9882

db6 0.9066 0.9047 1.3635 0.7609 0.7554 0.9413

db7 0.9364 0.9281 1.0278 0.8490 0.8273 0.6645

db8 0.9259 0.9259 1.0594 0.6442 0.6005 1.5370

db9 0.9556 0.9529 0.6731 0.6336 0.6322 1.4153

db10 0.9643 0.9640 0.5141 0.8458 0.8406 0.6134

sym2 0.8946 0.8927 1.5343 0.5939 0.5359 1.7858

sym3 0.8999 0.8977 1.4629 0.7269 0.7080 1.1234

sym4 0.9052 0.8932 1.5277 0.8105 0.7946 0.7902

sym5 0.9197 0.9197 1.1482 0.6310 0.5757 1.6324

sym6 0.9126 0.9033 1.3823 0.8145 0.8140 0.7156

sym7 0.9427 0.9422 0.8267 0.6838 0.6698 1.2704

sym8 0.9318 0.9302 0.9988 0.8545 0.8499 0.5774

harr 0.8125 0.7835 3.0959 0.0117 − 0.0726 4.1268

demy 0.9690 0.9651 0.4997 0.8928 0.8906 0.4208

The best-fit results are marked in italics
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an example of the optimization of pairwise C and γ during the
grid search.

Mother wavelet selection

The performance of different combined WA-AI models,
such as WA-SVR model, is extremely sensitive to the
mother wavelet. In this regard, 23 selected mother
wavelets, including haar, db2, db3, db4, db5, db6,
db7, db8, db9, db10, sym2, sym3, sym4, sym5, sym6,
sym7, sym8, coif1, coif2, coif3, coif4, coif5, and dmey,
were utilized to examine their impacts on the perfor-
mance of WA-SVR model. The values of the R2, NS,
and MSE statistics of different mother wavelets during
testing stage are listed in Table 4. It was clearly that the
proposed WA-SVR model provided different accuracies
for various mother wavelets. For short-term riverine TN
load forecasting, the performance of the WA-SVR for
the 23 mother wavelets followed the order of dmey >
db10 > db9 > sym7 > coif5 > sym8 > coif4 > db7 > db8 >
sym5 > coif3 > db6 > sym6 > coif2 > db3 = sym3 > db2 >
sym4 > sym2 > db5 > db4 > coif1 > haar. Normally, if the
NS is greater than 0.8, a model can be considered as
accurate, if the NS is greater than 0.65, a model can be
considered as satisfactory (Borah and Bera 2004; Shu
and Ouarda 2008). According to the NS, all the selected
mother wavelets provided excellent results (NS > 0.8),
except for haar (NS = 0.7835). The WA-SVR model
with dmey performed best among all tested mother
wavelets, and the corresponding increase in NS and R2

were about 20%, whereas the decrease in MSE was
over 80% relative to the worst performance mother
wavelet (haar). A relatively weaker efficiency of the
WA-SVR model was achieved for long-term forecasting.
This phenomenon was likely due to previous monthly
variations having smaller impacts on the current riverine
TN loads compared to daily variation (Fig. 6). And
besides that, it should be kept in mind that the monthly
riverine TN load values in the training set did not cover
the entire range in the testing set (Table 2), which had
negative influences on the model efficiency. The perfor-
mance of WA-SVR model for the 23 mother wavelets
followed the order of dmey > coif5 > coif4 > coif3 >
sym8 > db10 > db4 > db7 > sym6 > sym4 > coif2 > db6 >
db5 > db3 = sym3 > sym7 > coif1 > db9 > db8 > sym5 >
db2 > sym2 > haar. The NS value of WA-SVR model
with dmey, coif5, coif4 coif3, sym8, db10, db4, db7,
and sym6 wavelets were all greater than 0.8, indicating
accurate performance, whereas with 7 of the 23 wave-
lets, the NS values were less than 0.65, demonstrating
relatively inferior results. In this study, dmey mother
wavelet was selected for further WA-SVR model

performance validation as it outperformed other mother
wavelets.

Comparison between the WA-SVR and single SVR

To assess and validate the effect of data pre-processing tool
WA on the SVR model’s efficiency, the single SVR model
without wavelet decomposition was adopted as the bench-
mark for comparison. The optimal WA-SVR model results
were compared to that of the single SVR model. The genera-
tion of a single SVR model, including data partition and asso-
ciated parameter optimization, was accomplished in exactly
the same way as the WA-SVR model.

In fact, although the observed minimum riverine TN loads
may be close to zero, they cannot be negative. Unfortunately,
some negative values existed in the outputs of the established
models (i.e., WA-SVR and SVR). These values are not unusu-
al but serve no purpose with regard to riverine TN flux fore-
casting. Accordingly, all negative forecasts were adjusted to
minimum values of observations in testing data set (i.e.,
438.73 kg/day for daily and 24,675.72 kg/month for monthly
riverine TN load forecasting). After changing the negative
forecasts, theWA-SVRmodel performance improved slightly.
For example, the R2 and NS of the optimal WA-SVR model
for monthly riverine TN load forecasting were increased by
2.63% from 0.8928 to 0.9163 and 2.84% from 0.8906 to
0.9159, respectively.

A demonstration of the comparison between the observed
daily riverine TN loads and the proposed WA-SVR as well as
the SVR model results in testing period is provided in Fig. 9
via the hydrograph and scatter plots. The hydrograph demon-
strated that the WA-SVR results were closer to the corre-
sponding observed values than the SVR forecasts. The WA-
SVR and SVR models both generally underestimated the cor-
responding peak daily riverine TN loads. In the field of stream
flow forecasting, several previous research exhibited that
black-box data-driven models failed to produce good forecast-
ing accuracy for extremely high values of stream flow. The
authors of these studies pointed out the reason behind this
phenomenon could be lack of data in the high value region
in training data set, as the black-box data-driven models’ train-
ing required large number of input-output data sets
(Kasiviswanathan et al. 2016; Kisi and Cimen 2011;
Ravansalar et al. 2017; Yaseen et al. 2016). Obviously, the
WA-SVR or SVR model constructed here also cannot be suf-
ficiently trained with only a small number of riverine TN load
peaks and consequently compromised the model performance
in forecasting peak values of riverine TN load. However, the
WA-SVR model had greater improvement than single SVR.
For example, the WA-SVR estimated the maximum peak val-
ue as 112,829 kg/d instead of the observed 140,100 kg/d with
an underestimation of 19.47%, while the SVR result was
18,708 kg/d with an underestimation of 86.65%. In scatter
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plots, the 1:1 line represents perfect results, in which when the
points are closer to it, the model yields the better results (Wu et
al. 2015). As seen from the scatter plots, a standard deviation
around 1:1 line for the WA-SVRmodel was lower than that of
the single SVR model. The fit line equations, which assume
that the mathematical equations expressed as y = ax + b, re-
vealed that the coefficient of a and b for the WA-SVR model
are close to 1 and 0, respectively. The comparison between the
WA-SVR and SVR test results illustrated that the hybrid mod-
el provided better performance than the single SVR model
with regard to TN load forecasting. The WA-SVR model
yielded smaller MSE and higher R2 and NS. Concretely, the
R2, NS, and MSE for the WA-SVR were 0.9699, 0.9658, and
0.4885 × 107 kg/day, respectively, while those of SVR were
0.5929, 0.5083, and 7.0324 × 107 kg/day, respectively.

Figure 10 demonstrates the observed and forecasted
monthly riverine TN loads by the WA-SVR and SVR models
in the testing phase. As shown in the hydrograph, the WA-
SVR forecasts were closer to the corresponding observed
values than those of the single SVR results. The SVR model
failed to forecast riverine TN loads 1 month in advance. In
contrast, the WA-SVR model performed much better as WA
considerably improved the performance of the SVR model.

The R2 and NS of the WA-SVR model increased from 0.0439
to 0.9163 and from −0.0779 to 0.9159, respectively.While the
MSE decreased from 4.1474 × 1010 to 0.3237 × 1010 kg/
month compared with that of the SVR model. For peaks, the
hybrid model offered less error than the single SVR model.
The WA-SVR estimated the maximum peak value
(855,061 kg/month) as 759,221 kg/month with an underesti-
mation of 11.21%, whereas the SVR result was 136,405 kg/
month with an underestimation of 84.05%. The WA-SVR
forecasted the second maximum peak value as 736,429 kg/
month instead of the observed 757,419 kg/month with an
underestimation of 2.77%, and the SVR forecasted as
195,138 kg/month with an underestimation of 74.24%. The
WA-SVR and SVR computed the third maximum peak value
(492,082 kg/month) as 468,663 and 135,960 kg/month, re-
spectively, with underestimation of 4.76 and 72.37%. The
scatter plots also demonstrated that the SVR model suffered
more from scattering, which indicated lower accuracy, where-
as the WA-SVR model had a better fitting effect between the
forecasted and observed data considering that all of the data
points clustered closely to the 1:1 line.

In the light of these findings, the joint application of the
SVR and WA methods seemed to be more adequate than the
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Fig. 9 Observed and forecasted daily riverine TN loads by the WA-SVR and SVR models in testing period
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single SVR without WA for NPS load forecasting in agricul-
tural river systems. This finding may be primarily attributed to
the WA decomposing the complex original time series into
several simple wavelet components, which in turn exhibits
the features (such as periodically) more clearly than the orig-
inal signal (Kisi and Cimen 2011). In addition, the wavelet
transformed data improved the ability of the SVR model by
capturing useful information on various resolutions
(Adamowski and Sun 2010).

Conclusions

A combinedWA and SVRmodel was developed and explored
for riverine TN load forecasting in the ChangLe River water-
shed based on antecedent riverine TN load values. The river-
ine TN load time series obtained through the LOADESTmod-
el were decomposed into sub-series byDWT. These sub-series
were then used as conjunction model inputs. In the WA-SVR,
the effects of mother wavelet functions on the model efficien-
cy were evaluated and the results revealed that the WA-SVR
model was sensitive to the mother wavelets. For daily fore-
casting, all the selected mother wavelets could provide accu-
rate performance, except haar. The model with the dmey

mother wavelet function yielded the best results. For monthly
forecasting, dmey, coif5, coif4 coif3, sym8, db10, db4, db7,
and sym6 wavelets gave accurate results. Additionally, the
models with sym4, coif2, db6, db5, db3, sym3, and sym7
yielded satisfactory results, whereas the other 7 wavelets per-
formedweakly. The comparison betweenWA-SVR and single
SVR models indicated that WA can significantly improve the
efficiency of the SVR model. For daily riverine TN load fore-
casting, the R2, NS, and MSE in the testing period were
0.9699, 0.9658, and 0.4885 × 107 kg/day with WA-SVR,
and 0.5929, 0.5083, and 7.0324 × 107 kg/day with the SVR
model. For monthly riverine TN load forecasting, the R2, NS,
and MSE in the testing period were 0.9163, 0.9159, and
0.3237 × 1010 kg/month with the WA-SVR, and 0.0439,
−0.0779, and 4.1474 × 1010 kg/month with the SVR model.

This study, for the first time, explored the WA-SVR com-
bination model for riverine TN load forecasting. The results
highlighted that the WA-SVR model provided a promising
and effective method to address the problem of riverine nutri-
ent load forecasting. However, some unsolved problems re-
quire future investigations and improvements for reinforcing
the conclusions in this study. First, negative values which
served no purpose as forecasts occurred in the results of the
proposed model. The attempt to present an appropriate
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Fig. 10 Observed and forecasted monthly riverine TN loads by the WA-SVR and SVR models in testing period
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method for dealing with negative values yielded by the WA-
SVR model is recommended. Second, the NPS loads are af-
fected by complex factors, e.g., flow velocity, temperature,
precipitation, and fertilization. Nevertheless, for the WA-
SVR model built in this research, only previous riverine TN
load data was taken into account. In the future, other data
regarding the riverine TN loads will be needed to reinforce
the results drawn from this work. Third, the optimum decom-
position level was selected by empirical equation, which could
not guarantee obtaining the best performance. A comparative
investigation on the impact of different decomposition level
on the combinedmodel can be also encouraged to improve the
efficiency of the constructed model. Besides, the results ex-
hibited the limitations in the use of WA-SVR model for fore-
casting peaks. Thereby, it is also suggested the future studies

to integrate theWA-SVRmodel with physically based models
or empirical relationships between influencing factors and
peak values for enhancing forecasting of TN load peak values.
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