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Abstract
In this study, we combine known methods to present a new approach to assess local distributions of estimated parameters
measuring associations between air quality and birth weight in the urban area of Sines (Portugal). To model exposure and capture
short-distance variations in air quality, we use a Regression Kriging estimator combining air quality point data with land use
auxiliary data. To assess uncertainty of exposure, the Kriging estimator is incorporated in a sequential Gaussian simulation
algorithm (sGs) providing a set of simulated exposure maps with similar spatial structural dependence and statistical properties of
observed data. Following the completion of the simulation runs, we fit a geographically weighted generalized linear model
(GWGLM) for each mother’s place of residence, using observed health data and simulated exposure data, and repeat this
procedure for each simulated map. Once the fit of GWGLMwith all exposure maps is finished, we take the distribution of local
estimated parameters measuring associations between exposure and birth weight, thus providing a measure of uncertainty in the
local estimates. Results reveal that the distribution of local parameters did not vary substantially. Combining both methods
(GWGLM and sGs), however, we are able to incorporate local uncertainty on the estimated associations providing an additional
tool for analysis of the impacts of place in health.
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Introduction

In most studies correlating health outcomes with air pollution,
spatial epidemiology plays an important role, combining
methods from epidemiology and spatial modelling to describe
and analyse the impact of pollution in health. Usually, person-
al exposure assignments are based on misaligned data collect-
ed at air-quality monitoring stations not coinciding with health
data locations (Gryparis et al. 2009), so spatial interpolators
are needed to predict air pollutionmeasurements in unsampled
locations and to assign exposures at health data locations

(Jerrett et al. 2005). Methodological developments in
geostatistical interpolators over the last two decades may play
an important role in the future of spatial epidemiology, espe-
cially in situations where location data (e.g. addresses) are
available (Lawson et al. 2016). Besides improvements in
methods to map the risk of disease (Kyriakidis 2004;
Goovaerts et al. 2005; Goovaerts 2009; Hampton et al.
2011), geostatistics also contribute to provide clearer pictures
in geographic correlation studies by mapping air pollution
exposures to link with health data (Lee et al. 2012;
Kalkbrenner et al. 2015; Fei et al. 2017). In addition,
geostatistics provide suitable methods to assess their spatial
uncertainty, based on simulation algorithms (Young et al.
2008; Goldman et al. 2012). This is important because mea-
sures of exposure can be misleading if they do not take into
account the uncertainty of predictions, since the extent of un-
certainty varies throughout the spatial domain. Waller and
Gotway (2004) first explored spatial exposure uncertainty of
particulate matter to measure associations with very low birth
weights using stochastic simulation and drawn geostatistical
uncertainty from generalized linear model (GLM) analysis,
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with adjustment for well-known potential confounders. More
recently, Ribeiro et al. (2016) applied similar methods in an
urban area. In both studies, however, no appropriate local
adjustments for variations in the estimated associations were
taken into account. An alternative regressionmodel developed
in the recent years (Brunsdon et al. 1998; Fotheringham et al.
1998) addresses this issue, with adjustments for variations in
local associations carried out directly in the model parameters.
This class of models, generically known as geographically
weighted regression (GWR), allows the parameters to vary
smoothly as a function of spatial neighbourhoods and the
correlations to have spatially varied random effects
(Brunsdon et al. 1998). The combined use of GWR and
geostatistical models for spatial prediction has been evaluated
(Harris et al. 2010), and a recent application combining GWR
and geostatistical methods was proposed for mapping high
spatial resolution soil moisture data (Jin et al. 2018).

Applications of GWR in the spatial epidemiology field
include, for example, analysis of association between the ex-
posure to alcohol and violence outcomes (Waller et al. 2007)
or ozone concentrations and myocardial infarctions (Young et
al. 2008). Besides conventional Gaussian models, GWR has
been recently adapted to model data with other error distribu-
tions belonging to the exponential family (Nelder and
Wedderburn 1972), like negative binomial distribution (da
Silva and Rodrigues 2013) or Poisson distribution (Nakaya
et al. 2005), also known as geographically weighted general-
ized linear models (Brunsdon and Singleton 2015).

In this work, within a small urban area, we describe a new
methodology based on geostatistical simulation and geographi-
cally weighted generalized linear models (GWGLM) to estimate
local variations in the associations between air quality levels and
birth weight variations, while incorporating geostatistical uncer-
tainty of exposures. Because variations in air quality tend to vary
at short distances within city limits due to variations in land use
and in land use intensity, predicted air pollution exposures at
unsampled locations are assessed with Regression Kriging
(Hengl et al. 2007). With this spatial interpolation technique,
air quality at unsampled locations can be predicted, incorporat-
ing auxiliary land use data, known to be well correlated with air
quality, while modelling the residual as a stationary random
spatial function (Fortin et al. 2012). Regression Kriging is then
incorporated within a geostatistical simulation algorithm to as-
sess spatial uncertainty of predicted exposures. In the final part of
the analysis, simulated exposures are used to derive local distri-
bution of associations between air quality and birth weight
drawn from an analysis performed with GWGLM.

Data

In this study, we used air quality data and personal health data
collected in the city of Sines (Fig. 1) under the Gestão

Integrada Saúde e Ambiente (GISA) project, a health and
environment project developed in the coastal Alentejo region
(Portugal) during 2007–2010.

Health data

The health dataset, collected in the period 2008–2010, includ-
ed information on 227 mothers enrolled in the GISA project
and living in the city of Sines during pregnancy. Mothers’
places of residence were geocoded using a georeferenced
street map provided by Correios de Portugal (CTT Correios
2010). The following risk factors were included in analysis:
maternal body mass index (BMI), maternal age, maternal
weight gain during pregnancy, gestational age (weeks of ges-
tation) pregnancy surveillance (first antenatal visit and num-
ber of visits during pregnancy), maternal smoking during
pregnancy (active smoking) and exposure to environmental
tobacco smoke (or passive smoking), education and occupa-
tion. All these risk factors are known to be associated with
variations in birth weight (Kramer 2003).

Birth weight is highly related to duration of gestation and to
rate of foetal growth (Kramer 2003). Air pollutants may be
involved with birth weight directly through effects on the rate
of foetal growth or indirectly by impairing maternal health
(Glinianaia et al. 2004). Therefore, instead of birth weight,
the outcome analysed in this study was birth weight percentile
by sex and gestational age. Birth weight percentiles, hereafter
called birth weight, provided a clearer analysis of relations
between air pollution and rate of foetal growth by removing
the effect of duration of gestation (and sex) from the analysis.

Air quality data (AQIv)

Lichens are bioindicators of air pollution because they are
very sensitive to variations in atmospheric pollution. In pol-
luted areas, their frequency and diversity tend to decline (Rose
and Hawksworth 1981). They are affordable bioindicators of
air quality, as they can be found on a wide range of places on
the planet, including ground, water, rocks or human-made
structures and tree bark. Lichens as bioindicators of air quality
have been applied in several studies (Garty 1993; Conti and
Cecchetti 2001; Wolterbeek et al. 2003; Pinho et al. 2008b;
Canha et al. 2014; Munzi et al. 2014; Pinho et al. 2014). A
standard protocol (Asta et al. 2002) provided guidelines to use
lichens as bioindicators of air quality, which have been applied
in several studies (Loppi et al. 2002; Pinho et al. 2004; Ribeiro
et al. 2012; Llop et al. 2012; Paoli et al. 2015).

Due to scarcity of existing air-quality monitoring stations
in the city (only one), this study considered the use of
bioindicators as a surrogate of air pollution, as they exist in
several trees within the city, providing a relatively dense net-
work of 83 sample sites. The protocol was applied to all avail-
able trees and a value of air quality, Air Quality Index value
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(AQIv) was assigned to each sampling site. A higher value of
the AQIv indicates better air quality.

Combined with the lichen biomonitoring network, land use
data was also used to model air pollution spatial distribution,
because they are well correlated (Pinho et al. 2008a; Llop et al.
2017). The land use dataset was provided by Llop and col-
leagues (Llop et al. 2012). Four types of land use were consid-
ered for analysis: green areas, corresponding to public garden
areas within the city; semi-natural areas, corresponding to areas
with abandoned agriculture and semi-natural vegetation areas;
houses, corresponding to residential areas with low traffic; and
traffic areas, corresponding to the vicinity of main roads.

Methods

To describe and analyse observed data on air quality and health
variables, we conducted descriptive and inferential statistical
analysis. Then, we modelled spatial covariance of air quality
data to interpolate an exposure map with Kriging estimator.
The exposure map was further used to select a proper radial
buffer distance for personal exposure assignment. That was
achieved by comparing the goodness-of-fit from generalized
linear models (GLM) with exposures estimated at different
radial buffer distances centred at mothers’ places of residence.

The spatial covariance of air quality data was further used
within sequential Gaussian simulation (sGs) to generate mul-
tiple exposure maps with similar spatial patterns but with ex-
treme exposure scenarios. The goal was to assess uncertainty
of exposures. For each simulated map, we assigned mean
personal exposures using the buffer distance selected before
and used geographically weighted generalized linear models
(GWGLM) to quantify local relationships with birth weight,
while controlling the effect of health covariates. After fitting

GWGLM for all simulations, we have calculated the distribu-
tion of exposure parameters estimated at each mother’s place
of residence, reflecting the local uncertainty of estimated as-
sociations with birth weight.

In Fig. 2, we illustrate each one of these steps and the
remainder of this section describes in detail the methods used.
All statistical and geostatistical modelling was performed in R
(R Core Team 2014). Packages raster (Hijmans and van Etten
2012) and gstat (Pebesma 2004) were used to model air qual-
ity and generate geostatistical simulations. Arc GIS software
(Environmental Systems Research Institute 2006) was used to
integrate all spatial data in one work environment and to pro-
duce the maps.

Descriptive and inferential statistical analysis

To find if mean AQIv is different between land use categories,
we used the analysis of variance (ANOVA). We assessed
AQIv differences between land use categories, using paired t
tests. In these analysis, however, we emphasize that our pri-
mary goal was not to test hypothesis but to find any indica-
tions of dependence and trends between AQIv and land use
categories, because these are relevant for posterior
geostatistical modelling.

Model spatial dependency of AQIv

Air quality tends to vary at short distances within urban areas
due to variations in land use (e.g. green spaces, roadways,
residential areas) and in land use intensity (e.g. intensity of
traffic-related pollution is different in major roads and second-
ary roads). To capture such short-distance variations in spatial
predictions, we used Regression Kriging (Hengl et al. 2007)
also known as Kriging with External Drift (Goovaerts 1997)

Fig. 1 Map illustrating land use
categories, mothers’ places of
residence and air quality sample
locations in the city of Sines (from
Ribeiro et al. 2016)
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or Residual Kriging (Neuman and Jacobson 1984). Regression
Kriging interpolates a principal variable sampled at some loca-
tions (AQIv data in this study), by modelling the relationship
with spatially correlated auxiliary variables, available every-
where in spatial domain (land use data in this study).

Typically, this approach combines multiple linear re-
gression to model the relationship between principal
(dependent) and auxiliary (explanatory) variables, with

Ordinary Kriging or Simple Kriging estimator to predict
the residuals. Once the trend is modelled, the residuals can
be interpolated with a Kriging estimator and added to the
trend (Hengl et al. 2007), as shown in Eq. (1). In Eq. (1), the
predicted value of the principal variable at any unsampled
location, ẑ0, is obtained by summing a trend, m̂0 (derived
from the relation between principal and auxiliary variable),
with the sum of neighbour residuals εp (with p = 1, …, P),

Fig. 2 Schematic diagram
describing the proposed
methodology in three steps. Text
boxes represent variables,
algorithms, control flows and
functions and the arrow lines
represent relations between them
as described in text along with the
lines. Text boxes with blue
background represent final
outputs of each step. Text boxes
with grey background represent
the regression models applied
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derived from P neighbour observations, which are weighted
by the Kriging optimal weights, λp.

ẑ0 ¼ m̂0 þ ∑
p

p¼1
λpεp ð1Þ

To estimate the parameters of the regression and its resid-
uals, the following steps are taken:

1- Fit a regression model to predict value, z, as a linear func-
tion of auxiliary data, X. Because auxiliary data in this
study is a categorical variable, matrix X is represented
with dummy indicator variables. The vector of estimated

parameters associated with auxiliary variables, β̂ols, is
derived by ordinary least squares (OLS). The residual of
the model fitted for a known observation located at p, εp
(with p = 1, …, P), can then be computed:

εp ¼ zp−Xpβ̂ols

2- Estimate the semi-variogram of ε and fit a variogram

model, γ̂ h; θ̂
� �

, with vector θ̂ ¼ ĉ0; ĉe; âeð Þ representing
the estimates of ĉ0 (nugget effect), ĉe (partial sill) and âe
(range), and h represents some distance between pairs of
observations. The variogram model parameters are esti-
mated iteratively using a weighted least-squares estimator
(Pebesma 2004). The initial values specified for parame-
ter estimation of c0, ce and ae are based on the visual
inspection of the semi-variogram estimate and close to
the expected estimates.

3- Estimate the (spatial) covariance matrix of residuals, Ĉ,
based on the relation between the spatial covariance and
the corresponding variogram: C(h) = σ2 − γ(h), where σ2

represents the variance (or spatial covariance at zero
distance).

4- Re-fit a linear regression model to predict response value as
a function of auxiliary data. But now, instead of OLS, the
parameters are estimated by generalized least squares (GLS),

β̂gls ¼ XTĈ
−1
X

� �−1

XTĈ
−1
z

β̂gls represents the vector of parameters estimated with

generalized least squares, Ĉ represents the covariance matrix
between estimated residuals, X is the matrix of auxiliary data
and z is the vector of observed response data.

5- The residuals of the re-fitted model at observation located
at p, ε*p, can then be computed as follows:

ε*p ¼ zp−X pβ̂gls

6- Steps 2–5 are repeated until no significant change occurs
in parameter estimates.

Hengl et al. (2007) refers the work of Kitanidis (1993) to
stress that in most applications, no relevant gain occurs in esti-
mating spatial covariance after the first iteration with OLS.
Some studies (Odeh et al. 1994; Minasny and McBratney
2007; Hengl et al. 2007) applied this Bshort version^ of the
method with satisfactory results. In this study, we follow the
latter version, confining the estimate of spatial covariance to
the residuals derived from OLS estimation (steps 1–2), as it
captures the essence of the Regression Kriging approach.

If the principal variable is correlated with auxiliary vari-
able, the regression model will explain some part of the vari-
ability. First, we predict the value of the principal variable at
every unsampled locations of the spatial domain, using the
regression model and the auxiliary data available everywhere
(trend part). Then, we predict the part of variability not ex-
plained by the model (residual part) with the Ordinary Kriging
linear estimator. The predicted value of residual at any
unsampled location, ε̂0, is obtained by summing neighbour
residuals εp (with p = 1, …, P), derived from P neighbour
observations, which are weighted by the Kriging optimal
weights, λp:

ε̂0 ¼ ∑
P

p¼1
λpεp

We finally obtain a map of principal variable, by summing
both trend and residual maps as presented in Eq. (1).

Select a Bproper^ buffer distance for exposure
assignment

To assign a personal exposure, we computed a mean AQIv
using a radial buffer distance around the place of residence.
However, the selection of that distance was not straightfor-
ward, since a too small radial buffer distance could provide
unreliable personal average exposure estimates, whereas a too
large buffer distance would add bias to the estimates.
Therefore, to select an Bappropriate^ radial buffer distance,
we performed a two-step modelling approach.

In the first step, we selected a regression model with a
column vector for birth weight responses, all health covariates
(data matrix Q) and no AQIv data included. This way we
gained insight into the contributions of several well-
established health risk factors to explain birth weight varia-
tions. We used stepwise procedures, evaluated goodness-of-fit
(Akaike Information Criteria) and performed residual diag-
nostics for the normal and gamma GLM models (as both
belong to the exponential family) with canonical and log-
link functions (g[E(y)] in Fig. 2). The gamma model with
log-link function specified with a subset of health covariates
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(data matrix Q∗) and associated vector of parameters, β, pre-
sented better results among all candidates and was selected for
further statistical analysis. With this model (we designate this
as the Bhealth model^), presented in model (2), we assumed that
birth weight is an independent variable following a gamma dis-
tribution with variance proportional to its mean square (constant
shape v) and that health covariates have a linear relationship
with mean birth weight (in terms of the link function).

y∼Γ exp Q*β
� �

; v
� � ð2Þ

In the second step, we used the map of AQIv interpolated
before (see BModel spatial dependency of air quality (AQIv)^)
to compute the meanAQIv bymother’s place of residence and
tested 200 different radial buffer distances (5–1000 m, with
5 m steps) centred at each place of residence. For each buffer
distance, bi (with i = 1,…, 200), we estimated the column
vectorVi of personal average exposures and refitted the health
model [2], but now with an additional parameter, ϕi, associ-
ated to the new variable Vi as shown in model (3). At eachVi,
the vector of parameters associated to the subset of health
covariates, βi , is obviously estimated.

y∼Γ exp Q*βi þ Viɸi
� �

; v
� � ð3Þ

Our goal was to find the lowest Akaike Information
Criteria from the different models quantifying the relationship
between the exposure and birth weight, while controlling the
effect of health covariates. We extracted the Akaike
Information Criterion (AIC) (Akaike 1973) score associated
with each model. Finally, we selected a proper buffer distance
for exposure assignment from the model with the lowest AIC
score among all the models considered.

Quantify local uncertainty of associations

Sequential Gaussian Simulation (sGs)

To map spatial uncertainty of AQIv, we generated conditional
simulations of AQIv residuals data and added the simulated
residuals to the trend map to provide several maps that match
the statistical properties of observed data. We considered the
use of sequential Gaussian simulation algorithm in this study,
but we could have considered any other sequential simulation
algorithm suited to continuous data. In a nutshell, the workflow
of the algorithm can be described in the following manner:

1. The algorithm randomly defines a path over the entire
study area (defined as a regular grid) passing through all
grid nodes to be simulated.

2. For the first node, the Regression Kriging interpolator
estimates a local average and local variance of residuals
conditioned to the cumulative distribution function of

residuals. A simulated value is obtained using the inverse
Gaussian distribution (Hengl 2009), which is then added
to the conditioning dataset.

3. The same procedure (2.) is followed for the next node,
looping until all nodes of the grid have been visited and
simulated.

4. Add the simulated residuals to the trend map.
5. Using this approach, we generated 300 possible exposure

scenarios, fromwhich spatial uncertainty could be retrieved.

Geographically weighted generalized linear model (GWGLM)

Generalized linear models (GLM) are widely used to model
health events, because they are flexible and generally suited for
analysing correlations that are generally poorly represented by
Gaussian distributions. When using such models, it is assumed
that a single global model describes the relationships between
variables which may fail to capture spatial variations in the
relationships. To cope with spatially varying associations,
Brunsdon et al. (1998) proposed a geographically weighted re-
gression (GWR), which uses distance-weighted subsets of
neighbour observations to estimate the regression parameters at
each sampling site. However, this model was implemented to
predict continuous variables with Gaussian error distribution.
More recently, the use of GWR has been extended to the expo-
nential family of distributions (Nakaya et al. 2005; Chen and
Yang 2012; da Silva and Rodrigues 2013; Li et al. 2013), also
known as geographically weighted generalized linear model
(GWGLM). We explored the use of GWGLM with gamma
distribution and log-link function presented in model (4).

ys∼Γ exp Q*
sβks þ V*

ksɸks
� �

; v
� � ð4Þ

In model (4), ys represents birth weight variable at mother’s
place of residence with vector of coordinates s = (xs, ys), fol-
lowing a gamma distribution with scale parameter exp

Qs
*βks þ V*

kɸks
� �

and with constant shape v, Qs
∗ represents

the local data matrix of health covariates at location s, βks

represents the vector of local parameters associated with Qs
∗

in simulation k at location s, V*
ks is a column vector of local

personal average exposures at simulation k at location s and
ϕks is the local parameter associated with V*

ks at simulation k
at location s. Local parameters at location s are estimated by
maximizing the log-likelihood.

In this maximization process, a suitable local bandwidth
around each place of residence is selected to build a geograph-
ical weighting matrix for neighbour observations. A natural
solution is to use some distance-decaying function between
location s and each of neighbours’ locations within bandwidth
limits. The classical weighting functions used in GWR, also
denoted as kernels, are fixed or adaptive type. In fixed type,
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the weight value of a neighbour location s∗ to estimate the
local parameters at mother’s place of residence located at s,
rss* , can be obtained with the Gaussian kernel function,

rss* ¼ e −dss*=wð Þ2

where dss* is the distance between locations s and s
∗, and w is

the bandwidth selected. In this type of kernel, w is constant
and sets the rate at which the weights gradually decay. In this
study, however, we considered an adaptive kernel type, better
suited when geographic density of observations varies sub-
stantially. The function used, known as Gaussian adaptive
kernel, calculates rss* in the following manner,

rss* ¼ e −dss*=wuð Þ2

where dss* is the distance between locations s and s
∗, andwu is

an adaptive bandwidth size defined as the distance to the uth
nearest neighbour. In this type of kernel, the bandwidth size
may vary, as it adapts to the variations in the density of neigh-
bours: larger bandwidths are selected if the number of neigh-
bour locations is smaller, and smaller bandwidths are selected
if the number of neighbour locations is bigger.

To select the Bbest^ GWGLMmodel, we used the corrected
Akaike Information Criterion (AICc) presented in Eq. (5).

AICc wð Þ ¼ d wð Þ þ 2m wð Þ þ 2
m wð Þm wð Þ þ 1

n−m wð Þ−1
� 	

ð5Þ

In Eq. (5), AICc(w) is the corrected AIC of model with
bandwidth w, d(w) is its deviance statistic,m(w) is the number
of effective parameters and n the number of observations. The
optimal model is achieved with the bandwidth w that provides
the smallest AICc value, among all fitted models.

Local uncertainty of AQIv parameter

We assessed the local means and confidence intervals for expo-
sure parameters numerically, using the maps produced with
the sGs algorithm. For each simulation, we fitted a GWGLM
that provided a vector of parameter estimates at each mother’s
place of residence. From the set of simulations, we could draw
the local distribution of each parameter estimated at each place
of residence, reflecting the local uncertainty of estimated asso-
ciations with the birth weight variable.

Results

Health data places of residence, land use data and air quality
data sample locations are mapped in Fig. 1. The average birth
weight percentile among the 227 observations is 40, and the
distribution of the variable is right skewed (Fig. 3a) (skew-
ness = 0.58).

We measured an Air Quality Index value (AQIv) in 83
different locations within the Sines city. The overall mean is
6.0 (variance = 8.63), and the distribution of values is slightly
right skewed (Fig. 3b) (skewness = 0.45). By land use catego-
ry, the meanAQIv is 8.5 for green, 7.6 for semi-natural, 5.3 for
houses and 4.9 for traffic. Figure 4 presents the boxplots for
AQIv by land use category. Despite being presented elsewhere
in the literature (Ribeiro et al. 2016), we include this figure
here for the sake of completeness.

Geostatistical model of exposure

We specified a linear regression to model the response of
AQIv as a function of land use to capture the part of variation
in AQIv explained by land use categories (trend component).
The fitted regression model explained 21% of AQIv variabil-
ity (adjusted R2 = 0.207). The estimated parameters are shown
in regression model (6).

m̂ ¼ 8:50−0:93SNAþ 3:15HOU−3:60TRA ð6Þ

When compared with green category (the reference category
in the model), AQIv decreases as we move from land use areas
with lower air pollution emissions (SNA, semi-natural) to areas
with higher emissions (TRA, traffic). The t statistics, associated
with the land use categories (SNA, t = − 0.78, p-value = 0.436;
HOU, t = − 3.87, p-value < 0.001 and; TRA, t = − 4.46, p-value
< 0.001), suggest that land use variable has a statistically sig-
nificant linear relationship (at 0.1%) with AQIv. We used this
model to predict the trend part of AQIv at every locations of the
spatial domain obtaining therefore the trend map.

With regard to the residuals of model (6), we analysed their
spatial dependency. The experimental semi-variogram of the
residuals showed spatial correlation. Initial parameters for
variogram model were drawn from visual inspection of exper-
imental semi-variogram. We considered an exponential model
with no nugget effect, sill equal to the total variance of residuals
(variance = 6.59) and range asymptotically reached at 180 m.
The fitting of the exponential model converged, explaining
well the spatial structure up to the first two lags (Fig. 5).

With estimation of covariance structure of the residuals, we
interpolated the map of residuals using the Ordinary Kriging
linear estimator. Summing both trend and residual maps, we
obtained a smoothed exposure map (not shown), which was
useful to find an adequate buffer for personal exposure
assignment.

Assessing the radial buffer distance for exposure
assignment

To assign a personal exposure, we first needed to find a
proper (or optimal) radial buffer distance around
mothers’ places of residence.
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Firstly, we selected a generalized linear model using
birth weight and all health covariates but did not include
the exposure variable. This way we gained insight into
the contributions of several well-established health risk
factors to explain birth weight variations. We evaluated
generalized linear models with normal and gamma distri-
butions and canonical and log-link functions, applied a
stepwise procedure for variable selection, evaluated
goodness-of-fit (Akaike Information Criteria) and per-
formed residual diagnostics (results not shown). The
gamma model with log-link function presented better re-
sults among all candidates and was selected for further
statistical analysis. The final model resulted in a health
model retaining the variables active smoking during
pregnancy (SMO, t value = − 1.511, p-value = 0.1322),
maternal body mass index (BMI, t value = 2.612, p-val-
ue = 0.0096) and gestational age (GES, t value = 2.509,

p-value = 0.0128). The selected health model and param-
eter estimates are shown below in Eq. (7).

ŷ ¼ exp −3:963−0:163SMOþ 0:032BMI þ 0:059GESð Þ ð7Þ

We used the map of AQIv interpolated before to compute
the mean AQIv by mother’s place of residence and tested 200
different radial buffer distances (5–1000 m, with 5 m steps)
centred at each place of residence. For each buffer distance,
we estimated a mean exposure by mother’s place of residence
and refitted model (7) but now with an additional term asso-
ciated to the new exposure variable. After fitting the regres-
sion models with all the 200 buffer sizes, we stored the
goodness-of-fit Akaike Information Criterion (AIC) score as-
sociated with each one and selected the buffer of 265 m, since
it was the one associated to the model with the lowest AIC
score among the models considered (Fig. 6).

Therefore, for further statistical analysis, we assigned per-
sonal exposure during pregnancy, based on mean AQIv

Fig. 3 Histogram (grey bars) and
density function estimate (black
curve) from birth weight
percentile (a) and Air Quality
Index value (b). Both variables
showed positive skewness, more
exuberant in the birth weight case

Fig. 4 Boxplot graphs for AQIv in different land use categories (from
Ribeiro et al. 2016). The limits of the boxes represent the interquartile
range, and the midline represents the median. The boxplot for green
category is higher than the boxplots for houses (paired t test, p -value <
0.001) and traffic categories (paired t test, p -value < 0.001)

Fig. 5 Experimental semi-variogram of residuals from OLS regression
model (black dots) and the exponential variogram model fitted
(continuous line) up to the sill (dashed line)
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computed within 265 m buffer size around each mother’s
place of residence.

Geostatistical simulations with sGs

From previous geostatistical analysis, we have estimated pa-
rameters and selected the form of variogram to model expo-
sure residuals (see BSelect a Bproper^ buffer distance for ex-
posure assignment^). Now, to assess spatial uncertainty of
exposures, we incorporated the output from that analysis to
run geostatistical simulations. The spatial location of the set of
83 AQIv samples sites (Fig. 1) was taken into account for the
simulation step. We ran 300 simulations of AQIv residuals on
a 570 × 719 grid (409,830 nodes) with 4.25 m pixel resolu-
tion. We used the sequential Gaussian simulation (sGs) algo-
rithm incorporating the Ordinary Kriging estimator to draw
AQIv residuals at the visiting nodes. Each exposure map
was then obtained by summing trend, obtained with Eq. (6),
and the simulated residuals map. The averages AQIv calculat-
ed from simulations and observed data are 6.47 and 5.97, with
standard deviations of 3.27 and 2.93, respectively.

We performed an assessment to evaluate whether the statis-
tical properties of simulated maps reproduced the statistical
properties of observed data. We computed the coefficient of
variation (standard deviation/mean) for the 300 simulations
and found that the distribution of coefficients of variation from
simulations and the observed coefficient variation agree. The
agreement can be observed in Fig. 7, where the distribution of
coefficients of variation obtained among simulations is centred
at 0.50 and the coefficient of variation of observed data is 0.49.

The simulations obtained through conditional sGs incorpo-
rate a deterministic part that captured the spatial trend of
AQIv, provided by land use spatial distribution. In Fig. 8 are
illustrated four possible scenarios of air quality obtained with
the sequential algorithm. Most of major patterns observed in
land use map are successfully captured, in particular some

areas of the road network, while the differences between them
are provided by the simulated residuals.

Local uncertainty of association with GWGLM

The GWGLMmodel presented in Eq. (8) was combined with
geostatistical simulations for analysis of spatial uncertainty in
associations between AQIv and birth weight. For the general-
ized linear modelling processes, we estimated the parameters
of the models assuming that birth weight variable has gamma
distribution with log-link function.

ŷs ¼ exp β̂0ks þ β̂1ksSMOs þ β̂2ksBMIs þ β̂3ksGESs þ ϕ̂ksAQIvks

 �

ð8Þ

With each simulation (with k = 1,…, 300), we computed per-
sonal meanAQIv around eachmother’s place of residence, fitted
the GWGLMmodels and obtained local parameter estimates for
each variable. After repeating this procedure for the 300 simula-
tions, wewere able to assess a histogram of theAQIv parameters
that reflect the geostatistical uncertainty of associationswith birth
weight. In Fig. 9, we illustrate these results by computing smooth
Kernel density estimates that enable to visualize the underlying
distributions of AQIv parameters. Exposure uncertainty at place
of residence B is marginally smaller when compared with the
one located at A, as the local distribution of AQIv parameter
showed a marginally narrower 95% confidence interval (CI95)
(CI95 − 0.183; 0.019) when compared with place of residence A
(CI95 − 0.187; 0.020). In terms of associations, these results do
not show any significant association between birth weight and
air quality.

Discussion

The main purpose of this study was to present and illustrate a
new approach to assess local distributions of estimated

Fig. 7 Kernel density distribution of the coefficient of variation
computed from 300 simulated exposure maps (solid line) and the
coefficient of variation estimated from observed exposure data (dashed
line)

Fig. 6 Akaike Information Criteria (AIC) scores associated to 200
models fitted with different radial buffer distances (5–1000 m). The
model with the lowest AIC score (AIC = − 22.91) was found with radial
buffer distance set at 265 m
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parameters measuring associations between air quality and
birth weight. Combining GWGLM techniques and
geostatistical simulation algorithms, we provided clues on
the spatial processes underlying spatial variations in associa-
tions between air quality and birth weight. Moreover, we in-
corporated spatial uncertainty of air quality predictions in the
estimation of local parameters. Thus, we consider the use of
this approach an additional tool to health analysts in assess-
ment of the local impacts of environmental risk factors in
health. This is critical for successful development of the spa-
tial epidemiology methods, since estimates are interpreted in
the context of exposure uncertainty varying throughout the
spatial domain.

Kernel curves computed from GWGLM models (Fig. 9)
overlapped in the large majority of cases and, according to the
principle of parsimony, would suggest no gains in the analysis
of local associations or, in other words, a global model with no
local parameters would be sufficient for the analysis. Themost
plausible explanation for this result is that the spatial process
we modelled is essentially stationary. Nevertheless, we found
marginal differences in estimations, illustrated in Fig. 9 with
the results for addresses A and B, showing the potential of
geostatistical simulation to adjust the spatial uncertainty of
personal exposures in GWGLM models.

The map produced with the Regression Kriging technique
was not enough to quantify the spatial variability of exposure
patterns, since interpolators only create a smooth map reveal-
ing the major spatial patterns of the data. So, to model uncer-
tainty of exposures, we turned to geostatistical simulation al-
gorithms (in particular the sequential Gaussian simulation

algorithm) which provided a set of maps with spatial patterns
of high- and low-exposure values. In the simulation process,
we have tried to run 200, 300, 500 and 1000 simulations. We
found that after 300 simulations, changes in results were neg-
ligible, so we considered 300, a sufficient number of simula-
tions to show the benefits of the proposed method.

Simulated maps presented in Fig. 8 air quality exhibited,
more often, lower values near traffic areas. That was not sur-
prising to find, since small-scale variations of air pollution in
urban areas are typically from road traffic (de Hoogh et al.
2014) and associations between air pollution and traffic in
Sines city have been previously reported (Llop et al. 2017).
However, we were able to explicitly separate the spatial vari-
ations of air quality in two components: a trend component,
modelled with a regression to fit the variations explained by
the auxiliary land use variable, and a spatially random com-
ponent, modelled with a Kriging estimator to fit the unex-
plained variation or residuals. The contribution of the random
component in spatial variation of air quality could be related
with the dispersion of gaseous pollutants emitted by traffic or
the dispersion of particles (mostly dust) emitted by semi-
natural areas.

Selecting a radial buffer distance to derive personal average
exposure was not trivial. Selecting too small radial distances
would provide more variability in personal average exposures,
but these estimates would be unreliable since they would be
based on few exposure values. On the other hand, too large
distances would add bias to the estimates (towards 0) since
personal average exposure at different addresses would tend to
get quite similar. Our choice to overcome this problem was to

Fig. 8 Examples of four
geostatistical simulations of AQIv
obtained with Sequential
Gaussian Simulation. These
exposure maps captured themajor
patterns of land use and the
patchy patterns provided by
simulated residuals
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use a criteria based on a measure of goodness-of-fit. We tested
200 different radial buffer distances up to 1 km to find the
lowest AIC as the indicator of the optimal radius distance.
Results showed that the optimal distance was reached at
265 m, which is in line with other buffer distances selected
for estimation of local variability of air pollutants in urban
environments (Kanaroglou et al. 2005; Zandbergen 2007;
Pasquier and André 2017).

The correlations found between AQIv and land use com-
bined with Regression Kriging method provided a way to
provide exposure maps while tackling changes of air quality
at short distances. Nevertheless, the pathway with regard to
the estimation process was not perfectly smooth. Obtaining
the exposure maps was required in the first place to remove
the trend captured by the regression model fitted with the land
use predictor (Eq. [6]). However, the percentage of variability
in AQIv explained by land use was only moderate (21%). One
possible way to improve it could be by adding more auxiliary
variables known to be associated with variations in urban air
quality, such as traffic volume (Faria et al. 2017) or distance to
major roads (Hoffmann et al. 2009). In this case, those vari-
ables were not available.

We are also aware that the sampling design of AQIv affected
the estimation of experimental semi-variogram of residuals and
the specification of the theoretical variogrammodel. The spatial
representativeness of AQIv samples was limited to the samples
available, located only in some areas of the city, mostly traffic
and residential areas. We would prefer to have a sampling de-
sign with locations evenly distributed within the urban area and
spatially stratified by land use category. This would provide the
possibility of getting an adequate number of samples at various
intervals with small lag-distances to estimate the experimental
semi-variogram. In our study, we could not consider such small
lag-distances, because there would be too few points in some

intervals, leading to less reliable variogram estimates and a
more complicated spatial model. Therefore, we had to consider
a sufficiently large lag-distance (100 m) that allowed us to fit a
suitable theoretical model capturing the major spatial patterns
of AQIv residuals within the city.

A key issue that may have masked variations in local dis-
tributions concerns the accuracy of mothers’ places of resi-
dence. Due to confidentiality constraints, geocoded place of
residence information is available in aggregate form and is
assigned to street centrelines. While these geocoded informa-
tion are reasonably accurate proxies for mothers’ places of
residence, misplacements of addresses might have introduce
bias and error in personal exposure assignments, as underlined
by Kirby and co-authors in their recent work (Kirby et al.
2017). For example, different places of residence located in
the same street were assigned the same centreline coordinates,
meaning that the same exposure values were assigned to those
collocated addresses, which may have resulted in a misevalu-
ation of spatial associations.

Conclusions

The new approach presented in this study combines known
spatial statistical methods to measure local associations be-
tween air quality and health outcomes in urban areas while
incorporating their local uncertainty, providing an additional
tool to health analysts in assessment of the impacts of air
pollution in health. Personal exposure assignments are based
on interpolated predictions with Regression Kriging, and their
spatial uncertainty is tackled with the sequential Gaussian
simulation algorithm. Since the extent of exposure uncertainty
varies from place to place, it is essential to take it into account;
otherwise, exposure predictions can be misleading. The

Fig. 9 a The city of Sines map showing mothers’ places of residence and
AQIv sample locations. Circled and highlighted crosses (red and blue)
correspond to locations of two mother’s place of residence, A and B. b
The kernel density local distributions of AQIv-estimated parameters.

Curves reflect the results of geostatistical uncertainty of exposures.
Highlighted (red and blue) are the two curves representing the local
distributions of exposure parameters estimated for mother’s place of
residence, A and B
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associations between birth weight and the resulting set of sim-
ulated exposures are measured with geographically weighted
generalized linear models, in order to derive the uncertainty in
the local parameters.

The new approach presented here can be applied in other
urban areas where health data are available; the geographical
density of air quality data is high and complemented with
additional auxiliary variables like land use data or air pollution
emissions data.
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