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Abstract
Surface water and sediment samples were collected from Ajay River basin to appraise the behavior of heavy metals with
surrounding environments and their inter-elemental relationships. Parameters like pH and organic carbon are having a minimal
role in heavy metal distribution while some elements like Fe and Cu showed great affinity for organic matter based on linear
regression analysis (LRA). Ficklin diagram justified that river basin is not contaminated through acidic pollutants. The river basin
is highly enriched with Cu, Cd, Pb, and Ni which were much higher than world average values, average shale standard, effect
range low (ERL), and threshold effect level (TEL). PCA and LRA verified that Cu, Cd, Pb, and Ni were mainly derived from
anthropogenic inputs, and others like Fe, Mn, Zn, and Co came from geogenic sources. Pollution indices revealed that river basin
is moderately to highly contaminated by Cu, Cd, and Ni. Furthermore, Ajay River basin is under strong potential ecological risk
based on the obtained value of risk index and probable effect level/effect range median quotient index. However, river basin is
strongly influenced by lithological properties, diversified hydrogeological settings, mineralization and mobilization of subsurface
materials, and urban and industrial effluents which are controlling the heavy metals.
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Introduction

Heavy metals such as cadmium (Cd), copper (Cu), chromium
(Cr), lead (Pb), nickel (Ni), and zinc (Zn) are persistent con-
taminants within the aquatic environment and have the poten-
tial to elicit toxic effects at elevated concentration (Torri and
Correa 2012; Atibu et al. 2016; Castro-Catala et al. 2016;
Antunes et al. 2018). River basins are highly susceptible for
variety of contaminants including accumulation of heavy
metals and metalloids due to their openness which allows to
the disposal of metal-containing waste from mining, indus-
tries, and atmospheric deposition (Martinez-Santos et al.

2015). Metal contaminations in natural waters and sediments
have gained much attention due to their abundance, persis-
tence, and potential to induce toxic effects (Cakmak et al.
2017; Milacic et al. 2017). In general, river sediment is con-
sidered as basic environmental components, but they also
serve as sinks for metals (Islam et al. 2015). Heavy metals in
the environment are generally derived from two sources such
as anthropogenic sources, which are directly linked with hu-
man activity, and natural circulation of the metals through
rock weathering, mineralization, dust storm, and volcanic
eruption (Jha et al. 2009; Siudek et al. 2015). The composition
of river waters and sediment is diverse, varying with factors
such as climatic condition, hydrogeological setting, and an-
thropogenic activity (Kumar et al. 2017; Wang and Wang
2017). In the last few years, a great deal of concern has been
expressed over the problems of river basin contamination re-
lated to heavy metal pollution (Adamu et al. 2015; Ali et al.
2016; Ma et al. 2016; Zhang et al. 2016; Strady et al. 2017).
Unfortunately, large quantities of heavy metals have been re-
leased into the rivers due to rapid urbanization and change in
land use pattern as well as the expansion of industrial and
agricultural sectors (Islam et al. 2015). Consequently, river
received a large amount of partially treated and untreated
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wastewater from urban and industrial centers which has led to
increased level of metals in the river (Sharma et al. 2017). The
heavy metals can bioaccumulate in the animals and plants as
well as making their way to humans through the food chain
(Ungureanu et al. 2016). In developing country like India,
most parts of the developmental activities depend on the rivers
for disposal of various anthropogenic waste associated with
toxic chemicals, biodegradable waste, and ionized substances
(Kumar et al. 2015). It is interesting to note that about 70% of
the available surface water is polluted mainly due to the dis-
charge of untreated sewage (Joshi et al. 2009; Kumar et al.
2014). Therefore, these uncertainties may increase the con-
tamination in the river basin and change the natural composi-
tion of water and sediment, which can lead to high risk for
human population (Kumar et al. 2016).

However, pollution by heavy metals such as Pb, Cd, Ni,
Cu, and Co in freshwater is considered potentially hazardous
to human health and deems to be undesirable (Vu et al. 2017).
The exposure of human population for these metals adversely
affects the various organs such as the kidney, gastrointestinal
tract, and nervous system as well as disrupts the transport
activities of phosphate biocompounds (Lohani et al. 2008;
Jaishankar et al. 2014; Singh and Kalamdhad 2018). Some
essential elements like Fe, Mn, and Zn are also harmful to
human health especially when they are above the desirable
limit set by different national and international regulatory bod-
ies (Prashanth et al. 2015). Various researchers have conclud-
ed that many surface waters are strongly affected by high
concentration of heavy metals due to excess inputs of unde-
sirable anthropogenic substances, which produce various
types of contamination and poses environmental risk for the
aquatic environment (Ciszewski et al. 2013; Liu et al. 2013;
Candeias et al. 2014; Qasim and Motelica-Heino 2014;
Adamu et al. 2015; Siudek et al. 2015; Pandey et al. 2016).
Accumulations of heavy metals in the aquatic system pose a
high ecological risk and are responsible for high mortality
rate, alteration in growth, impair reproduction, and loss of
species diversity (Devanesan et al. 2017; Mohamaden et al.
2017). However, the mobility of heavy metals in the river
depends on various factors such as hydrogeological settings,
mineralogical composition of subsurface materials, and differ-
ent geochemical process (dissolution and precipitation) as
well as climatic condition (Shumilin et al. 2011; Jiang et al.
2013). Therefore, it is important to understand the mechanism
of heavy metals and their complexes in the river which con-
trols the composition of river water and sediment (Akcay et al.
2003).

Very few studies have been reported related to fate and
transport of heavy metals in Ajay River basin. Singh and
Kumar (2017) observed that diverse geological settings, min-
eralogical composition, and mobility of soil and sediment as
well as numerous anthropogenic inputs are major responsible
factors for the enhancement of toxic elements in Ajay River

basin. The authors suggested that the water quality of Ajay
River basin is unsuitable for drinking and bathing purposes
due to high loads of Cd, Pb, and Cu. However, similar studies
have been conducted by various researchers worldwide re-
garding the potential risk of heavy metals to the river ecology
and human health. Previous studies confirmed that the heavy
metals like As and Cd pose moderate to considerable high
ecological risk for the Yangtze River system, China (Wu et
al. 2009; Yi et al. 2011). Similar studies conducted by
Buschmann et al. (2008) in the Mekong Delta floodplains,
Vietnam; Maanan et al. (2014) in Nador lagoon, Morocco;
Neyestani et al. (2016) in northern Persian Gulf; and Singh
et al. (2018) in East Singhbhum, India, suggest that heavy
metals pose moderate to considerable ecological risk and have
potentially adverse effects on local residents. However, the
present study is focused on how the surface water and sedi-
ment properties affect heavy metal enrichment in Ajay River
basin.Moreover, the objectives of this study are (a) to evaluate
the geochemical properties and enrichment of heavy metals in
sediment and surface water, (b) to identify the compositional
groups, critical parameters, and geochemical processes which
are involved in Ajay River basin, and (c) to evaluate the spatial
variation of heavymetals in sediment and surface water to find
out their trends and possible sources.

Materials and methods

Study area

Ajay River is situated between B23° 27′ 342″ to B24° 27′ 763″
N latitude and B86° 38′ 156″ to B88° 07′ 729″ E longitudes and
spread over 6000 km2 in three states of India such as Bihar,
Jharkhand, and West Bengal (Fig. 1). It originates from the
Chakai hill near the Chota Nagpur Plateau and drains densely
in populated urban and industrial region of Jharkhand and
West Bengal, and lastly, merges into Bhagirathi River at
Katwa, West Bengal. Due to the high demand of water for
different purposes such as domestic (26.92 million m3), irriga-
tion (3561.04 million m3), and industrial uses (1.63 million
m3), river water is trapped from several locations like
Jamtara, Chittaranjan, Raniganj, and Andal (Sharma and
Chattopadhyay 1998). Several large industries include thermal
power plants, fertilizer plants, locomotive industries, coal
washeries, and other manufacturing companies of glass, ce-
ramic, and copper cable are settled in the proximity of river
basin area. In addition, small industries like manufacturing of
copper bucket by villagers and rice and brick industries are also
settled in the nearness of river basin. Furthermore, land use
pattern of the Ajay basin is characterized into seven categories:
agriculture (15.92%), non-agricultural area (13.87%), forest
cover (12.22%), land under miscellaneous tree (6.15%), barren
land (9.72%), other fallow (9.34%), and current fallow
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(30.83%), respectively (NIH 1999). The study area experi-
encesmoderate climatic condition with winter, hot humid sum-
mer, and prolonged rainy season (Gupta et al. 2008). The av-
erage annual precipitation in the Ajay basin varies from 1280
to 1380 mm (Roy 2012). The lithology of the study area is
generally characterized into three groups such as alluvial and
major red and yellow loam sedimentary types.

The Ajay River basin is geologically characterized into
three major geological setups (Fig. 2, supplementary
information) such as Archaean gneissic, Gondwana sedimen-
tary, and Upper Tertiary with a small patch of Quaternary-age
rocks. The upper basin lies within Archaean gneissic which is
composed of biotite, hornblende, pyroxene granulites, basic
intrusive, pegmatite, and quartzite (Ghosh and Guchhait
2015). The middle part of the river encounters Gondwana
sedimentary which cover around 8.81% of the total basin area
and contains various rock-forming minerals such as biotite,
hornblende, pyroxene granulites, basic intrusive, pegmatite,
quartzite, and pyrite. The rest of the lower basin is entirely
covered with a broad coated alluvial soil over the Tertiary with
a small patch of Quaternary-age rocks (Saha and Naskar
2002).

Sampling and analytical procedure

In this study, 60 water and sediment samples from the study
area were collected during tow season such as pre-monsoon

(PM) and post-monsoon (POM) from 30 different locations.
For the sampling, 1-L sterilized polyethylene bottles for water
and cleaned polyethylene bags for sediment were used and
transferred to a laboratory as per American Public Health
Association (APHA 2005) and the US Environmental
Protection Agency (USEPA 1992) guidelines. Millipore water
was used for the preparation of all analytical grade reagents
and calibration standards. Prior to analyses, all collected sam-
ples were digested using nitric acid to remove the interference
like organic matter. Acid digestion for water and sediment
samples has been carried out separately. For the estimation
of dissolved metals, all water samples were filtered using
0.45-μm pore size filter paper. Furthermore, 100 mL filtered
water samples were digested using 20 mL 1:1 nitric acid.
Similarly, 1 g of air-dried sediment sample was digested with
a mixture of concentrated HF, HNO3, and HClO4 as suggested
by Gao et al. (2010) with some modifications. The sediment
samples were digested with concentrated 10 mL HF, 4 mL
HNO3, and 2 mL HClO4 in 5:2:1 ratio using the pressure
bomb system made up of polytetrafluoroethylene (PTFE) di-
gestion vessels. Further, digested samples were evaporated
using 1 mL HClO4 until the appearance of white fumes.
After complete cooling, the digested solution was dissolved
in 12 NHCl up to 25ml and filtered with ashless 100 mm (42)
Whatman filter. The prepared samples were ten times diluted
with Millipore distilled water (Synergy Water Purification
System, with a resistivity of 18.2 MΩ cm−1 at 25 °C with

Fig. 1 Description of the study area and sampling sites
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GIS and statistical analysis

For the grid-based contour map, geological map, and ex-
pression of spatial distribution of parameters, ArcGIS-10.3
software developed by ESRI was employed. It was applied
according to geographical system coordinates of the study
area and their measured data. This software is also applied
to estimate the distribution pattern of selected parameters
along the sampling sites using inverse distance weighted
(IDW) algorithm interpolation method. The Statistical
Package for Social Science (IBM-SPSS) V. (20) software
was applied to normalize the multifaceted data for the ap-
plication of multivariate techniques and further statistical
analysis. Principle component analysis (PCA) and linear
regression analysis (LRA) were carried out in this study
to evaluate the possible sources of heavy metals and their
compositional relationship. Furthermore, one-way
ANOVA test for variables was applied to check the spatial
difference in variance at 0.05 significant level using
Smirnov and Levene’s test.

Assessment of water and sediment contamination
through indices approach

In the last few years, much attention has been paid to applying
of geochemical and water quality indices based on arithmetic

calculation to evaluate the water and sediment characteristics
in rating scale (Wang et al. 2014; Herojeet et al. 2015; Islam et
al. 2015; Pandey et al. 2015). In this study, to evaluate the
degree of contamination and ecological risk by heavy metals,
various scientific indices have been carried out, which the
details are given below:

Heavy metal pollution index

Heavy metal pollution index (HPI) was calculated based on
the assigned weightage (Wi) and recommended standard (Si)
for each element to evaluate whether water quality is under
critical level (< 100) or above the critical level (> 100) using
the following equation given by Horton (1965):

HPI ¼ ∑n
i−1WiQi

∑n
i−1Wi

;Qi ¼ ∑
n

i−1

Mi−I ið Þ
Si−I ið Þ � 100 ð1Þ

Wi = unit weightage for each parameter proposed by
Horton (1965); Qi = sub-index of the ith parameter; Mi is the
average concentration of particular examined heavy metal; Si
= permissible limit; and Ii = desirable limits prescribed by
Bureau of Indian Standard (BIS 2003), respectively (Prasad
and Bose 2001).

Pollution index

Pollution index (PI) was used to characterize each element
into groups. PI is combined arithmetic calculation between
analyzed metal values and maximum and minimum desir-
able limits of each metal as prescribed by international and
national regulatory standard (Caeiro et al. 2005). The cal-
culation for PI has been done according to the following
equation:

PI ¼
Ci

Si

� �
maxþ Ci

Si

� �
min

� �

2
ð2Þ

where Ci is the concentration of each metal; Si (max) is the
maximum and Si (min) is the minimum desirable limits ac-
cording to national water quality standard. PI value can be
subdivided into five classes based on the obtained result such
as < 1 = no effect, 1 to 2 = slightly affected, 2 to 3 = moder-
ately affected, 3 to 5 = strongly affected, and > 5 = seriously
affected (Caeiro et al. 2005).

Enrichment factor

Enrichment factor (EF) was applied to determine the degree of
contamination in sediment samples and to understand the
sources of heavy metals for anthropogenic or geogenic origin.
In this study, Fe was chosen as a tracer to signify the origin of
heavy metals because it significantly affects the behavior of
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150 TOC ≤ 5 ppb) for the analysis. However, instrument cal-
ibration with standards, analysis of reagent blanks, and anal-
ysis of duplicate samples were performed to check the repro-
ducibility of instruments and quality assurance purposes. The
variations of results were consistent with the reference values
and less than 5% of the mean. Parameters of both water and
sediment like Fe, Mn, Cu, Zn, Pb, Ni, Cd, and Co were esti-
mated through differential pulse anodic stripping voltammeter
(DPASV) with standard addition techniques by Metrohm 797
VA Computrace (version 1.3.2.85, serial no. 22179).
Ion-selective electrode (ISE-Thermo Scientific) was used for
estimation of pH while organic carbon (OC) and organic mat-
ter (OM) was assessed through titrimetric method. To evaluate
the accuracy and precision value of the analyzed data, spike
samples and blanks have been carried out which ensure that
environmental samples have not been changed in the matrix.
In this study, citified reference materials (CRMs) of Fe
(HC894725; 999 ± 2 mg/L), Mn (HC888090; 1001 ± 2 mg/
L), Zn (HC766916; 1001 ± 2 mg/L), Pb (HC781141; 999 ±
2 mg/L), Cu (HC784121; 999 ± 2 mg/L), Cd (HC784320;
999 ± 2 mg/L), Ni (HC802075; 999 ± 2 mg/L), and Co
(HC895086; 999 ± 2 mg/L) were purchased from Merk
India approved by NIST. The results of each metal CRMwere
between 90 and 105% recovery with ± 5% SD which indicat-
ed that the accuracy and reproducibility of the analytical pro-
cedure were good.



metals in the aquatic environment. Arithmetic calculation for
EF has been done based on the following formula (Grygar et
al. 2014):

EF ¼ Cx=Feð Þsample

Cx=Feð Þbackground ð3Þ

where Cx = total metal concentration of each metal; Fe
(sample) = sample value of Fe; and Fe (background) = average
shale standard. The obtained EF value can be classified into
five classes such as < 1 = deficient tominimal, 1–5 =moderate
enrichment, 5–20 = significant, 20–40 = very high, and > 40 =
extremely high (Sakan et al. 2015).

Geoaccumulation index

Geoaccumulation index (Igeo) was proposed by Muller
(1979) to determine the metal accumulation and contamina-
tion level in sediments. Igeo values can be obtained using
following formula:

IGeo¼ log2
Cn

1:5� Bn
ð4Þ

where Cn is the heavy metal concentration determined in the
sediment, Bn is the background heavy metal concentration,
and 1.5 is the correction factor for metal lithologic variations
(Nethaji et al. 2016). Seven rating scales such as < 0 = unpol-
luted, < 1 = unpolluted to moderately polluted, < 2 = moder-
ately polluted, < 3 = moderately to highly polluted, < 4 =
highly polluted, < 5 = highly to extremely polluted, and ≥ 5
= extremely polluted (Ghrefat and Yusuf 2006).

Probable effect level/effect range median quotient index

Probable effect level (PEL)/effect range median (ERM) quo-
tient index is a unique method to determine the possible bio-
logical effect of various potential toxic elements in sediments
(Soliman et al. 2015). The values of PEL and ERM for each
metal have been listed in Table 1 which was proposed by
Long et al. (1995) and Smith et al. (1996), respectively. The
arithmetic calculation of mean quotients for heavy metals has
been computed using the following equation:

PEL=ERM ¼ ∑ Ci= ERM or PELð Þ½ �=n ð5Þ

where Ci is the concentration of element. ERM and PEL are
the guideline values for the element, and n is the number of
metals. In addition, PEL/ERM quotient index value can be
categorized into four classes such as < 0.1 = non-toxic, 0.1–
0.5 = slightly toxic, 0.5–1.5 = medium toxic, and > 1.5 =
highly toxic (Soliman et al. 2015).

Ecological risk index

Ecological risk index (RI) was proposed by Hakanson (1980)
to determine the degree of heavy metal pollution in sediment
based on toxicity and persistent level and their responses in the
environment using the following formula (Tian et al. 2017):

RI ¼ ∑n
i¼1E

i
r ð6Þ

Ei
r ¼ Ti

r � CF ð7Þ

CF ¼ Co

Cb
ð8Þ

where Er
i = ecological risk coefficient, CF = contamination

factor, and Ti
r = toxic response factor for Pb (5.0), Cd (30.0),

Cu (5.0), Zn (1.0), Ni (5.0), and Mn (1.0). Co is the observed
metal concentration, and Cb is the background value. RI rep-
resents four classes based on the obtained values such as RI <
150, low risk; > 150 RI < 300, moderate risk; > 300 RI < 600,
high risk; and RI ≥ 600, significantly high risk (Xu et al. 2008).

Results and discussion

The values of heavy metals in 60 water and sediment samples
collected from 30 sampling sites of Ajay River basin are
shown in Tables 1 and 2 respectively (supplementary infor-
mation). Descriptive statistics with minimum, maximum,
mean, and standard deviation of physicochemical characteris-
tics and elemental concentrations in the water and sediment
samples are listed in Table 1.

Physicochemical analysis of water and sediment
samples

The availability of heavy metals in sediment and water is
highly influenced by a range of pH values of studied samples
because it has potential to enhance the mobilization process
and increase the solubility of metals in the water (Wang et al.
2015). In this study, the value of pH in water and sediment
samples ranged from 6.89 to 7.72 and 7.6 to 8.4 with a mean
value of 7.24 ± 0.24 and 8.1 ± 0.2, respectively. Results
showed that majority of the samples from the study area are
moderately alkaline. The solubility of heavy metals generally
depends on the range of pH because it is likely to increase at
lower pH and decrease at higher pH values (Rieuwerts et al.
2015). To understand the interrelationship between pH and
metals, Ficklin diagram (Ficklin et al. 1992) and linear regres-
sion have been employed in this study. Ficklin diagram
(Fig. 2a) showed that all the samples are plotted within the
neutral or alkaline range with high metals which indicates that
river basin is contaminated through the abundance of anthro-
pogenic inputs. However, in the linear regression analysis
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(Fig. 2)b, pHwas not correlated with the majority of the heavy
metals except Fe (P = 0.0001), Cu (P = 0.019), Zn (P =
0.009), and Ni (P = 0.0048). This is mainly due to the neutral
to sub-alkaline environment of the river basin, which makes
the limited importance of pH for metal distribution
(Ungureanu et al. 2016). However, an alkaline condition also
enhanced the precipitation of Fe and is responsible for hy-
drous oxide coatings on other mineral surfaces that enhance
the co-precipitation of metals especially Cu and Mn in the
aquatic system (Sipos et al. 2014). Ni is a water-soluble trace
metal, and their solubility decreases at higher pH and in-
creases at lower pH values (Mellis et al. 2004).

The surface water and sediment samples of the study area
had low organic carbon (OC) and organic matter (OM) con-
tents, respectively. The OC and OM values in the study region
vary from 0.003 to 0.12mg/L and 6.9 to 8.7%with an average
value of 0.02 ± 0.02 mg/L and 7.7 ± 0.4%, respectively. A

lesser amount of organic content in the river basin reveals
minimal retention of heavy metals by organic complexes
and soil matrix. However, in the aquatic environment, heavy
metals can be associated with different organic complexes
such as clay, metal oxides, and organic matter (Shetye et al.
2009). In the regression analysis, the behavior of metals over
the OC does not signify the interrelationship between them-
selves whereas OM shows good correlation with Fe (P =
0.031), Mn (P = 0.048), Cu (P = 0.0001), and Cd (P = 0.013)
in this region (Fig. 2c). Fe and Mn have shown a relatively
high affinity for OM because both these are generally in-
volved in the oxidation process and play a major role in min-
eralization and photo-oxidation of organic materials (Reader
et al. 2014). Furthermore, in the aquatic environment, Cu and
Cd are generally associated with organic complexes such as
humic and fulvic acids that have high affinity to bind Cu and
Cd by the formation of strong organo-metallic complexes

Table 1 Statistical description of heavy metals and physicochemical
parameters of water and sediment samples with Min (minimum), Max
(maximum), SD (standard deviation), ERL (effect range low), ERM

(effect range medium), PEL (probable effect level), TEL (threshold
effect level), and NG (not given)

Heavy metals
in water
samples

Unit Min Max Average ± SD BIS (2003) WHO (2006) World
averagea

World
averageb

Analytical range
(μg/L to mg/L)

Fe mg/L 1.03 4.58 2.50 ± 0.97 0.3 0.3 0.67 0.055 0.1–100

Mn mg/L 0.07 0.84 0.39 ± 0.20 0.1 0.1 0.005 0.006 0.02–100

Cu mg/L 0.04 0.95 0.14 ± 0.20 0.05 0.05 0.005 0.001 0.01–50

Zn mg/L 0.34 1.59 0.90 ± 0.33 5 5 0.01 0.01 0.001–100

Ni mg/L 0.01 0.98 0.06 ± 0.12 0.02 0.07 0.0003 0.0003 0.02–1000

Pb mg/L 0.02 0.15 0.06 ± 0.03 0.01 0.01 0.0003 0.0002 0.2–50

Cd mg/L 0.01 0.10 0.04 ± 0.03 0.003 0.003 NG NG 0.01–10

Co mg/L 0.01 0.09 0.03 ± 0.02 0.01 0.004 0.0002 0.0002 0.05–100

pH – 6.89 7.72 7.24 ± 0.24 6.5–8.5 6.5–8.5 NG NG 0.1–13.9

OC mg/L 0.003 0.12 0.02 ± 0.02 NG NG NG NG –

Heavy metals
in sediment
samples

Unit Min Max Average ± SD Shale standardc ERLd ERMd PELe TELe

Fe mg/kg 31,400 48,900 39,577 ± 4040 47,200 NG NG NG NG

Mn mg/kg 78 112 95 ± 8.1 850 NG NG NG NG

Cu mg/kg 49 150 89 ± 23 45 34 270 197 37.3

Zn mg/kg 42 183 84 ± 26 95 150 410 315 123

Ni mg/kg 35 94 63 ± 16 68 20.9 51.6 36 18

Pb mg/kg 5.1 17 11 ± 2.2 20 46.7 208 91.3 35

Cd mg/kg 1.0 3.1 1.7 ± 0.4 0.3 1.2 9.6 3.53 0.596

Co mg/kg 5.1 16 10 ± 2.8 19 NG NG NG NG

pH – 7.6 8.4 8.1 ± 0.2 NG NG NG NG NG

OC % 6.9 8.7 7.7 ± 0.4 NG NG NG NG NG

aBryan (1976)
b Salomons and Forstner (1984)
c Turekian and Wedepohl (1961)
d Long et al. (1995)
e Smith et al. (1996)
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(Rieuwerts et al. 2015). Therefore, such relationship between
OM and Cu and Cd might be possible in the river basin which
makes a good correlation between them. However, Pb, Co, Ni,
and Zn show a poor affinity for organic matter because of
higher deposition patterns of the river basin, resulting in min-
imal retention of these elements by organic complexes
(Rajmohan et al. 2014).

Heavy metal distributions in water and sediment
samples

In the aquatic environment, sediment serves as a sink of metals
because it is possible for the metals to remain in the sediment
with numerous organic complexes. However, a significant
amount of metals can be released back to the water column

under favorable physicochemical conditions and form a detri-
mental condition of water quality (Vu et al. 2017). In this study,
dissolved metal concentrations were significantly greater than
the reported average concentrations for world rivers (Bryan
1976; Salomons and Forstner 1984). Similarly, the majority of
the metals like Fe (1.03–4.58 mg/L), Mn (0.07–0.84 mg/L), Cu
(0.04–0.95 mg/L), Pb (0.02–0.15 mg/L), Cd (0.01–0.1 mg/L),
Ni (0.01–0.98 mg/L), and Co (0.01–0.09 mg/L) concentration
are above the permissible limits of drinking water guidelines
(Fig. 4, supplementary information) given by the Bureau
Indian Standard (BIS 2003) and World Health Organization
(WHO 2006). Statistical analysis of variable (ANOVA) at the
0.05 significant level suggests that all sites are significantly dif-
ferent based on the input variables. In this study, all the samples
(n = 60) have high Fe and Mn concentration. Lithology of the
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Fig. 2 Ficklin diagram for a interrelationship of pHwith PTEs load, b linear regression analysis of PTEs with pH values, and c linear regression analysis
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Ajay basin characterizes with alluvial and lateritic soil terrain
which are the important sources of both these elements in this
region. In the upper basin, significant loads of industrial and
urban effluent and other sub-surface activities like mineral ex-
ploration and metal plating industries may also contribute a
significant amount of Fe and Mn. Furthermore, the concentra-
tion of Cu was high in all the samples as compared to regulatory
standard. The higher concentrations of Cu were observed espe-
cially in the middle and lower parts of the river basin. Higher
concentration of Cu in this region is linked to the anthropogenic
source because large numbers of villagers manufacture copper
buckets without proper methods and management, which may
cause dispersion of Cu from its source and enter into the river
basin. In the majority of the samples, Ni and Co were observed
very high especially in the middle and lower parts of the river
basin. Higher concentration of Ni and Co along both these re-
gions represents a mixture of lithogenic and anthropogenic
sources. Generally, both these elements are much more abun-
dant in the lateritic soil which is a common lithogenic source
along these sites. In addition, large agriculture intensive area
associated with chemical fertilizers and pesticides is also con-
tributing a significant amount of Ni and Co along these sites.
Similarly, higher concentrations of Cd and Pb in the study area
are considered as of anthropogenic origin because refusal evi-
dence is available from geogenic sources. Therefore, a higher
concentration of Pb and Cd in the water could be derived from
effluent-carrying drainage of domestic and industrial centers,
mining processingmachineries, and disposal discarded electron-
ic waste.

Generally, heavy metals are quickly deposited and strongly
associated with various sediment materials under favorable
condition such as pH, temperature, and resuspension (Vu et
al. 2017). Therefore, it is important to evaluate the heavy metal
concentrations in the sediment samples. In this study, the con-
centrations of Fe (31400–48,900 mg/Kg), Mn (78–112 mg/
Kg), Pb (5–17 mg/Kg), and Co (5–16 mg/Kg) in the sediment
samples were found below the shale standard values. However,
the concentration of Cu (49–150 mg/Kg), Ni (35–94 mg/Kg),
and Cd (1–3.1 mg/Kg) in all samples were found above the
shale standard values (Fig. 5, supplementary information).
Similarly, mean concentrations of Cu (89 ± 23 mg/Kg), Ni
(63 ± 16 mg/Kg), and Cd (1.7 ± 0.4 mg/Kg) were observed
very high as compared to effect range low (ERL) and threshold
effect level (TEL) value. The results suggest that Cu, Cd, andNi
are the most widespread sediment contaminants in the Ajay
River basin which caused the unfavorable condition for aquatic
system. ANOVA at 0.05 significant level suggests that all sites
are significantly different based on the input variables. The
concentrations of Cu, Cd, and Ni in all samples (n = 60) were
found significantly high as compared to shale standard, ERL,
and TEL value with high standard deviation which indicates the
river gets a significant amount of anthropogenic wastes associ-
ated with toxic chemicals and various potential toxic elements

from urban and industrial zones.Most of the industrialized zone
in the proximity of Ajay River is under Asansol subdivision and
Durgapur subdivision which have a series of large and medium
industries like Indian Iron and Steel Company at Kulti,
Chittaranjan Locomotive at Chittaranjan, Hindustan Cables
Ltd. at Rupnarayanpur, and cottage industry at Katwa.
Furthermore, various iron as well as copper utensils are made
by villagers including gold and silver smithy, lime making,
leather work, and oil crushing.

Compositional analysis of heavy metals in water
and sediment

Linear regression analysis

Principle component analysis

To take environmental measures subjected to heavy metal con-
tamination in aquatic system, it is important to evaluate the
critical parameters and sources which indicate the variation in
sediment and water quality. In this study, principal component
analysis (PCA) was also carried out to evaluate important pa-
rameters in the whole dataset and their possible sources which
will be helpful to reduce insignificant parameters from monitor-
ing stations (Shreshtha and Kazama 2007; Kumar et al. 2018).
However, two principal components have been developed for
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Linear regression analysis (LRA) was adopted in this study to
determine inter-elemental relationships among different metals
in water (Fig. 3a) and sediment samples (Fig. 3b). The nature of
heavy metals in the river water and sediment could be effec-
tively explained by regression analysis. To evaluate the
inter-elemental relationships, Fe was used as a tracer because
it significantly affects the behavior of metals in the aquatic
system (Sipos et al. 2014). In this study, Fe has shown good
relation with Mn (P = 0.005), Zn (P = 0.005), Cu (P = 0.032),
and Pb (P = 0.0001) in water samples. Similarly, in the sedi-
ment samples, Fe has a strong linear relationship with Cu (P =
0.0001), Zn (P = 0.0001), and Cd (P = 0.001). The strong rela-
tion between Fe and Mn signifies the weathering of minerals
like ferromagnesian, manganite, and ilmenite in this region. In
addition, such relation might be due to the presence of lateritic
soil in the study area which is a common lithogenic source of
both elements. Furthermore, the remarkable relationship of Cu,
Cd, and Pb with Fe signifies the proof of anthropogenic con-
tribution because less evidence of geogenic sources of these
elements is available in this area. Partial treated and untreated
sewage as well as agricultural wastes are a common source of
these contaminants in this area. However, mineral exploration,
mining of coal, and gradual development of several small and
large-scale industries in the proximity of river basin without
proper management plan may also be responsible for the
enhancement of thess contaminants in the river basin.



water and sediment samples separately, which explain 45 and
57% of the cumulative variance, respectively.

The first component (D1) for water samples, explains 25% of
the total variance (Fig. 4a), contains strong positive loadings of
Cu, Zn, and Pb; moderate loading of Ni; and negative loading of
Mn. D1 signifies that the water of the basin directly influenced
by anthropogenic sources such as urban and industrial effluents
as well as agricultural runoff which enhances the concentration
of Cu, Zn, Pb, and Ni. In addition, negative loading ofMn in D1
signifies that the lateritic soil which contains significant amount
of Mn plays an important role in the availability of this element
in the study area. Similarly, D2 explaining 20% of the total
variance that dominantly contains Fe and Pb suggests an impor-
tant role of Fe in the dissolution and distribution of Pb in the
river basin. In the aquatic system, the mobility of Pb is

comparatively very low, but it has similar affinity like Fe to
the ligands (Dong et al. 2000). Therefore, because of that, both
these parameters show similar distribution pattern in the river
basin. The negative loading of pH indicated that it has aminimal
role in heavy metal distribution in the Ajay River basin.

Furthermore, first principle component (D1) of sediment
samples (Fig. 4b) was obtained to explain 36% of the total
variance. In the D1, strong positive loadings of Ni, Pb, and Co
with moderate loadings of Fe and Mn signify the evidence of
anthropogenic influences from paint industries, cement and
chemical industries, glass-producing units, and thermal power
plants. Similarly, moderate loadings of Fe and Mn in D1 reveal
that both these elements are mainly derived from lithogenic
origin because weathering of ferromagnesian, manganite, and
ilmenite as well as the presence of lateritic terrain is a common
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source of both elements in this area. Similarly, D2 explains that
21% of the total variance dominantly contains Cu and OM. The
result suggests that OM plays an important role in the dissolu-
tion and distribution of Cu in the study area. However, OM is an
important physicochemical characteristic which plays a major
role in the mineralization and mobilization of Cu elements in
aquatic system, because Cu is well known to bind with natural
organic matter and served as a reducing agent during minerali-
zation process (Karlsson et al. 2006).

Integrated approach of pollution indices

Water quality

Pollution evaluation indices such as heavymetal pollution index
(HPI) and pollution index (PI) were computed individually to
indicate the spatial variation of heavy metals and their contam-
ination level in the Ajay River basin. HPI and PI were applied
based on the arithmetic mean calculation of selected variables
for the estimation of heavy metal contamination in water and
their critical level (Fig. 5). In this study, HPI varied from 78 to

270 which indicates that majority of the sampling sites exceeded
the critical value (> 100). A higher value of HPI was observed in
the upper and middle parts of the river basin followed by lower
basin. Similarly, PI identifies that the river water is contaminated
mainly due to the high concentration of Cd, Pb, and Ni (Fig. 5).
In addition, PI value for some samples showed high Cu concen-
tration. The higher concentrations of these elements especially
Cd, Cu, Pb, and Ni in the river basin is the proof of anthropo-
genic influences from various sources such as industrial, urban,
and agricultural waste as well as mining activities, because river
water received high amount of polluted sewage and effluents
associated with various toxic compounds from urban industrial
and centers through numerous drains. There are two important
coal-bearing areas such as Raniganj and Andal present in the
proximity of the Ajay River basin which spread over
443.50 km2 of area. Mining operations have the potential to
affect surface water quality and enhanced the concentrations
and loads of dissolved materials because it contains a variety
of contaminants such as heavy metals and metalloids.
Consequently, the river might have served as an agent for the
dispersion of various contaminants from its source area and

Fig. 5 Spatial distributions of pollution index (PI) and heavy metal pollution index (HPI) values along the sampling sites
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responsible for the high magnitude of heavy metals throughout
the river basin. These contaminants in water bodies are consid-
ered unsafe and undesirable for human health and high health
risk for the regional population. We also assumed that the grad-
ual development of industrialization and urbanization and min-
ing activities in the proximity of river basin without proper man-
agement plan could magnify heavy metal concentrations in near
future.

Sediment quality

To examine the lithogenic heavy metal contamination level in
the river sediment, enrichment factor (EF) and geoaccumulation
index (Igeo) have been carried out in this study (Fig. 6). EF
value of particular element close to ~ 1 signifies that the element
is mainly derived from geogenic sources (Chiarenzelli et al.
2001). Calculated EF values were always greater than 1.0 for
the majority of elements except for Mn, suggesting a significant
anthropogenic impact on heavy metals level in the river. The
highest EF values were observed for Cd at all sampling sites as
compared to other elements. EF value of Cu and Ni shows

moderate enrichment at all sites. Similarly, according to the
Igeo values, the river basin is extremely polluted which is due
to the high concentration Cd followed by Cu and Ni (Fig. 5b).
The obtained values of EF and Igeo indicated that the sediment
of the river basin is highly enriched with Cd, Cu, and Ni.
Furthermore, moderate concentration of Pb in sediment is con-
sidered as an anthropogenic influence because Pb from the nat-
ural source appears to be very low as compared to manmade
activities. High to moderate enrichment of these elements in the
sediment signifies the evidence of anthropogenic contribution
probably frommining activities, industrial and urban waste, and
agricultural runoff. However, Fe, Co, and Zn also show moder-
ate concentrations in the study area which mainly due to the
mobilization and mineralization of iron sulfides, pyrite, and
magnetite in this area (Silva et al. 2011).

Comprehensive potential risk assessment

To confirm the risks of heavy metals, we further calculated the
potential ecological risk index (RI) and probable effect level
(PEL)/effect range median (ERM) quotient index of sediment

Fig. 6 Spatial distributions of enrichment ration (ER) and geoaccumulation index (Igeo) values along the sampling sites
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samples (Fig. 7). The calculated RI value ranged from 115.85 to
329.93 indicating that the degrees of ecological risk are varied
from moderate to high in this area. The high magnitudes of
ecological risks have been observed in the upper part of the
basin followed by the middle and lower parts of the basin.
Similarly, PEL/ERM quotient index value ranges from 0.43 to
0.81 which shows that the ecological risk varies from slightly
toxic to medium toxic in the study area (9b). The higher values
of both indices were found in the upper, middle, and lower parts
of the basin area. Several industries such as thermal power
plants, locomotive industries and coal washeries, and
manufacturing companies are established in urban centers like
Jamtara, Chittranjan, Raniganj, and Andal. Consequently, river
received a significant amount of potentially toxic elements from
these areas through various outlets and plays as a carrier for
dispersion of those contaminants throughout the river basin. It
is interesting that majority of sampling sites have high RI and
PEL/ERM quotient index values as compared to non-toxic
range (< 150 and < 0.1) of both indices. However, overall results
suggest that the high magnitude of Cd, Cu, and Ni in the study
area poses a strong potential ecological risk for aquatic environ-
ment. In this study, the experiments like acid volatile sulfides
(AVS) and simultaneously extracted metals (SEM) for the sed-
iment samples were not conducted. Both these experiments are
essential to predict the accurate metal toxicity to the ecology and

local population. Based on the above considerations, this study
also believed that implementation of such experiments would be
helpful to trace the bioavailability of the Ajay River sediment
contaminants. Therefore, these heavy metals are the key ele-
ments to be further studied which will be helpful to take appro-
priate measures for the polluted area of Ajay River basin.

Conclusion

This study explains the Ajay River basin characteristics based
on the different physicochemical parameters and heavy metal
concentrations in river water and sediment. In this study, var-
ious sources, pathways, and inter-element relationships of
heavy metals have been identified. The lithological properties,
weathering of mineral, agricultural waste, and urban and in-
dustrial effluents have been identified as major responsible
factors that control the heavy metal concentration in the river
basin. Based on the mean concentration of metals, the water
and sediments of the river basin are highly contaminated es-
pecially by Cu, Cd, Pb, and Ni. It also revealed that Fe and
OM significantly affect the behavior of heavy metals in the
basin area. The majority of heavy metals such as Cu, Cd, Pb,
and Ni are mainly derived from anthropogenic origin and are
most of the widespread contaminants which pose moderate to

Fig. 7 Spatial distributions of ecological risk index (RI) and probable effect level (PEL)/effect range median (ERM) quotient index values along the
sampling sites
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high potential ecological risk in the Ajay River basin.
However, under this study, only the total metal concentrations
have been evaluated to investigate the behavior of metals and
their exposure to the ecological habitats. Based on these re-
sults, it would be very interesting in the future tests to perform
a sequential experiment to estimate the exact metal bioavail-
ability to the river aquatic organisms. Furthermore, ecological
surveys of the river basin would be valuable to see how the
contamination gradient has influenced ecosystem change.
Additionally, this would also provide insights into the types
of organisms which inhabit in this environment and what ef-
fect they might have on contaminant chemistry and exposure.
Thus, to improve the current situation of Ajay River basin,
adaptability measures should be introduced for ecological res-
toration. However, this study will be helpful to land use man-
agement, environmental risk assessment, and river basin man-
agement. In addition, integrated approach of geostatistical
techniques, indices, and risk assessment should be considered
for river basin management at a global standard.
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