
RESEARCH ARTICLE

Thymoquinone and diallyl sulfide protect against fipronil-induced
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Abstract
Fipronil (FPN) is a phenylpyrazole insecticide, widely used for agricultural and veterinary activities. Early reports indicated that
FIP organ toxicity is primarily mediated by the induction of oxidative stress. Both thymoquinone (TQ) and diallyl sulfide (DAS)
are natural antioxidants with established health benefits. This study investigated the potential ameliorative effects of DAS and TQ
against FPN-induced toxicity in rats. Thirty-two male Wistar rats (150–180 g) were randomized into four treatment groups,
receiving (I) saline, (II) FPN (10 mg/kg bw), (III) FPN with DAS (200 mg/kg bw), and (IV) FPN with TQ (10 mg/kg bw). All
treatments were administered once daily for 28 days. The results showed that compared to the control rats, FPN-treated rats had
significantly increased (p < 0.05) serum levels of uric acid, urea, creatinine, cholesterol, aspartate transferase, alanine transferase,
alkaline phosphatase, lactate dehydrogenase, and γ-glutamyl transferase. Moreover, FPN significantly reduced (p < 0.05) the
serum levels of total proteins, albumin, and triglycerides. In addition, compared with the control group, FPN-treated rats had
significantly elevated (p < 0.05) malondialdehyde and nitric oxide levels, as well as significantly reduced glutathione concen-
tration and activities of glutathione peroxidase, superoxide dismutase, and catalase enzymes in the hepatic, renal, and brain
tissues. Cotreatment with DAS or TQ significantly ameliorated (p < 0.05) the FPN-induced alterations in all the previously
mentioned parameters with more frequent restoration of normal control ranges in the TQ group. In conclusion, both DAS and
TQ alleviated the oxidative injury of FPN, probably by enhancing tissue antioxidant defenses.
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Introduction

Fipronil (FPN) is a phenylpyrazole insecticide, widely used
for agricultural and veterinary activities (Tingle et al. 2003). It
acts by blocking the GABA-regulated chloride channels,
causing central nervous system (CNS) depression and death
in pests (Das et al. 2006). Toxicity may occur in humans due
to inappropriate use or exceeding the dose, recommended by
the manufacturer (Anadon and Gupta 2012). Several studies
have reported that FPN induces oxidative stress and cellular
DNA damage in rat pheochromocytoma cell culture (Lassiter
et al. 2009), female rats (Leghait et al. 2009), Japanese quails
(Ali et al. 2016), and tadpoles (Gripp et al. 2017). In addition,
FPN disrupts the mitochondrial oxidative phosphorylation,
leading to ATP exhaustion, glycolysis activation, and lactate
accumulation (Vidau et al. 2011). This may later activate en-
zymes, involved in the apoptotic process, such as caspases 3
and 7 (Das et al. 2006).

Thymoquinone (TQ) is a safe phytochemical compound
(Fig. 1), extracted from the seeds of Nigella sativa L.
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(Darakhshan et al. 2015). Animal studies have shown the
protective efficacy of TQ against xenobiotics-induced toxicity
by normalizing the reduced glutathione (GSH) tissue concen-
trations and the activities of endogenous antioxidant enzymes
(Ince et al. 2012; Ince et al. 2013). Other reports have demon-
strated the hepatoprotective effects of TQ against carbon tet-
rachloride (Nagi et al. 1999) and cyclophosphamide (Alenzi et
al. 2010). Moreover, TQ has been shown to protect the renal
functions against cisplatin, ifosfamide, and mercuric chloride
toxicities by minimizing the alterations in renal GSH concen-
tration and lipid peroxidation (Badary 1999; Badary et al.
1997; Fouda et al. 2008).

Another interesting phytochemical compound is diallyl
sulfide (DAS), an essential organosulfur component of garlic
oil (Fig. 1) (Tamaki and Sonoki 1999) with established health
benefits (Banerjee et al. 2003). Several animal studies have
reported the hepatoprotective effects of DAS against aflatoxin
B (Sheen et al. 2001) and thallium acetate (Abdel-Daim and
Abdou 2015). Moreover, DAS has shown promising results in
neuroprotection against ethanol (Huentelman et al. 1999) and
ischemia-induced neuronal injuries (Lin et al. 2012). Further,
it has well-documented anti-hyperlipidemic, anti-hyperten-
sive, anti-diabetic, and anti-thrombotic activities
(Jakubowski 2003; Sato and Miyata 2000).

To our knowledge, no studies have been published on the
chemoprotective potency of DAS and TQ against FPN toxic-
ity. Therefore, our objective was to investigate the antioxidant
and cytoprotective effects of DAS and TQ against FPN-
induced oxidative stress in a rat model.

Materials and methods

Chemicals and reagents

Fipronil (5-amino-1-(2,6-dichloro-α,α,α-triflouro-p-tolyl)-
4-[(triflouromethyl)sulfinyl]pyrazole-3-carbonitrile) was pur-
chased as a commercial product (Fipromex 20% SC) from
MAC-GmbH (Sigmarszell, Germany). Thymoquinone (CAS
Number 490–91-5; molecular weight 164.20 g/mol; purity ≥

98.5%) and DAS (CAS Number 2179–57-9; molecular
weight 146.27 g/mol; purity 80%) were obtained from
Sigma Chemical Co. (St. Louis, MO, USA). Biochemical kits
were purchased from Biodiagnostics Co. (Cairo, Egypt) ex-
cept for lactate dehydrogenase (LDH) kits, which were pro-
vided by Randox Laboratories Ltd., UK. Other chemicals in
this experiment were of analytical grade.

Animals

Thirty-two healthy male Wistar rats, weighing between 150
and 180 g, were housed in wire-mesh cages under controlled
temperature (25 ± 2 °C) and a 12 h light/dark cycle. Rats had
free access to a balanced rat chow and water and were accli-
matized for 2 weeks prior to the experiment to restore normal
behavior and growth. All animal investigations were per-
formed as per the institutional and national rules for using
animals in scientific research and were affirmed by the local
ethics committee (Approval No. 201617).

Experimental design

Rats were divided into four groups (n = 8/group). Group (I)
animals were used as a control and received oral physiological
saline. Group (II) received oral FPN at a dose of 10 mg/kg bw
(Badgujar et al. 2015). Groups (III and IV) received oral FPN
at the same previous dose plus DAS (200 mg/kg bw)
(Szutowski et al. 2002) or TQ (10 mg/kg bw) (Radad et al.
2014). All treatments were given once daily for 28 days.

Serum collection and tissue preparation

Twenty-four hours after the last FPN dose, individual blood
samples were collected from rats under sodium pentobarbital
anesthesia and the rats were then sacrificed by decapitation.
The resulting serum samples were left to clot and were then
centrifuged at 5000 rpm for 10 min and stored at − 20 °C until
the biochemical parameters were assessed. Then, the liver,
kidney, and brain tissues were homogenized in 10% (w/v)
homogenizing buffer (0.1 M phosphate buffer, pH 7.4 +
150 mM KCl) and were later centrifuged at 9000 r/min at
4 °C for 20 min.

Lipid peroxidation and antioxidant assays

The concentration of the lipid peroxidation biomarker
malondialdehyde (MDA) was assessed in the hepatic, renal,
and brain tissues according to Mihara and Uchiyama (1978),
while the nitric oxide (NO) concentration was measured ac-
cording to Ridnour et al. (2000). We used the methods de-
scribed by Beutler et al. (1963) to measure the tissue level of
GSH, while the enzymatic activities of superoxide dismutase
(SOD), catalase (CAT), and glutathione peroxidase (GPx)

FipronilDiallyl Sulfide

Thymoquinone

Fig. 1 Chemical structure of fipronil, diallyl sulfide, and thymoquinone
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were measured according to Nishikimi et al. (1972), Aebi
(1984), and Paglia and Valentine (1967), respectively.

Serum biochemical assay

Serum liver and renal injury biomarkers were measured ac-
cording to the manufacturer’s protocol. Serum alanine trans-
ferase (ALT) and aspartate transferase (AST) levels were eval-
uated according to Reitman and Frankel (1957), while alkaline
phosphatase (ALP) and γ-glutamyl transpeptidase (GGT) se-
rum levels were measured according to Tietz et al. (1983) and
Vázquez-Medina et al. (2011), respectively. Moreover, serum
cholesterol and triglycerides were measured according to
Allain et al. (1974), Richmond (1973), and Winartasaputra
et al. (1980), respectively. Further, serum total proteins and
albumin were evaluated following the methods of Lowry et al.
(1951) and Hinton et al. (1990), respectively. In addition, se-
rum lactate dehydrogenase (LDH) levels were determined ac-
cording to Babson and Babson (1973), while serum creati-
nine, urea, and uric acid were measured according to Larsen
(1972), Coulombe and Favreau (1963), and Whitehead et al.
(1991), respectively.

Data analysis

All statistical analyses were performed using SPSS software
(version 17.0 for Windows). All data were expressed as the
mean ± standard deviation (SD) of the mean.We used the one-
way ANOVA followed by Tukey’s multiple range tests to
evaluate the significance of differences between means.
When the probability value was lower than 0.05, the differ-
ence was considered statistically significant.

Results

Protective effects of DAS and TQ against FPN-induced
serum biochemical alterations

Compared to the control rats, FIP-intoxicated rats showed
significantly elevated (p < 0.05) serum concentrations of he-
patic (ALT, AST, ALP, and GGT) and renal (urea, creatinine,
and uric acid) injury biomarkers, as well as elevated serum
LDH and cholesterol concentrations in comparison to control
rats. Moreover, FPN induced significant reductions (p < 0.05)
in serum albumin, total proteins, and triglycerides levels.
Cotreatment of FPN-intoxicated rats with DAS or TQ signif-
icantly ameliorated all serum biochemical changes with more
frequent restoration of normal control ranges in the TQ group
(Table 1).

Antioxidant activity in the hepatic tissue

Fipronil-treated rats showed significant drops (p < 0.05) in
hepatic tissue GSH concentrations (by 59.4%) and activities
of GPx (by 56%), SOD (by 60.6%), and CAT (by 58%) en-
zymes, compared to the control rats. Concomitant treatment
by DAS or TQ significantly increased GSH concentration (by
55 and 106%, respectively) and the activities of the aforemen-
tioned antioxidant enzymes (GPx by 62 and 117%, SOD by
105 and 145%, and CAT by 75 and 114%, respectively) in the
liver, compared to FPN-treated rats. In addition, the hepatic
tissue concentrations of MDA and NO were significantly in-
creased (p < 0.05) following FPN treatment (by 163 and 99%,
respectively), compared to control rats. These elevations were
significantly ameliorated by joint treatment with DAS (MDA
by 48% and NO by 39%) or TQ (MDA by 48.4% and NO by
48.3%), restoring the normal control levels (Fig. 2).

Antioxidant activity in the renal tissue

In comparison to the control rats, FIP intoxication caused
significant elevations (p < 0.05) in renal tissue MDA (by
93%) and NO (by 83%) concentrations, as well as significant
decreases in renal tissue GSH concentration (by 47%) and
activities of GPx (by 55.5%), SOD (by 53.4%), and CAT
(by 62.5%) enzymes. However, treatment of FPN-
intoxicated rats by DAS or TQ significantly decreased MDA
(by 34.4 and 45.4%, respectively) and NO (by 36.6 and 43%,
respectively) concentrations, while it significantly increased
GSH concentration (by 53 and 77%, respectively) and activ-
ities of GPx (by 52 and 99%, respectively), SOD (by 60.7 and
94.6%, respectively), and CAT (by 96 and 144%, respective-
ly) in the renal tissue, restoring the normal ranges of these
parameters (Fig. 3).

Antioxidant activity in the brain tissue

Compared to the control rats, we observed significant in-
creases (p < 0.05) in MDA (by 104%) and NO (by 119%)
concentrations, as well as significant decreases in GSH con-
centration (by 45%) and activities of GPx (by 47.4%), SOD
(by 57%), and CAT (by 65%) enzymes in the brain tissue
following FPN administration. On the other hand, treatment
of FPN intoxication by DAS or TQ significantly reduced the
brain tissue concentrations of MDA (by 34.7 and 49%, re-
spectively) and NO (by 27 and 46.6%, respectively) and
increased its GSH concentration (by 43 and 60%, respective-
ly) and activities of GPx (by 46 and 76%, respectively), SOD
(by 98 and 125%, respectively), and CAT (by 109 and 151%,
respectively) enzymes in comparison to normal control
levels (Fig. 4).
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Table 1 The biochemical effects
of diallyl sulfide (DAS 200mg/kg
bw once daily for 28 days orally)
and thymoquinone (TQ 10 mg/kg
bw once daily for 28 days orally)
during fipronil treatment (10 mg/
kg bw for 28 days orally) on
serum hepatorenal function
biomarkers

Control Fipronil Fipronil-DAS Fipronil-TQ

AST (U/mL) 64.46 ± 10.23a 129.58 ± 41.86b 79.88 ± 9.65a 67.90 ± 10.65a

ALT (U/mL) 34.37 ± 4.13a 71.06 ± 10.52b 48.26 ± 7.93c 38.51 ± 6.7ac

ALP (U/L) 78.7 ± 11.11a 146.59 ± 36.5b 101.55 ± 7.59a 83.55 ± 7.59a

LDH (U/L) 222.74 ± 38.2a 426.22 ± 48.4b 348.97 ± 27.3c 237.97 ± 27.3a

GGT (U/L) 2.46 ± 0.55a 4.49 ± 0.93b 3.08 ± 0.53a 2.63 ± 0.78a

Total Proteins (g/dL) 7.93 ± 0.83a 5.57 ± 0.48b 7.02 ± 0.48c 7.69 ± 0.36ac

Albumin (g/dL) 4.47 ± 0.53a 3.43 ± 0.32b 4.22 ± 0.71a 4.33 ± 0.46a

Triglycerides (mg/dL) 131.40 ± 23.9a 84.74 ± 7.92b 112.70 ± 9.40a 123.82 ± 9.56a

Cholesterol (mg/dL) 71.34 ± 14.75a 138.72 ± 15.6b 104.95 ± 10.98c 83.68 ± 11.65a

Uric acid (mg/dL) 24.64 ± 6.48a 68.32 ± 12.17b 44.01 ± 6.59c 26.26 ± 4.76a

Urea (mg/dL) 21.05 ± 4.09a 62.47 ± 15.04b 41.11 ± 5.53c 33.55 ± 6.71c

Creatinine (mg %) 0.56 ± 0.25a 3.41 ± 0.69b 1.67 ± 0.45c 0.79 ± 0.35a

Means with different superscripts indicate significant differences (p < 0.05) between groups within the same row.
Values are presented as means ± SD (n = 8)

ALT alanine transferase, AST aspartate transferase, ALP alkaline phosphatase, LDH lactate dehydrogenase, GGT
γ-glutamyl transpeptidase, TQ thymoquinone, DAS diallyl sulfide
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Fig. 2 The protective effects of diallyl sulfide (200 mg/kg bw) and
thymoquinone (10 mg/kg bw) against fipronil (10 mg/kg bw) on
hepatic tissue malondialdehyde, nitric oxide, and antioxidant
biomarkers (n = 8). MDA malondialdehyde, NO nitric oxide, GSH

reduced glutathione, GPx glutathione peroxidase, SOD superoxide
dismutase, CAT catalase, TQ thymoquinone, DAS diallyl sulfide.
Columns (means ± SD) with different superscripts indicate significant
differences (p < 0.05) between groups
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Discussion

Our results showed that FPN treatment induced oxidative in-
juries in the liver, kidney, and brain tissues of male rats and
promoted the intracellular lipid peroxidation (as evidenced by
increased tissue MDA concentrations) and thereby disturbing
the cellular membrane function in the examined tissues
(Badgujar et al. 2015). Antioxidant enzymes, such as SOD,
CAT, and GPx, are recognized as the first line of defense for
cellular macromolecules against oxidative breakdown. In ac-
cordance with previous studies (Gill and Dumka 2016; Ki et
al. 2012), FPN significantly reduced GSH concentration and
the activities of antioxidant enzymes in animal tissues. The
malfunction of the cellular antioxidant machinery increases
the cellular sensitivity to the detrimental effects of free radi-
cals, whose production is augmented by FPN (Mohamed et al.
2004).

The liver and kidneys play a vital role in the biotransforma-
tion of insecticides, resulting in chemically-induced hepatorenal
injuries and disturbances in the oxidant-antioxidant system
(Mansour and Mossa 2010). The elevations in AST, ALT,

ALP, and GGT following FPN treatment in our study can be
attributed to hepatocellular membrane damage and outflow of
these enzymes into the blood (Goel et al. 2005). Moreover, De
Oliveira and colleagues showed that FPN induces swelling and
hypertrophy of hepatocytes, causing bile duct obstruction and
elevation of serum ALP and GGT levels (De Oliveira et al.
2012).

The increases in serum creatinine, uric acid, and urea may
be due to degradation of purines and pyrimidines (DNA
breakdown) and the deterioration of renal function in excret-
ing catabolic by-products (Hovind et al. 2009; Sun et al.
2013). In addition, we observed significant reductions in se-
rum total proteins, albumin, and triglycerides, as well as a
significant elevation in serum cholesterol levels. This may
be attributed to the FPN-induced hepatic injury.

Our results revealed that DAS and TQ ameliorated the
oxidative and biochemical alterations, induced by FPN. Our
proposedmechanism for such effects in this study is the ability
of both compounds to ameliorate lipid peroxidation and en-
hance the cellular antioxidant defenses. Our data are in agree-
ment with the findings of former studies on the antioxidant/
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Fig. 3 The protective effects of diallyl sulfide (200 mg/kg bw) and
thymoquinone (10 mg/kg bw) against fipronil (10 mg/kg bw) on renal
tissue malondialdehyde, nitric oxide, and antioxidant biomarkers (n = 8).
MDAmalondialdehyde, NO nitric oxide, GSH reduced glutathione, GPx

glutathione peroxidase, SOD superoxide dismutase, CAT catalase, TQ
thymoquinone, DAS diallyl sulfide. Columns (means ± SD) with
different superscripts indicate significant differences (p < 0.05) between
groups
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anti-inflammatory effects of DAS (Lawal and Ellis 2011; Nasr
and Saleh 2014) and TQ (Fouda et al. 2008; Oguz et al. 2012;
Woo et al. 2012).

The literature suggests the following antioxidant and
cytoprotective mechanisms for DAS: (1) suppressing the en-
zymatic activity of cytochrome P450-2E1 and thereby reduc-
ing the generation of reactive oxygen species (Khanum et al.
2004) and (2) inducing the mRNA expression of the nuclear
factor (erythroid-derived 2)-like 2 [Nrf2] and heme-
oxygenase 1 enzyme (Gong et al. 2004). Similarly, former
studies have concluded that TQ can (1) directly scavenge for
superoxide (O2

−) and hydroxyl radicals (OH·) (Badary et al.
2003; Kruk et al. 2000), (2) suppress mRNA expression of the
inducible nitric oxide synthase (iNOS) enzyme (El-
Mahmoudy et al. 2002), and (3) enhance the expression of
antioxidant enzymes’ genes, such as CAT and glutathione-S-
transferase in the liver (Ismail et al. 2010).

Considering the antioxidant effects of both agents in the
brain tissue (shown in our study), several studies have report-
ed the neuroprotective effects of TQ against irradiation

(Ahlatci et al. 2014), toluene exposure (Kanter 2008), and
allergic encephalitis (Mohamed et al. 2003). Similarly, other
studies have reported that DAS can protect the neuronal cells
against xenobiotics (Huentelman et al. 1999) and transient
focal ischemia (Lin et al. 2012). Along with the established
connection between pesticides exposure and neurodegenera-
tion (Ahmed et al. 2017), these findings make DAS and TQ
promising candidates for experimental research on neuropro-
tection (Al-Majed et al. 2006).

Of note, the antioxidant and cytoprotective effects against
FPN were consistently higher in the TQ group than those in
the DAS group (as evidenced by the more frequent restoration
of normal control levels after FPN intoxication in the TQ
group than in the DAS group). This may be related to the
potent direct scavenging activity of TQ. Moreover, the selec-
tion of the DAS dose in this study was based on the work by
Szutowski et al. (Szutowski et al. 2002); therefore, increasing
the dose of DAS could achieve better results.

In conclusion, treatment with TQ or DAS ameliorated the
FPN-induced cerebral and hepatorenal injuries in rats,
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Fig. 4 The protective effects of diallyl sulfide (200 mg/kg bw) and
thymoquinone (10 mg/kg bw) against fipronil (10 mg/kg bw) on brain
tissue malondialdehyde, nitric oxide, and antioxidant biomarkers (n = 8).
MDAmalondialdehyde, NO nitric oxide, GSH reduced glutathione, GPx

glutathione peroxidase, SOD superoxide dismutase, CAT catalase, TQ
thymoquinone, DAS diallyl sulfide. Columns (means ± SD) with
different superscripts indicate significant differences (p < 0.05) between
groups
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probably through enhancing tissue antioxidant defenses.
Further experimental and clinical research is needed to trans-
late these findings into therapeutic applications.
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