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Abstract
Radiation is a form of energy derived from a source that is propagated through material in space. It consists of ionizing radiation
or nonionizing radiation. Ionizing radiation is a feature of the environment and an important tool in medical treatment, but it can
cause serious damage to organisms. A number of protective measures and standards of protection have been proposed to protect
against radiation. There is also a need for biomarkers to rapidly assess individual doses of radiation, which can not only estimate
the dose of radiation but also determine its effects on health. Proteomics, genomics, metabolomics, and lipidomics have been
widely used in the search for such biomarkers. These topics are discussed in depth in this review.
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Abbreviations
A-bomb Atomic bomb
ALARA As low as reasonably achievable
CA Chernobyl accident
CT Computed tomography
CVD Cardiovascular disease
HDR High-dose radiation
IR Ionizing radiation
LC Liquid chromatography
LSS Life span study
MS Mass spectrometry
NC Nuclear accident
NIR Nonionizing radiation

NMR Nuclear magnetic resonance
RT Radiotherapy

Introduction

Radiation is a form of energy derived from a source that is
propagated through material in space. It consists of ionizing ra-
diation (IR) or nonionizing radiation (NIR). NIR has sufficient
energy to move atoms around or cause them to vibrate but not
enough to remove tightly bound electrons from the orbit around
an atom. Examples of this radiation include microwaves and
ultrasound waves, and it is also used in magnetic resonance
imaging. These forms of NIR are present in our daily lives.
Ultrasound waves and magnetic resonance imaging are often
used in medical examinations. In contrast, IR has sufficient en-
ergy to ionize atoms or molecules by interaction with an atom. It
can remove tightly bound electrons from the orbit around an
atom and is propagated through space. IR can be categorized
as either electromagnetic or particulate energy. Electromagnetic
energy consists of γ-rays and X-rays, which can penetrate hu-
man tissues; thus, exposure to γ-rays and X-rays can cause seri-
ous damage to organs. Particulate energy includes alpha particles
and beta particles, which can only penetrate a few millimeters of
skin. This lack of penetrating powermeans that these particles do
not cause significant damage to organisms, but they may act as
carcinogens or have other adverse health effects when injected or
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inhaled (Groen et al. 2012;McLean et al. 2017; Christensen et al.
2014a; Marazziti et al. 2012; Philchenkov and Balcer-Kubiczek
2016). Alpha particles and beta particles both are strongly ioniz-
ing and can disrupt the atomic structure to produce chemical and
biological changes. One alpha particle can ionize 10,000 atoms,
and one beta particle can ionize 100 atoms. However, because
they put all their energy into ionizing others, they very quickly
run out of energy themselves. Hence, alpha particles and beta
particles cannot penetrate through much. Gamma rays differ
from beta particles and alpha particles, in that they are very poor
at ionizing and do not cause chemical and biological changes
(Christensen et al. 2014b). IR is widely used in many fields,
especially in the field of medical treatment. One of the greatest
sources of IR exposure is medical radiation when IR is used as a
diagnostic and treatment modality (Miousse et al. 2017b). IR is a
ubiquitous environmental stressor and feature of the environ-
ment. It is present in our daily lives, originating from natural
and man-made sources (Reisz et al. 2014). Indeed, everyone is
exposed to low doses of natural and anthropogenic IR every day
(Dartnell 2011; Sokolov and Neumann 2015). It causes little
acute health effects at the lowest doses, while at higher doses
can cause acute radiation syndrome and death (Rezaeejam et al.
2015).

Hazards of IR

High-dose and high-dose-rate acute radiation damage

In recent years, there has been increased interest in the risk of
IR, as it can cause significant changes to the components of
cells and serious damage to organisms. Epidemiological stud-
ies, animal experiments, and in vitro studies have clearly clas-
sified the risk of IR (Christensen et al. 2014b; Jin et al. 2010).
Substantial attention has already been focused on the delete-
rious effects of IR on organisms (Dartnell 2011). Animal
study has clearly shown that high-dose radiation (HDR) can
lead to cancer and a shortened life span, the dose of radiation-
induced cancer risks above 50 mSv (Yoo et al. 2014) and may
lead to additional ill-defined risk of noncancerous conditions,
such as cardiovascular disease (CVD), atherosclerosis, neuro-
degenerative effects, and cataracts (Marazziti et al. 2012;
UNSCEAR 2010).

Occupational or nuclear accident (NC) exposure can have
serious health effects, such as at Chernobyl accident (CA) and
Fukushima, which had devastating effects on several hundred
thousands of people (Miousse et al. 2017a; Zeegers et al.
2017; Saenko et al. 2011). The International Atomic Energy
Agency classified CA as Bthe greatest nuclear catastrophe in
human history^ (Philchenkov and Balcer-Kubiczek 2016). A
number of early emergency workers of CAwere found to have
developed acute radiation sickness and 28 early deaths oc-
curred (UNSCEAR 2005). In addition to acute illness, many
survivors of Chernobyl, Nagasaki, and Hiroshima also

suffered leukemia; thyroid, breast, and skin cancers; and cat-
aracts (UNSCEAR 2011; Douple et al. 2011; Shore et al.
2010; Fujimichi and Hamada 2014). Those who survive the
acute phase following intense exposure are at risk of sepsis
and gastrointestinal and metabolic complications (Christensen
et al. 2014a). Long-term monitoring of the impact of
Chernobyl’s radioactivity on fauna showed an increased oc-
currence of tumors and immunodeficiencies, decreased life
expectancy, early aging, and changes in the blood and the
circulatory system (Tang et al. 2017; Domina 2016). In the
aftermath of CA, congenital malformations increased across
Europe (Wang et al. 2012; Wertelecki 2010; Sperling et al.
2012). This disaster also altered the human birth sex ratio at
the national level across Europe (Scherb et al. 2015).
Moreover, in the Fukushima Dai-ichi nuclear power plant ac-
cident, significant effects on organisms occurred. The biolog-
ical effects of IR are related to the physical nature, duration,
dose, and dose rate of exposure (Pernot et al. 2012). A study of
the atomic bomb (A-bomb) survivors in Japan reported that
the risk of mortality of solid cancer increased by 50% when
the dose to which the colon was exposed reached 1 Gy, and
the risk of mortality from leukemia was quadrupled when the
dose to which the red bonemarrowwas exposed reached 1 Gy
(McLean et al. 2017). The risk of blood, breast, and other
cancers significantly increased in A-bomb survivors (Ozasa
et al. 2012; Goto et al. 2012). Sarcomas can also appear near
the original irradiated tumor (Kutanzi et al. 2016). The Life
Span Study (LSS) has provided fundamental information on
the cancer risk of A-bomb survivors in Hiroshima and
Nagasaki. The dose dependence of cancer risk has been con-
firmed for A-bomb survivors exposed to HDR (Sasaki et al.
2014). Moreover, moderate to high doses of IR are the only
established environmental risk factor for brain and central
nervous system tumors (Braganza et al. 2012). Another study
showed that brain damage and cognitive impairment occurred
in mice that received 100 mGy gamma irradiation (Lowe and
Wyrobek 2012). Owing to the potential risk of nuclear and/or
radiological events, IR is a public health concern, not just a
concern for cancer patients (Ryan 2012). Health effects of
high-dose and high-dose-rate IR are shown in Fig. 1.

Low-dose and low-dose-rate chronic radiation
damage

Increasing attention has focused on the deleterious effects of
IR on organisms. HDR is known to be detrimental to organ-
isms, but the health effects at low doses of radiation are not
adequately understood. Humans are unavoidably exposed to
low doses of natural and anthropogenic IR every day. IR is
widely used in healthcare, industry, research, and other
fields, which increases human exposure (Miousse et al.
2017b).
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Nuclear-related radiation exposure: long-term radiation

Those who work in the nuclear industry usually suffer both
external and internal radiation exposure. Research has
shown that the risk of solid cancer and leukemia among
nuclear workers is consistent with the LSS estimated, even
if they receive the dose of radiation via accumulation at low-
dose rates over many years. In the International Nuclear
Workers Study, it was also shown that, at total accumulated
doses of nuclear workers below 100 mGy, the risk of solid
cancer is consistent with the LSS estimate. Moreover, a
range of nuclear medicine workers such as radiologists
and radiation technicians have increased risks of a variety
of tumors including leukemia, skin cancer, and, for women,
breast cancer. The risk of cataracts among medical workers
may also increase owing to them often using X-ray imaging
to guide interventions. In addition, the risk of lung cancer
among underground hard rock miners was also increased,
and the risk of lung cancer was found to be related to their
exposure to radon gas and its radioactive progeny (McLean
et al. 2017). Another study showed that the mortality rate
from Alzheimer’s disease of white female radiological tech-
nicians was increased compared with that of workers in
other occupations (Marazziti et al. 2012). A further study
determined that the mortality from mental disorders of fe-
male workers at US nuclear weapon plants was increased
(Sibley et al. 2003). Studies of those employed within the
nuclear industry also showed that the risks of leukemia and
solid cancer were increased, even when the cumulative dose
of nuclear industry workers was less than 100 mSv and the
dose rate was less than 10 mGy per year. Moreover, an
epidemiological study has highlighted the detrimental
health effects of exposure to low-dose and low-dose-rate
IR (Hall et al. 2017).

Medical radiation exposure: radiotherapy and medical
diagnosis

Humans are exposed to IR in every walk of life owing to its
diverse use, from medical diagnostics to industrial applica-
tions. IR is a component of our environment and an important
tool in medical treatment (Miousse et al. 2017a). Human ex-
posure to IR is unavoidable; for example, in computed tomog-
raphy (CT) scanning, which is a commonly used diagnostic
tool in medicine, humans may be exposed to low-dose radia-
tion. Concomitant medical and surgical conditions can also
result in increases in morbidity and mortality (Leng et al.
2015). For the patient, each procedure involves relatively high
radiation exposure, implying that interventional cardiologists
also undergo significant professional exposure when near the
patient and the radiation source (Gerber et al. 2009; Vano
2003). Each operator performs hundreds or thousands of pro-
cedures each year, so the cumulative dose of the operator is
not negligible. Many procedures entail radiation exposure to
both patient and operator. The high levels of IR exposure to
the patient and treating staff are a major social and scientific
problem (Food and Drug Administration 2010). Patient expo-
sure to IR has increased significantly owing to the use of
medical imaging having expanded greatly; this has raised con-
cerns about whether IR can cause cancer among patients
(Thaker et al. 2015). There has been increased concern about
the exposure of patients and operators given the accumulated
knowledge about the hazards of IR (Hadelsberg and Harel
2016).

And, there is a large body of references about beneficial
effects of ionizing radiation exposure. IR is not only used in
medical diagnosis but also in radiotherapy (RT). In the past,
the RT is mainly used to control the local disease, precise
HDR increase the local tumor control, and reduce the load

Fig. 1 Health effects of high-dose
and high-dose-rate IR
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transfer (Mujoo et al. 2018). More than 60% of patients with
malignant tumors receive RT (Sun et al. 2018). But, humans
are exposed to IR in RT and medical radiodiagnosis that cause
degenerative diseases and oxidative damages (Mulinacci et al.
2018). Research has shown that the source of IR from diag-
nostic radiation examinations contributes ~ 40% of the total
annual worldwide exposure from all sources in developed
countries; it is the largest man-made source of radiation expo-
sure (Tang et al. 2017). For example, over 70million CTscans
are performed annually in the USA alone (Brenner 2010;
Moding et al. 2013). Recently, the risk of IR exposure in CT
has drawn attention, and IR from CT can cause direct damage
to DNA strands (Hall 2009). Owing to the potential carcino-
genic effect of IR, the health of patients exposed to CTmay be
damaged (Schmidt 2012). Research has shown that the inci-
dence of cancer, such as leukemia and brain cancer, was in-
creased after exposure to a CT scan; the radiation doses from
CT scans and leukemia have a positive association (Pearce
et al. 2012; Mathews et al. 2013; Bharadwaj and Rocker
2016). These cancers are related to scans of the head, chest,
abdomen, and pelvis (Berrington de González et al. 2009). It
has also been shown that RTcan induce heart diseases, includ-
ing accelerated atherosclerosis, adverse myocardial remodel-
ing, conduction abnormalities, and injury to cardiac valves
(Martinou and Gaya 2013; Boerma et al. 2016). Among
Hodgkin’s lymphoma patients who received radiation, CVD
is one of the most common causes of death. Studies have
shown that these patients have an increased risk of coronary
artery disease, valvular heart disease, congestive heart failure,
pericardial disease, and sudden death (Baselet et al. 2016).
Survivors of childhood cancer are at high risk of developing
late side effects of RT (Akam-Venkata et al. 2016; Tukenova
et al. 2010). Relationship between the exposure position of
medical radiation and health effects is shown in Table 1.

Natural environmental and daily life radiation exposure is
unavoidable

Humans are unavoidably exposed to low doses of natural IR.
Indeed, life on earth has always been exposed to IR from
natural sources. For example, the unavoidable human expo-
sure to natural radon radiation in particular increases the risk
of lung cancer in the home, especially for smokers. Research
has shown that the annual per capita radiation dose was
3.6 mSv in the early 1980s, and medical sources contributed
only 0.54 mSv to this dose, with the remainder attributable to
cosmic rays, radon, soil, and construction materials. The risk
of childhood leukemia was increased owing to fallout from
nuclear weapons testing leading to low-level internal expo-
sure, which is consistent with the risks estimated in the LSS.
Researchers have considered that there is a statistically signif-
icant risk of leukemia related to exposure to natural sources of
gamma radiation. The likelihood of misuse or accidents has

also increased owing to the widespread use of IR in daily life
(McLean et al. 2017; Zeegers et al. 2017; Kutanzi et al. 2016;
Thaker et al. 2015). Health effects of low-dose and low-dose-
rate IR are shown in Fig. 2 and as shown in Fig. 3, IR can
cause the risk of cancer and other conditions. Molecular and
cellular mechanisms of health effects of IR are shown in
Table 2.

Radiation prevention and protection

Protection standards and radioprotective drugs

It is important to protect people from the damage due to IR,
so, in 1973, a principle named ALARA was introduced.
ALARA is an acronym that stands for Bas low as reasonably
achievable^. This principle refers to minimizing the dura-
tion of exposure to radiation, maximizing the distance from
the radiation source, maximizing shielding between indi-
viduals and a radiation source, and minimizing the amount
of radioactive material. The aim of this principle is to min-
imize the amount of radiation exposure to patients (Mitchel
2015; Petersen et al. 2012; Christensen et al. 2014a). The
linear nonthreshold model has been adopted in the develop-
ment of radiation protection standards (US National
Academy of Sciences 2006; ICRP 2007). Moreover, numer-
ous radioprotective drugs have been developed. Domina
(2016) developed and proposed a new classification of ra-
dioprotective drugs: (i) radioprotectors, which are
antiradiation drugs that act via physical and chemical pro-
tection; (ii) radiomitigators, which play a role at the system-
ic level; and (iii) radiomodulators, which can increase the
resistance of the body to adverse environmental factors
(Weiss and Landauer 2009). Radiomitigators can accelerate
post-radiation recovery of radiosensitive tissues through the
activation of a number of anti-inflammatory signaling path-
ways and increase the secretion of hematopoietic growth
factors (Vasin 2013). Their highest activity appears almost
exclusively during radiation injury of the hematopoietic
system. These drugs are natural compounds, which exert
antimutation, anti-inflammatory, and antioxidant effects
(Izzi et al. 2012). Their mechanism of action involves in-
creasing the general resistance of the organism and decreas-
ing the cancer risk (Epperly et al. 2011). At present, it is
considered that xanthine nucleoside, caffeine, and inosine
can reduce radiation-related risks. Research has also shown
that caffeine can activate the mechanisms of DNA repair
and post-radiation recovery (Popova et al. 2014).
Moreover, potassium iodide can block the thyroidal intake
of radioactive iodine, which can reduce the risk of thyroidal
cancer. Thus , the Uni ted Sta tes Food and Drug
Administration approved potassium iodide as a protective
agent against radioiodine exposure (Kutanzi et al. 2016).
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Protection of staff, patients, pregnant women,
and the general public

Owing to the rapid development of medical techniques based
on ionizing radiation in the medical field, many procedures
entail radiation exposure to both patient and operator. The
high levels of IR exposure to the patient and treating staff
are a major social and scientific problem. The use of thyroid
shields, overhead radiation shields, and lead aprons can re-
duce the radiation doses to the operators’neck and head; these
measures are used in most interventional radiology fluorosco-
py rooms and cardiology imaging laboratories (Picano et al.
2012). All imaging staff should minimize both radiation dose
and exposure according to the ALARA principle, for which
shielding is one effective measure (Curtis 2010). Patient diag-
nosis is performed at the lowest possible dose, while

maintaining suitable image quality. Moreover, a review of
the application for examination by a medical staff can elimi-
nate unnecessary inspections and duplicate commands, and
use alternative imaging modalities to replace IR, such as ul-
trasound. It is important for radiation protection of patients
that the medical staff are aware of alternative examinations
and the measure of dose reduction (Darnell and Morrison
2016; Slovis 2002a, b). The United States Food and Drug
Administration issued recommendations about reducing the
risk of CT in pediatric and small adult patients. These recom-
mendations include the following: reduce multiple scans and
eliminate inappropriate referrals for CTand tube current mod-
ulation (Food and Drug Administration 2002). Moreover, in
recent years, various organizations have put forward measures
for radiation prevention and protection, such as limiting the
medical radiation dose and requiring employees who may be

Fig. 2 Health effects of low-dose
and low-dose-rate IR

Table 1 Relationship between
the exposure position of medical
radiation and health effects

Medical radiation types Exposure
position

IR health effects

Diagnostic CT

Diagnostic X-rays

RT

Abdomen Colon cancer, skin cancer, radiation enteropathy, liver cancer,
leukemia

Pelvis Colon cancer, skin cancer, radiation enteropathy, leukemia

Chest Lung cancer, fibrosis in the lung and heart, skin cancer, coronary
artery disease, valvular heart disease, congestive heart failure,
pericardial disease and sudden death, leukemia, liver cancer

Neck Leukemia, thyroid cancer, sarcomas, skin cancer

Breast Skin cancer, skin erythema, ischemic heart disease, pericarditis,
valvular disease, myocardial infarction, sarcomas, leukemia

Head Brain cancer, neurodegenerative effects, central nervous system
tumors (mainly gliomas and meningiomas), skin cancer, leukemia

Eye Cataract, secondary orbital sarcomas, leukemia

CT angiography Chest Bone marrow and leukemia, skin cancer
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exposed to radiation to monitor and report their radiation ex-
posure (Wood 1994). Medical personnel are also required to
provide a report of the radiation dose when patients are ex-
posed to IR. In 2012, a Californian law was introduced that
requires that certain dose parameters of all diagnostic CT ex-
aminations be reported in radiological reports (Boone et al.
2012). For pregnant women, the prevention and protection
measures are essentially the same as those for the general

public. These measures include the following: keep a safe
distance, do not ingest contaminated water and food, and
shield the human body from exposure (Mettler Jr and Voelz
2002). Pregnant women should cover their mouths and noses
to minimize inhalation when potentially exposed to alpha par-
ticles in the environment (Harrison and Stather 1996). If preg-
nant women are exposed to radiation, they should rinse the
exposed parts with water immediately to mitigate the long-

Table 2 Molecular and cellular mechanisms of health effects of IR

IR health effects Molecular and cellular mechanisms Radiation doses Cell origin Radiation
source

References

CVD Endothelial dysfunction, inflammation,
oxidative stress, alterations in coagulation
and platelet activity, DNA damage,
senescence and cell death

1–3 Gy Rat Artificial
α-rays
and
β-rays

Baselet et al. (2016)

Cataracts DNA damage, DNA repair, inflammation > 2 Gy Human X-rays Fujimichi and Hamada
(2014)

Leukemia DNA damage 50 mGy Human CT scans Pearce et al. (2012)

Brain damage
and impaired
cognition

DNA damage, inflammation, vascular
damage, white matter injury and
coagulation necrosis

100 mGy Mice Artificial
γ-rays

Lowe andWyrobek (2012)

Malformation DNA damage, global genome DNA
methylation, chromosomal aberrations

0.05 or 0.30 Gy and
used high-linear en-
ergy transfer acceler-
ated heavy ions

Mice Artificial
X-rays

Wang et al. (2012)

Breast cancer DNA damage, oxidative stress, chromosomal
aberrations

0–0.20 Gy Human Atomic
bomb-
ings

Ozasa et al. (2012)

Thyroid cancer DNA damage, chromosomal aberrations Uncertain Human Chernobyl Philchenkov and
Balcer-Kubiczek (2016)

Brain tumors DNA damage, chromosomal aberrations 60 mGy Human CT scans Kutanzi et al. (2016)

Fig. 3 IR can cause a range of human injuries, which can in turn increase the risk of cancer and other conditions
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term effects (Oak Ridge Institute for Science and Education
(ORISE) 2011; IAEA 2005).

Education

The measures for radiation prevention and protection for pa-
tients and medical personnel can be classified into two broad
categories: reducing the radiation dose and reducing unneces-
sary tests; education is necessary to achieve this, such as indi-
vidual education and technologist training (Thaker et al.
2015). Patients are usually less aware than the medical staff
of the effects of radiation. The primary method for reducing
the radiation exposure of medical staff and patients is to build
awareness of radiation physics and the harm that radiation can
cause. Education can increase the awareness of personnel
working with radiation of the damage caused by it and im-
prove compliance with measures to limit exposure. Research
has shown that annual use of educational software can in-
crease awareness, strengthen the knowledge about using pro-
tective shields, and reduce the doses to which staff and pa-
tients are exposed. Reducing the radiation dose can be
achieved by using low-dose protocols in the operating room,
using newer low-dose imaging devices or nonradiation de-
vices, and using pulse mode and more. The treating physician
should advocate the reduction of radiation exposure
(Hadelsberg and Harel 2016). Increasing the awareness of
radiation protection among operators is very effective for re-
ducing professional exposure, by up to 90% (Vaño et al.
2006). Medical staff are critical in this context as they can
provide appropriate education to pediatric patients and their
families. One of the most valuable ways of minimizing the
risk of IR is to provide education to medical staff, doctors,
patients, and parents (Darnell and Morrison 2016). High-
quality education and training programs should deepen the
understanding of radiation and raise awareness of the impor-
tance of radiation protection.

Screening of ionizing radiation biomarkers

Nuclear terrorism and radiological events are potential threats
to human life, potentially leading to large numbers of people
being exposed to radiation. Because of the threats posed by
nuclear terrorism or radioactive accidents, we need to identify
biomarkers that can be used to rapidly assess individual doses
of radiation; biomarkers can not only enable estimation of the
dose of radiation and detect the effects of radiation on health
(Pernot et al. 2012), but are also applicable to clinical and
medical management. Early biomarkers of radiation injury
are critical for triage, treatment, and follow-up of large num-
bers of people exposed to IR after terrorist attacks or radiolog-
ical accidents, and for the assessment of radiation toxicity
before, during, and after RT treatment (Guipaud 2013).
Zeegers et al. showed that biomarkers can be used to estimate

the absorbed radiation dose in certain accidents involving
nonnuclear workers and the general public (Zeegers et al.
2017). However, the effects on health of long-term exposure
to radiation are unclear. Therefore, there is a need for suitable
molecular markers to clarify these effects (Shimura et al.
2013).

Proteomics is an active area in radiation biomarker research

The definition of a biomarker is any measurement of the in-
teraction between biological systems and environmental fac-
tors. Biomarkers may be physical, chemical, or biological
(WHO 1993). They can be used in epidemiological surveys
for a variety of purposes (Grandjean 1995), including individ-
ual susceptibility surveys and early detection of the effects of
radiation on health, as well as the estimation or validation of
exposure dose. Research has shown that biomarkers of con-
tinuous effects can assess the effects of radiation after long-
term exposure. The organism responds to radiation by chang-
ing the expression levels of proteins and their post-translation
modification state. Thus, biomarkers associated with radiation
have been identified by screening differentially expressed pro-
teins in samples of biological samples and tissue. The use of
tissue samples in this context is mainly limited to radiation-
induced cancer. The main advantage of using tissue is that
protein expression is tissue-specific and some biomarkers will
be expressed to the maximum extent in the target tissue. The
main drawback of using tissue samples is that such specimens
are difficult to obtain, requiring a biopsy or autopsy; by con-
trast, protein samples of biological fluids (e.g., urine, serum,
or saliva) are collected noninvasively or semi-invasively, and
high-throughput proteomics technology can be used to quan-
tify protein expression induced by radiation (Pernot et al.
2012; Tapio 2013). Research has indicated that emerging pro-
teomics methods are promising and powerful tools for discov-
ering new biomarkers of radiation exposure (Zeegers et al.
2017). Quantitative proteomics techniques are the most com-
mon strategy to identify tumor markers (Rosell et al. 2013;
Pernemalm et al. 2013). Because of the dynamic range of
proteome and the intermediate resolution of early instruments,
it was difficult to find new biomarkers in body fluids.
However, with the development of a fractionation method
combined with high-precision and high-resolution mass spec-
trometry (Pernemalm and Lehtio 2014), along with progress
made in affinity array analysis (Ayoglu et al. 2011; Gold et al.
2012), researchers have often applied proteomics techniques
to find biomarkers. For example, Yi et al. used a proteomics
approach to identify several differentially expressed proteins
in liver tissues of C57BL/6J mice receiving low-dose 137Cs
radiation for 180 days; they found that CRT protein is a po-
tential candidate low-dose or low-dose-rate IR early-warning
biomarker (Yi et al. 2017). Moreover, Byrum et al. used pro-
teomics to analyze plasma of nonhuman primates receiving
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Co-60 whole-body irradiation; they found a panel of plasma
proteins with characteristic time- and dose-dependent chang-
es, which are potential biomarkers of radiation exposure
(Byrum et al. 2017). Research has also shown that, for 30
locally exposed clinical patients receiving fractionated radia-
tion treatment, as well as three radiological accident victims
exposed in 1994, 2D gel electrophoresis-based proteomics
techniques can be used to identify the level of protein expres-
sion; the findings showed that the proteomics techniques ap-
plied were unable to confirm the change of the proteome of
locally irradiated patients, but such changes were observed for
accident victims (Nylund et al. 2014). When used in associa-
tion with multivariate statistics, proteomics can measure the
levels of hundreds or thousands of proteins simultaneously
and identify the proteins that distinguish individuals from dif-
ferent groups (Guipaud 2013). Researchers have found many
valuable biomarkers by using proteomics methods (Bystrom
et al. 2014; Hathout et al. 2014; Mehan et al. 2014; Quon et al.
2016).

Genomics: high-throughput technology for identifying
biomarkers

Ideal biomarkers have some common characteristics, such as
reproducibility, sensitivity, known variability, and specificity.
To be used for large-scale molecular epidemiological studies,
ideal biomarkers must also be analyzable by collecting bio-
logical samples using noninvasive procedures (Ryan et al.
2007). Two effective methods to the identification of bio-
markers are microarray and proteomics strategies. Gene ex-
pression profiling is an informative approach. Array-based
gene expression can provide some valuable information about
IR-specific genes (McLean et al. 2017). Previous studies used
microarray-based gene expression analysis to provide a com-
prehensive overview of the biological effects of low-dose IR
(Rosenstierne et al. 2014). Gene expression is sensitive to
environmental factors, so gene expression profiling has been
used to assess the presence of certain diseases. It is impossible
to make such discoveries without the development of high-
throughput technologies such as microarray platforms, MS,
ChIP-on-chip, and next-generation sequencing. To strengthen
these technologies, the development of sophisticated statisti-
cal methods is needed to accurately interpret the high volume
of data generated from such experiments. A combination of
the aforementioned techniques is often used, which gives bet-
ter results (Reisz et al. 2014). Real-time quantitative reverse-
transcription polymerase chain reaction can accurately moni-
tor gene-expression changes (Rezaeejam et al. 2015). For ex-
ample, Brengues et al. used a quantitative nuclease protection
assay to analyze in vitro irradiated blood samples to determine
the change of gene expression levels. Radiation biologists
have also used gene expression profiling to find biomarkers
that can be used to evaluate individual exposure doses under

different exposure conditions (Paul et al. 2011; Brengues et al.
2010; Turtoi et al. 2010). Researchers confirmed 29 differen-
tially expressed genes that are involved in the cell cycle and
used these genes to predict low doses of radiation exposure
(Lu et al. 2014). Researchers also used microarray analysis to
study the radiation response (Amundson et al. 1999).
Moreover, Zeegers et al. used an Illumina microarray chip to
determine differentially expressed genes following -ray expo-
sure in human lymphocytes. They confirmed that the expres-
sion of about 70 genes changed, indicated that upregulated
genes are preferable to downregulated ones for use as bio-
markers, and mentioned that specific circulating proteins or
microRNAs may be more useful as potential emerging bio-
markers of radiation exposure. However, gene expression
analysis is expensive and time-consuming, and more powerful
research is needed to verify its applicability for radiation dose
estimation (Zeegers et al. 2017).

Metabolomics: a powerful approach for identifying
and quantifying biomarkers of IR exposure

Metabolomics refers to the distribution of metabolites in bio-
logical fluids, cells, and tissues. Because of the intrinsic sen-
sitivity of metabolomics, subtle changes in biological path-
ways can be detected to provide insights into various physio-
logical and abnormal processes. Study in the field of metabo-
lomics has contributed to the broader field of systems biology
(e.g., incorporation of genomics and proteomics) by providing
a comprehensive view of the small molecules that exist in
cells, tissues, or biofluids (Johnson et al . 2016).
Metabolomics has been proposed as a tool for high-
throughput biodosimetry and the rapid assessment of expo-
sure dose and classification (Pannkuk et al. 2017b).
Metabolomics technology can measure hundreds of mole-
cules simultaneously (Jelonek et al. 2017) and can rapidly
determine an individual’s exposure level and metabolic phe-
notype (Pannkuk et al. 2017a). Owing to its rapid assays, high
throughput, and minimally invasive sample collection, meta-
bolomics has also been used as a tool for radiation exposure
biomarker discovery in recent years (Zhao et al. 2017). Golla
et al. used ultra-performance liquid chromatography (LC)-
electrospray ionization-quadrupole time-of-flight mass spec-
trometry (MS) to analyze the differences in the metabolic sig-
natures between sham and γ-ray-irradiated groups. They
found that 3-methylglutarylcarnitine, a novel metabolite in
urine, the liver, and serum, could potentially be an early radi-
ation biomarker (Golla et al. 2017). Researchers used 1H nu-
clear magnetic resonance (NMR)-based metabolomics to an-
alyze the effects of full-body γ-rays or protons on liver me-
tabolism in C57BL/6 mice. The study showed that different
radiation sources induced different changes in metabolic char-
acteristics. The metabolites of 4-hydroxyphenylacetic acid,
betaine, glutamine, choline, and trimethylamine n-oxide may
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be biomarkers for the prediagnosis of liver IR (Xiao et al.
2017). Researchers used biphasic liquid–liquid extraction to
extract serum sample lipids and metabolites and used ultra-
performance LC quadrupole time-of-flight MS to analyze the
changes of the global nonhuman primate serum lipidome and
metabolome. They showed that radiation exposure caused
significant perturbations in lipid metabolism and provided in-
formation for the development of metabolomic biomarker
panels in human-based biodosimetry (Pannkuk et al. 2016).
NMR- and MS-based metabolomics have also emerged as a
powerful method for identifying and quantifying biomarkers
of IR exposure in both cell culture and in vivo animal studies,
including in nonhuman primates. One-dimensional and two-
dimensional NMR provides structural information for meta-
bolomics studies; so, it is a key tool for the characterization of
new metabolites. However, the high complexity of the metab-
olome and the low sensitivity of NMR spectroscopy make it
difficult to apply metabolomics as an independent method.
Although NMR spectroscopy requires a larger sample than
other analytical techniques, it provides valuable information
about IR biomarkers. Metabolomics is an effective method for
identifying and quantifying biomarkers of IR exposure when
used in conjunction with proteomics and genomics.
Moreover, as well as the increased sensitivity of MS-based
metabolomics methods, they can use gas chromatography,
LC, or capillary electrophoresis to carry on online analytical
separation of metabolites (Reisz et al. 2014; Chen et al. 2011;
Khan et al. 2011).

Lipidomics: a new frontier of omics research for discovering
biomarkers

Lipids are components of cell and are the most abundant me-
tabolites in circulation. Lipids play a core role in signaling and
metabolism, and their alterations are relevant to disease
(Carter et al. 2017). Lipidomics is an emerging science that
studies the changes of lipidome by using high-resolution mass
spectrometry and can be used to identify potential biomarkers;
it is also a strong tool for gaining insight to molecular mech-
anisms of disease. Lipidomics based on mass spectrometry
provide an opportunity for comprehensive analysis of lipid
in biological samples and can identify and quantify large
amounts of lipids, and show the changes of lipids in metabolic
disorders (Afshinnia et al. 2018). Researchers used gas chro-
matography and high-resolution mass spectrometry to obtain
lipidomic profile and lipoperoxidation biomarkers in plasma
of patients with rectal adenocarcinoma (Fernandes Messias
et al. 2018). The study about an obese mouse model of oste-
oarthritis showed serum and synovial fluid fatty acids as pre-
dictive biomarkers of osteoarthritis in obesity (Wu et al.
2017). Research has shown that ionizing radiation can cause
changes in lipid metabolism, lipidomic profiling indicated the
level of the polyunsaturated fatty acid was significantly

increased in the serum of nonhuman primate exposed to ion-
izing radiation (Pannkuk et al. 2016). Lipidomics play an im-
portant role in understanding sepsis mechanisms and has great
potential in discovering biomarkers. The study aims to iden-
tify potentially sepsis biomarkers by determining the changes
in the red cells, blood, and plasma lipidome profiling (Mecatti
et al. 2018). Lipidomics analysis has been extensively applied
to the study of systemic diseases; research has shown that
lipidomics as a promising tool for discovering new-
generation biomarkers for hyperlipidemia and cardiovascular
diseases (Rai and Bhatnagar 2017). Although lipidomic has
grown rapidly over the past decade, there are still significant
obstacles to achieving accurate and comprehensive evaluation
of lipidome. In the context of system biology, lipidomic can be
integrated with other -omics platforms (such as proteomics
and metabolomics) to comprehensively analyze biological
samples.

Conclusion and perspectives

In this paper, we introduce and summarize the current knowl-
edge on IR. This paper summarizes the definition, classifica-
tion, hazards, and protective measures of IR; it also reviews
recent advances in IR biomarkers. IR is ubiquitous in daily life
owing to its widespread use in the medical, industrial, and
scientific research fields, among others, as well as because
of accidental exposure, NC, and terrorist threats. It is thus
important to be aware of the hazards posed by IR and effective
measures for protecting against it.

IR can cause serious damage to organisms. It can directly
destroy cells and tissues and can cause significant changes in
the components of cells, or damage them through reactive free
radicals, leading to an increased risk of cancer. Because of the
risks of nuclear terrorism, radioactive accidents, improper dis-
posal of equipment containing radioactive materials, or med-
ical errors, we need to identify biomarkers for rapidly
assessing individual doses of radiation and implement neces-
sary protective measures. From the studies reviewed here and
many others, we summarize certain methods for identifying
biomarkers, such as proteomics, genomics, metabolomics and
lipidomics. BOmics^ approaches are the most promising
methods for discovering radiation biomarkers. Researchers
have used these methods to find valuable biomarkers.
Biomarkers can not only be used to estimate the dose of radi-
ation and determine the effects of radiation on health but are
also applicable to clinical and medical management. Ideal
biomarkers have some common characteristics, such as repro-
ducibility, sensitivity, known variability, and specificity.

At present, although many countries and organizations
have formulated standards and measures for protecting against
radiation and radiation education has also been widely carried
out, the hazards that radiation poses to organisms cannot be
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neglected. Many studies have also found some potential radi-
ation biomarkers, but no universal radiation biomarkers have
been identified. Owing to the complexity of radiobiological
effects, most potential biomarkers are dose dependent and
time dependent. In fact, it is difficult to find a single biomarker
that is sensitive and specific in a given radiation exposure.
Thus, a multiparameter radiation exposure assessment method
is more realistic. The future of radiation research could in-
volve the formulation of a comprehensive method for finding
radiation biomarkers and identifying the precise mechanism
by which radiation damages organisms. Future studies can
combine proteomics, genomics, metabolomics and lipidomics
with knowledge of the mechanisms behind radiation injury
and radiation pathophysiology to identify a common, single
biomarker.
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