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Abstract
This article intends to compute agriculture technical efficiency scores of 27 European countries during the period 2005–2012,
using both data envelopment analysis (DEA) and stochastic frontier analysis (SFA) with a generalized cross-entropy (GCE)
approach, for comparison purposes. Afterwards, by using the scores as dependent variable, we apply quantile regressions using a
set of possible influencing variables within the agricultural sector able to explain technical efficiency scores. Results allow us to
conclude that although DEA and SFA are quite distinguishable methodologies, and despite attained results are different in terms
of technical efficiency scores, both are able to identify analogously the worst and better countries. They also suggest that it is
important to include resources productivity and subsidies in determining technical efficiency due to its positive and significant
exerted influence.

Keywords Agriculture resources productivity . European subsidies . Common agricultural policy (CAP) . Data envelopment
analysis (DEA) . Stochastic frontier analysis (SFA) . Generalized cross-entropy (GCE)

Introduction

Belonging to the primary sector of any economy, agriculture is
imperative in economic, social, territorial, resource, and envi-
ronmental terms. Since human welfare depends over the
amount and stability of agricultural production (measured by
crop yield and cultivated area (Garibaldi et al. 2011), this
sector will continue to play, as played previously, a vital role
for humanity, turning significant the analysis of its efficiency.

Economic efficiency may be divided into technical efficien-
cy and allocative efficiency, where technical efficiency trans-
lates into the ability of a production unit in reaching the maxi-
mum output given the set of inputs and the production technol-
ogy used. Whereas allocative efficiency reflects the ability of a
production unit to use the inputs in optimal and efficient pro-
portions, given their prices and the production technology used.
As long as we have heterogeneity in levels of development of
agricultural European regions and in their agriculture produc-
tivity, it turns relevant the analysis and evaluation of technical
efficiency in the agriculture sector in Europe. Moreover, the
proposed schedule for 2014–2020 by the Common
Agricultural Policy (CAP) attempts to launch a set of recom-
mendations to ensure the optimization of inputs efficiency used
in the agricultural production and livestock process.
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In most of the developing countries, increases in agriculture
productivity and technical efficiency are very important policy
goals, since it is one of the main sources of overall economic
growth (Zamanian et al. 2013). Recent studies on agricultural
technical efficiency yield useful information for policymakers
by founding the possibility of increasing economic activity,
namely output, without increasing resource use or developing
new cleaner technologies, whose principal purpose is to reduce
greenhouse gases (GHG), specifically under Kyoto Protocol
(Robaina-Alves and Moutinho 2014; Toma et al. 2017). As
such, studies about the productive performance of the
European agriculture sector will help policy makers to realize
the existent potential for improving it, as well as to expand
production under recent CAP reforms. These yield recent chang-
es that have created new conditions for increasing not only direct
income support to European farmers but also to predict other
reforms consequences like those related to the environment.

To measure technical agricultural efficiency, different
methodologies and strategies have been proposed. Some au-
thors such as Zhao and Chen (2014), Robaina-Alves and
Moutinho (2014), Kočišová (2015), Vlontzos et al. (2017),
and Toma et al. (2017) all used decomposition techniques,
such as index decomposition analysis (IDA) or Log-mean
Divisia Index (LMDI) through data envelopment analysis
(DEA). Other studies compare outcomes from parametric
and non-parametric techniques (Hoang and Alauddin 2012;
Picazo-Tadeo et al. 2012; Hoang and Trung 2013;
Khoshnevisan et al. 2014, among others).

Important measures for technical and allocative efficiency
are those of Farrell (1957), but different others emerged to
calculate and estimate the efficient frontier in terms of farm
performance and efficiency measurement. Methodologies de-
veloped involve parametric (econometric) and non-parametric
(mathematical programming) approaches. In the first, the func-
tional form of the efficient frontier is imposed a priori, while in
the last the frontier is computed based on sample observations.
Both approaches have strengths and weakness and their main
difference relies upon the assumption used to estimate the
frontier. The parametric approach main strength relies on a
stochastic frontier that allows noise effect to be separated from
the inefficiency ones. Nevertheless, it requires the specification
of a functional form, thus implying structural restrictions
allowing that misspecification effects of the functional form
to be baffled with inefficiency. Moreover, parametric models
can be deterministic or stochastic. The former assumes that any
deviation from the frontier is due to inefficiency while the latter
allows statistical noise. In the non-parametric approach, the
opposite is true provided it is free from the misspecification
of the functional form or any other restrictions, but it does not
allow to account for statistical noise being thus vulnerable to
outliers (Kwon and Lee 2004; among others).

Taking into account the considerations described above, the
goals and distinguishing features of this article are exposed

next. The first goal is to estimate the technical agricultural effi-
ciency of European countries. For this, two different techniques
are applied and compared. It is used a DEA approach and a
stochastic frontier analysis (SFA) with the generalized cross-
entropy (GCE) estimator (e.g., Golan et al. 1996), a recent
approach that combines information from DEA and the struc-
ture of composed error from traditional SFA with maximum
likelihood (ML), without requiring distributional assumptions.
Although there have been quite a large number of studies on
technical agricultural efficiency, there is scarce literature using
SFAwith GCE to assess technical efficiency. Second, we want
to realize which factors explain technical efficiency differences.
For that, it is proposed a dynamic efficiency analysis by using
the parametric econometric quantile approach. The dependent
variable is the estimated score of technical efficiency and the
explanatory variables are resources productivity, domestic
material consumption, bovine population, crops products,
share of total organic crop area out of total used agricultural
area, subsidies over crops output products, and subsidies on
animal output products. More recently, Minviel and Latruffe
(2017) found that subsidies are commonly negatively associat-
ed with farm technical efficiency, looking at empirical studies.
When using the quantile regression approach, we have the pos-
sibility of estimate the effects of the conditional technical effi-
ciency distribution. It also turns possible to examine determi-
nants of technical efficiency deployment all over the condition-
al distribution, with emphasis over determinants of technical
efficiency take-off. The choice of these quantiles results from
the distribution of technical efficiency scores delivered by the
two optimization solution problems employed.

In summary, the relevance and innovation of this article is
related to (i) estimating and comparing the efficiency of agri-
cultural sector of countries, which is as referred, very relevant,
but in particular to do so with an innovative method, such as
SFAwith GCE; (ii) the fact of joining in the same study two
steps, in which the second one uses the scores estimated in the
first one to know what affects the efficiency of the countries;
and (iii) the fact of innovating by doing this second step with
general fixed effects and with estimates by quantile, that al-
lows to differentiate effects inmore efficient countries and less
efficient countries.

The rest of the article develops as follows. The BLiterature
review^ section presents a brief literature review, while BData
and methodology^ section describes the data and methodolo-
gies used. BResults and discussion^ section presents the
attained results and discusses their main implications, while
BConclusions^ section concludes this work.

Literature review

There is an extensive literature on measuring efficiency using
DEA and SFA. Efficiency is analyzed considering the
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existence of desirable and/or undesirable outputs of produc-
tion, where environmental negative effects are seen as undesir-
able (Färe et al. 2004 and Zhou et al. 2006, 2007). DEA has
been applied to studies of various agricultural products from
horticulture, to cotton and to aquaculture (for example, Sharma
et al. 1999a; Iraizoz et al. 2003; Reinhard et al. 2000; Fousekis
et al. 2001; Arita and Leung 2014; Iliyasu et al. 2016). Other
studies use DEA applied to other sectors, as the one of Chen
and Jia (2017) that evaluate the environmental efficiencies of
China’s industry using data from 2008 to 2012. The authors
demonstrate that apart from several developed provinces, the
environmental efficiencies of China’s industry are generally
low and that larger differences exist in environmental
efficiencies between the regions in China, suggesting that
government attention is needed considering the unbalanced
development of its regional industry. In forestry, Li et al.
(2017) performed a cross-sectional dataset analysis using
DEA to investigate the forestry resources efficiency in 31 in-
land provinces and municipalities of China in years 2008,
2012, and 2013. Afterwards, they use the Malmquist total fac-
tor productivity index method, whereas the innovation of the
article lies in the dynamic process of analysis.

Other empirical applications include the SFA model, for
example, Abdulai and Huffman (2000) on rice farmers in
Northern Ghana, Bravo-Ureta and Evenson (1994) on peasant
farmers in eastern Paraguay, Chen and Huffman (2006) using
a county-level dataset of China, and Xu and Jeffrey (1998) on
a cross-section of Chinese farm households. Other studies
show the estimation of a parametric production function using
SFA, but most focus over a single country’s agricultural sector.
Thus, the comparative analysis of technical efficiency is rather
scarce (despite the exceptions of Barnes et al. 2010 and Zhou
and Lansink 2010).

Both DEA and SFA models are also used to identify dif-
ferent levels of environmental efficiency of agricultural sys-
tems. They consider as inputs nutrients, nitrogen, and phos-
phorous, whose analysis revealed these as relevant factors to
explain emissions on farms and livestock. These studies in-
clude Reinhard et al. (2002), Abay et al. (2004), Hoang and
Coelli (2011), and Hoang and Alauddin (2012). Coelli et al.
(2012) investigate the environmental performance of 117 pig
farms in Belgium using a DEA non-parametric technical anal-
ysis. Using both DEA and SFA, Lauwers (2009) and Van
Meensel et al. (2010) recognize the existing trade-off between
environmental effectiveness and economic efficiency using
the Coelli et al. (2012) data.

Other authors advocate that agriculture efficiency should
be evaluated considering the principle of balance of materials:
as cost allocative efficiency, fertilizer consumption intensity,
the size of land, and the share of owned land out of total land
(for example, Van Passel et al. 2009; Lauwers 2009; Van
Meensel et al. 2010; Hoang and Coelli 2011; Picazo-Tadeo
et al. 2012; Hoang and Alauddin 2012; Hoang and Trung

2013; Khoshnevisan et al. 2014, among others). Xiao et al.
(2017) built a theoretical model on how farmland conversion
affects economic growth. They empirically analyzed the opti-
mal scale of farmland conversion by using both dynamic and
threshold regressions based on panel data of 31 Chinese prov-
inces from 1997 to 2013.

Other studies on agriculture focus on the influence of per-
sonal characteristics such as age, education, experience and
specialization, or physical aspects such as farm size and cer-
tain input usage (Sharma et al. 1999b; Fousekis et al. 2001;
Iraizoz et al. 2003). In another strand of reviewed studies, the
environmental assessment was made through the efficient use
of natural resources and nutrients. They found that agricultural
production is limited by the restriction of low topsoil fertility
(due to scarcity of water and nutrients, especially in Africa), as
reported in Giller et al. (2006), among others.

Using 196 rice farms in South Korea, Nguyen et al. (2012)
investigated the environmental performance based on the
Material Balance theory. Results point for a high variability
in the coefficients associated with the explanatory drivers of
environmental efficiency in all farms. Avadí et al. (2014) use a
combination of life cycle assessment (LCA) and DEA to ex-
amine the eco-efficiency in 13 fleet segments of fishing vessels
and Zhu et al. (2014) applied the same combined methodology
to compare the eco-efficiency of 10 pesticides. Arita and
Leung (2014) use the DEA approach, considering as inputs
labor, land, machinery, and other expenses, and as outputs total
sales generated from production. The author’s results showed
that only 12% of the farms in 2007 may be classified as effi-
cient, with a steady decline in efficiency over time.

Bojnec et al. (2014) studied the level of technical efficiency
(using DEA) in ten new EU Member States during the period
2001–2006. Despite time and countries results variability found,
the authors evidence efficiency scores below 1 for all countries.
They suggest that these differences imply future opportunities
for the better use of agricultural resources. Hoang and Rao
(2010) evaluated the efficiency of the agricultural sector of 29
OECD countries. The goal was to define potential traces that
ensure the capacity to reach a sustainable agricultural produc-
tion. Empirical applications allowed them to conclude that
OECD has the potential to save 72.3% of cumulative exergy
consumption. Moreover, it was argued that improvements can
be achieved by improving technically efficient and by doing a
better inputs combination choice. Furthermore, they argue that
the sustainable efficiency varied enormously across countries
and that efficiency levels in 2003 were lower than in 1990.

Špicka (2016) evaluates the change in the energy efficiency
of crop production in 24 EU countries during the period 2002–
2012. The change in the energy efficiency in time was calcu-
lated through the Malmquist index, identifying the UK,
Portugal, and Sweden as countries with the most dynamic
positive change in energy efficiency. By opposition, Baltic
States and Poland experienced the most dynamic decline of
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energy efficiency. For crop output and the EU sample also,
Kočišová (2015) concludes that in inefficient agricultural sec-
tors to have efficient production of a given quantity of output
it was necessary to reduce the value of the input labor by
6.18%, total utilized agricultural area by 14.45%, and total
assets by 5.93%. Moreover, in the case of the output-
oriented model, results point that the agricultural sectors
should produce 111.85% of their crop output and 113.41%
of their animal output. Using also the EU sample, Vlontzos
et al. (2014) evaluate the energy and environmental efficiency
of the primary sectors of the EU member state countries. The
study is based on a non-radial DEA model which allows for
non-proportional adjustments to energy inputs and
undesirable outputs. Results pointed that Eastern European
countries achieved low efficiency scores, an expected result
due to low technology level being implemented in the primary
production process. Finally, Hoang and Alauddin (2012) pres-
ent a DEA framework oriented to inputs which allows the
measurement and decomposition of economic, environmen-
tal, and ecological efficiency levels in agricultural production
across 30 OECD countries. The optimal input combinations
performed, in order to minimize total costs, were total amount
of nutrients, and total amount of cumulative exergy contained
in inputs. Results reveal a significant scope to make agricul-
tural production systems more environmentally and ecologi-
cally sustainable, just by being more technically efficient and
by changing the input combinations.

Using the EU agricultural sector, also we have more
recent studies using DEA techniques. Kočišová (2015)
investigates the relative technical of the agricultural sector
in the EU using DEA during 2007–2011. Results allowed
the author to conclude that EU agricultural sectors per-
formed efficiently, having changed over the last years,
where efficiency seems to have decreased through time.
Toma et al. (2017) examine the agricultural efficiency of
EU countries, through a bootstrap-DEA using data of la-
bor, land, capital, fertilizers, and irrigation area, during
1993–2013. Results seem to indicate that oldest EU coun-
tries have a more efficient and optimized crop production
with respect to resource savings and output maximization,
maybe due to the CAP. The authors suggest that attention
should be given to the maximization of agricultural
production as well to the environmental resource
overexploitation. Vlontzos et al. (2017) build a synthetic
Eco-(in) efficient index by using a directional distance
function-DEA model to study the sustainability of the
EU agricultural sector for the period 1999–2012. They
use this to study the Environmental Kuznets Curve
allowing them to conclude that more sustainable produc-
tion practices at the country level are not totally connected
with its economic development provided that Eco-(in) ef-
ficiency and GDP levels of EU countries seem to be
linked with an N-shaped curve.

Data and methodology

Data

We use data for the time period 2005–2012 for 27 European
countries1, collected from Eurostat and with respect to the
agriculture sector. Energy consumption, in Economic
Accounts for Agriculture, data was collected in millions of
Euros at constant 2005 prices. Net value added was also col-
lected from this database at constant 2005 prices, in million
euros. Net value added refers to the value of output less the
values of both intermediate consumption and consumption of
fixed capital2. Data of agricultural area in 1000 ha was col-
lected from the Regional Agriculture Statistics, representing
land used from the NUTS 2 regions folder. From the
Agriculture Labor Input Statistics, we collected data for the
total labor force input in 1000 annual work units.

We have used as output the net value added and as inputs
labor force, utilized agricultural area, and energy consumed in
the technical efficiency estimation, variables frequently consid-
ered in the production function estimation for the agricultural
sector (see for instance Iraizoz et al. 2003 or Toma et al. 2015).
For quantile regressions, the dependent variable consideredwas
the estimated score of technical efficiency and the independent
variables were chosen attending the data availability at Eurostat
and by the relevance they might have on affecting technical
efficiency: (i) domestic material consumption (DMC)3; (ii) re-
sources productivity (gross domestic product divided by
DMC); (iii) bovine and pig population (in thousand heads—
animals), separately; (iv) organic crop area (hectare); (v) subsi-
dies on product cereals (millions Euros); (vi) subsidies on prod-
uct animals (millions Euros); and (vii) crop products (cereals
for the production of grain by 1000 ha area cultivation).

Common agricultural policies have had implication adjust-
ments in the agricultural sector, namely in production. So, a
policy based over subsidies support would be a strong instru-
ment to affect their weak efficiency and we should expect a
positive and significant effect of these over technical
efficiency.

1 Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Ireland,
Greece, Spain, France, Italy, Cyprus, Latvia, Lithuania, Luxembourg,
Hungary, Malta, Netherlands, Austria, Poland, Portugal, Romania, Slovenia,
Slovakia, Finland, Sweden, and United Kingdom.
2 For this sector in particular, it includes de net value added of all units in-
volved in agricultural production, also if the units have more economic impor-
tant activities as well and if the purpose of the units is not commercial. Kitchen
garden (producing for own consumption only) is not included. The data con-
siders: growing of non-perennial crops; growing of perennial crops; plant
propagation; animal production; mixed farming; support activities to agricul-
ture and post-harvest crop activities; hunting, trapping and related service
activities.
3 In tonnes per capita. Considering only biomass, DMC measures the total
amount of biomass directly used by the economy, being defined as the annual
quantity extracted from the domestic economy, plus all physical imports minus
all physical exports.
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However, there is empirical evidence that the direction
(significantly negative, significantly positive, or non-
significant) of the observed effects is sensitive to the way
subsidies are modeled (Minviel and Latruffe 2017). In fact,
subsidies may have both positive and negative effects on ef-
ficiency and productivity through the income effect. We may
expect subsidies to increase technical efficiency if they are
used by farmers as the necessary financial means to keep
technologies up to date or if farmers use these to invest into
efficiency improvements on farm organization. However, we
could also expect the opposite effect (increasing subsidies
decrease technical efficiency) if farmers are less motivated to
improve despite the higher income received due to subsidies.
In quantile regression analysis performed afterwards, we have
used two subsidy-related variables to capture the impacts of
different types of subsidies over technical efficiency. The first
is the share of crop subsidies in total subsidies, which is as-
sumed to reflect the degree of decoupling and the second is the
degree of subsidy dependence and specialization (share of
animal products subsidies over total subsidies, assumed to
reflect the degree of coupling). This kind of subsidies has also
been used by Zhu et al. (2012) exploring technical efficiency
in German, Dutch, and Swedish dairy farms. It should also be
noticed that total subsidies from the CAP are considered as
non-stochastic income sources. In this sense, it may influence
farmers’ decision of production both by the income/wealth
and insurance effects.

Moreover, biomass consumption in this sector is also ex-
pected to impact technical efficiency differentials provided
that domestic consumption of this material is an important
resource in the sector as well as the resources productivity
used in the sector. Also the different levels of technical effi-
ciency may be explained by the different levels of animal
production and other output products of the sector.
Moreover, all these factors may contribute positively and neg-
atively to sustain the regression expected coefficient signs and
guarantee robustness in the distribution of the technical effi-
ciency levels. The statistical relevance of some of these vari-
ables may help us to understand for which efficiency levels
there exists or not an impact (Bilgili et al. 2016; Qureshi et al.
2016). For example, do production subsidies with respect to
animals or crops affect significantly the agricultural sector in
European countries in the same sense and magnitude, or
should we expect that a specific kind of subsidy affects posi-
tively the sector in countries with higher technical efficiency,
while others affect countries with lower technical efficiency
levels? Quantile regression results would help us to conclude
into these different directions.

Methodology

The methodology followed consists in two different steps. In
the first, it is computed technical efficiency through the DEA

and SFA with GCE, and in the second a quantile regression
approach is followed. This two-phase methodology is often
used as a way of realizing that factors other than those that
typically enter into the production function condition produc-
tion efficiency. As examples, it can be pointed McDonald
(2009) and Hoff (2007).

Technical efficiency

Technical efficiency is a crucial tool to measure a production
unit performance, by comparing the observed output and the
potential output of a production unit. There are several methods
that can be used to predict technical efficiency, being DEA and
SFA the most dominant in the efficiency analysis literature. SFA
is accomplished in this study using the GCE estimator (e.g.,
Macedo and Scotto 2014; Robaina-Alves et al. 2015).
Considering the usual stochastic frontier model (e.g.,
Kumbhakar and Lovell 2000) ln(y) = f(X;β) + v − u, the re-
parameterizations of the (K × 1) vector β and the (N × 1) vector
v follows the same procedures as in the traditional maximum
entropy estimation (e.g., Golan et al., 1996): β = Zp, with Z
being a (K ×KM) matrix of support points, p a (KM × 1) vector
of unknown probabilities; and v =Aw, with A a (N ×NJ) matrix
of support points and w (NJ × 1) a vector of unknown probabil-
ities. For the inefficiency error component, vector u, the
reparameterization is similar to that of v, taking only into account
that u is a one-sided random variable, which implies that the
lower bound for the supports (with 2 ≤ L <∞ points) is zero for
all error values: u =Bρ, with B a (N ×NL) matrix of support
points andρ a (NL × 1) vector of unknown probabilities. Further
details may be obtained from Campbell et al. (2008), Macedo
and Scotto (2014), and Macedo et al. (2014).

In this study, the supports inZ are defined through [−10, 10],
being this a conservative choice. Provided that vector v is a two-
sided random variable representing noise, supports in matrix A
are defined symmetrically and centred on zero, using the three-
sigma rule with the empirical standard deviation of the noisy
observations. The supports in matrix B are defined in the
range [0, − ln(DEAn)], where DEAn represents the lower tech-
nical efficiency estimate obtained by DEA in the sample (e.g.,
Macedo and Scotto 2014; Robaina-Alves et al. 2015). DEA
uses linear programming to construct a non-parametric piece-
wise linear production frontier, using output- and input-orien-
tations, different return to scales technologies, and the possibil-
ity of multiple inputs and multiple outputs. The efficiency mea-
sures are then computed relative to the production frontier; e.g.,
Coelli et al. (2005). In this study, an output-oriented model
under constant returns to scale is considered to provide the
lower technical efficiency estimate that is needed for the sup-
ports in maximum entropy estimation. It is important to note
that DEA is used in SFAwith maximum entropy only to define
an upper bound for the supports, which means that the main
criticism on DEA (it does not account for noise; all deviations
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from the production frontier are estimated as technical ineffi-
ciency) is used in this context as an advantage (a worst case
scenario to establish the bound for the supports in maximum
entropy estimation). Thus, given this feature, a constant returns
to scale model is used here because it provides technical effi-
ciency scores that are lower than or equal to those from a
variable returns to scale model.

The GCE estimator4 in the SFA context is given by

argmin p
0
ln

p
q1

� �
þ w

0
ln

w
q2

� �
þ ρ

0
ln

ρ
q3

� �� �
; p;w;ρ

subject to the model constraint, ln(y) =XZp +Aw −Bρ,and

the three additivity constraints,1K ¼ IK⊗1
0
M

� �
p, 1N ¼

IN⊗1
0
J

� �
w and 1N ¼ IN⊗1

0
L

� �
ρ, where ⊗ represents the

Kronecker product. In all the matrices, five points in the sup-
ports are considered. The vectors q1 and q2 in the objective
function are non-informative, and the non-uniform vector q3 is
specified in this study as q3 = [0.40,0.30,0.15,0.10,0.05] for
each observation, where the cross-entropy objective shrinks
the posterior distribution in order to havemoremass near zero,
following the usual beliefs in the traditional ML estimation
(e.g., Kumbhakar and Lovell 2000, p. 74).

Quantile approach

In the second part of our study, we perform regression analysis
to find the determinants of efficiency. For that, we use quantile
regressions due to the limitations pointed by Simar and
Wilson (2007) and Zelenyuk and Zheka (2006) to the tradi-
tional Tobit estimator. They argue that by using it, regression
analysis of efficiency determinants is inappropriate by failing
to address the dependency problem of DEA efficiency scores.

Also, if we use standard linear regression techniques, we may
only attend for a partial relationships. However, we could be
interested in describing variables relationship at different and
specific points in the conditional distribution of the dependent
variable. Quantile regression offers that possibility and has
been used in studies for the willingness to pay for the reduc-
tion of both air and noise pollution (O’Garra and Mourato
2007) and of the impacts of soil contamination and urban
development (Schreurs et al. 2014). Quantile regressions ad-
vantages include its robust properties, even in the absence of
normality, and its power to estimate effects at specific and
different points of the conditional dependent variable
(outcome) distribution (O’Garra and Mourato 2007).
Heteroskedastic robust estimates are ensured by robust stan-
dard errors reported in fixed effects estimates. The number of
bootstrap repetitions are inversely related to the sample size
and we do not report Koenker and Basset standard errors, but
bootstrap standard errors (Koenker and Basset 1982) using
1000 bootstrapping repetitions.

Results and Discussion

In a first stage, we focus on the analysis and interpretation of
results about scores and changes on the countries technical
efficiency ranking through the time period.

In appendix, we present the detailed score results for DEA
and SFA with the GCE estimator (see Tables 3 and 4). SFA
results are more robust as compared to DEA, and with this
method we never get an efficiency score of 1. Despite the fact
that DEA and SFA are very distinct methodologies, it is inter-
esting to notice that although technical efficiency values are
different between both techniques, both identify analogously4 The code was implemented by us in MATLAB (R2009a) software.

Table 1 Performance of countries—resume of results of DEA and SFA estimations

Our results period:
2005–2012

Kočišová (2015)
period: 2007–2011

Bojnec et al.
(2014) period:
2001–2006

Akande (2012)
period: 1999–2009

Hoang and Rao
(2010) and Hoang
and Coelli (2011)
period: 1990–2003

Vlontzos et al.
(2014) period:
2001–2008

Best Worst Best Worst Best Worst Best Worst Good performers Best Worst

Cyprus
Denmark
France
Italy
Luxembourg
Greece
Malta
Netherlands
Spain
UK

Czech
Republic

Hungary
Ireland
Latvia
Lithuania
Poland
Slovakia
Slovenia
Sweden
Belgium
Bulgaria

Belgium
Denmark
Finland
France
Greece
Hungary
Ireland
Italy
Malta
Netherlands
Romania
Slovakia
Sweden

Poland
Slovenia

Bulgaria
Hungary
Slovakia

Baltic
States

Poland

West
European
region

Northern
European
region

Belgium,
Luxembourg

Netherlands
Denmark

Denmark
France
Ireland

Germany
Sweden

Note: own elaboration
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the worst and best countries. This can also be checked in
Table 5 in appendix that presents a summary of the sixth
highest and lowest scores of technical efficiency for each year
in the sample and using both DEA and SFAwith GCE (coun-
tries in red are those that change provided one or the other
method used). Specification and diagnosis tests are presented
in Table 6 at the appendix and results justify the choice of
quantile regressions in the second stage.

In Table 1 is presented a resume of general results for both
techniques, and the results of other studies for comparison
purposes. As it can be seen, our results corroborate most of
the results of previous studies, concerning the good and bad
performances of European countries agricultural sector.

Figures 1 and 2 shows graphically the efficiency position
and evolution of countries for both methodologies.

We can observe that almost all countries reduced their
efficiency in this period, result also pointed by Kočišová
(2015). For example, the scores for Germany, Ireland, and
Belgium, in 2012, are only half (or even less than half) of
their scores in 2005. There are some exceptions as the
case of Estonia and Finland, which improved their effi-
ciency score.

In a second stage, a parametric approach through the use of
quantile regressions is used, applied to the efficiency scores
obtained previously as a dependent variable, to explain the
different levels of technical efficiency across countries.

Fig. 1 DEA efficiency estimates in 2005–2012

Fig. 2 SFAwith GCE efficiency estimates in 2005–2012
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Table 2 Results of fixed effects
and quantile regression estimates
(SFAwith GCE method)

Independent variables FE-VCE Quantile regression

Q (0.10) Q (0.25) Q (0.50) Q (0.75) Q (0.90)

DMC (Biomass) − 0.00 − 0.00 − 0.00 − 0.00** − 0.00** − 0.00
Resource productivity − 0.04 0.23* 0.21* 0.22* 0.30* 0.32*

Crops products 0.00 − 0.00 0.00 0.00 − 0.00 0.00

Organic crop area − 0.016* − 0.00 − 0.00 − 0.00 − 0.01* − 0.02*
Subsidies on product cereals − 0.00 0.00 − 0.00 − 0.00 0.00** 0.00**

Subsidies on product animals 0.00 0.00** 0.00** 0.00* 0.00 0.00

Pig population 0.00 0.00 0.00* 0.00* 0.00* 0.00***

Bovine population 0.00* − 0.00 0.00 − 0.00 − 0.00 − 0.00
Constant 0.40** 0.01 0.15* 0.23* 0.36* 0.58*

R2/pseudo R2 0.25 0.22 0.34 0.42 0.35 0.25

Notes: Dependent variable: scores of efficiency (based on the SFA model). FE-VCE stands for fixed effects with
robust standard errors. *, **, *** mean significant at 1, 5, and 10%, respectively. The number of observations
refers to the total N in our sample = 216
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Fig. 3 Plot of fixed effects quantile regression—SFA with GCE results.
Note: this plot shows how the effects of each regressor vary over different
quantiles and how the magnitude of the effects at these different quantiles

would differ considerable from the fixed effects estimations. Plots
performed using Stata software
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According to Table 2, the estimates from fixed regression
using the SFA-GCE show a positive and significant influence
of bovine population and a negative and significant influence
of the share of organic crop area out of total used agricultural
area over technical efficiency5 (the results from fixed
regression using DEA are presented in Table 7 in the
appendix for robustness check).

Resource productivity shows a positive and significant in-
fluence on technical efficiency, and its estimated coefficients
are higher in upper quantiles. As such, we may conclude that
the positive relationship between technical and resources pro-
ductivity has a greater magnitude when considering the upper
levels of cross-country technical efficiency distribution, when
compared to the results obtained by considering the central
tendency of technical efficiency distribution. This increase in
estimated parameters shows the importance of resources pro-
ductivity in determining technical efficiency when consider-
ing countries with higher technical efficiency scores (in the
upper quantiles of technical efficiency distribution).
Increasing resources productivity could then provide higher
technical efficiency scores.

There is a negative and significant influence of domestic
material consumption (biomass) (for median quantiles, i.e.,
50th and 75th quantile). In the lower quantiles (10th and
25th), the negative relationship between technical efficiency
and domestic materials consumption is not statistically signif-
icant. As such, it seems that for median efficiency scores,
domestic materials consumption reduces technical efficiency.
However, progressing up the technical efficiency, we observe
that the magnitude of this relationship gets bigger. This may
seem intuit and possible to be attributed to learning curves.

There is a negative and significant influence of share of
organic crop area out of total used agricultural area (for 75th
and 90th quantile) and a positive and significant influence of
pig population over SFA-GCE technical efficiency scores.

It is also found that by moving up on the technical efficien-
cy distribution (considering 75th and 90th quantiles), results
are considerably different from those obtained in other
quantiles, where there are significant positive relationships
between technical efficiency and subsidies over crops outputs
(Sub 1) and subsidies on animals’ output products (Sub 2).
However, for different quantiles, these relationships are only
statistically significant for the upper quantiles (75th and 90th)
and for the lower quantiles of the technical efficiency distri-
bution (10th, 25th, and 50th), respectively, which do not go
into the direction of Minviel and Latruffe (2017) results.

All previous results in both methodologies and in the first
and second estimation stages claim for some important
political and practical implications. Factors like subsidies on
crops products and subsidies on animals output products,

resources productivity, and domestic materials consumption
simultaneously allow to explain differences in technical
efficiency in the European agricultural sector. Results
obtained make sense as the productivity of resources has a
positive influence on the score of technical efficiency. In
fact, resource productivity measures how efficiently natural
resources are used by the sector and indicates whether
economic growth is compatible with a more efficient use of
the natural resources. Animal output subsidies also show a
positive influence that can be explained by the coupling
between these subsidies and production, which encourages
their application in more efficient production processes. On
the other hand, crop subsidies have a negative influence,
especially on the higher efficiency quantiles, which may be
related to the decoupling of these subsidies. As such, our
results contradict those of Zhu et al. (2012) where the authors
also use subsidy-related variables6 to reflect the wealth and
insurance effect and the coupling effect of CAP subsidies.
Their results indicate that a higher degree of coupling in farm
support negatively affects farm efficiency, and that the moti-
vation of farmers to work efficiently is lower when they de-
pend on a higher degree of subsidies as a source of income.
The authors’ finish the article arguing that it is questionable
whether farm income support of CAP since the 1992 CAP
reform is suitable to achieve its goal to increase farmers’ over-
all competitiveness by improving their efficiency. Our results
state that both resources productivity and subsidies do in-
crease technical efficiency, although not all subsidies have
the desired complete effect, only helping those in the lowest
efficiency scores, like subsidies on animals’ outputs.

Moreover, results obtained through quantile regressions
corroborate, at least partially, the findings of Zhu and
Lansink (2010) which have concluded that total subsidies
due to the income and insurance effect are expected to have a
negative impact over technical efficiency of crop farms in
Germany, Netherlands, and Sweden. However, we need to
emphasize that the reliability of the estimated results depends
over theoretical consistency of the underlying production tech-
nology. As such, caution is needed while interpreting results
because we were unable to check all regularity conditions.
Besides, we have also not accounted for the effects of changes
in the output mix within crop aggregates, provided that diverse
products are counted even for specialized crop farms.

The share of organic crop area has a negative influence on
efficiency, which may at first appear strange. But in fact, or-
ganic farming is a method of production, which puts the
highest emphasis on environmental protection and, with re-
gard to livestock production, animal welfare considerations. It

5 See Wasserstein and Lazar (2016) for an important discussion on the use of
p values.

6 The authors use the share of livestock subsidies in total subsidies (%), the
share of the sum of subsidies on crops, intermediate consumption and external
factors in total subsidies (%), and the share of total subsidies in total farm
income (%).
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avoids or largely reduces the use of synthetic chemical inputs
such as fertilizers, pesticides, additives, and medical products.
This organic production may be not so Badvanced^ in produc-
tivity as the Btraditional^ methods, which may negatively af-
fect efficiency.

Following Baum (2013), graphs in Fig. 3 illustrate how the
effects of each regressor vary over different quantiles and how
the magnitude of the effects at these different quantiles would
differ considerable from the fixed effects estimations. This
happens also in terms of the confidence interval around each
coefficient. Figure 3 results show that for the lowest quantiles
of the conditional scores of efficiency distribution, the coeffi-
cients on experience are very low, close to zero. This suggests
that the efforts taken by countries in terms of agricultural ex-
perience are barely recognized in the European agricultural
sector. However, as we move up over the conditional distribu-
tion, the coefficient rises significantly especially at the extreme
upper quantiles. For countries with the highest scores, on the
one hand, additional efforts at resources productivity results in
relatively larger increases in the share of total organics crop
area out of total used agricultural area. On the other hand,
subsidies on crops and subsidies on animal output products
additional efforts results in gains in agricultural added value.

Evidence found in both methodologies employed may be
explained by the considerable changes in technical efficiency
after the implementation of the new CAP (Bartolini and
Viaggi 2013). The subsidy policy had effects on energy and
environmental efficiency levels of the new Member States as
compared to the older Member States, as also mentioned by
Hoang and Rao (2010) and Vlontzos et al. (2014). However,
these differences are also owed to the low level of technology,
which has been implemented into the agricultural production
process, being even more evident for countries in Eastern
Europe (Vlontzos et al. 2014). In reality, differences with respect
to resources productivity between countries and/or agricultural
regions are associated with different government support
schemes for regions which are economically weaker and to the
strengthening of specific regions where agriculture is still the
central focus, as also assumed by Gorton and Davidova (2004).

It should also be noticed that the structure of agriculture in
the EU varies not only from country to country but also be-
tween agricultural regions. As such, decisions on where and
how to produce a specific agricultural crop or animal produc-
tion should heavily depend over local conditions like the type
of soil, climate, and infrastructures (Olsen 2010).

Conclusions

The results presented can play an important role in the agricul-
tural context, given that estimates of technical efficiency by
themselves provide specific and technical information to poli-
cy makers. For example, it is possible to knowwhich countries

lead, in technical efficiency terms, at any moment in time.
Provided the sample period considered, it also allows seeing
which of these countries are using in the best sense the CAP.

The path of adjustment of agriculture of different countries
in this period must be unequal. Some countries’ agricultural
sectors were already allocating resources to the most compet-
itive agricultural options, so they are expected to be more
efficient with little change in technical efficiency patterns.
Other countries have experienced with CAP different agricul-
tural orientations than before. For these, we would expect,
when learning curves are sufficiently overcome, and as CAP
decoupling measures are introduced, to becomemore efficient
than before. There seems to be a link between the less efficient
countries and the countries that later joined the EU and the
CAP which may explain this lack of learning curve.

In this article, we can also infer that resources productivity,
domestic material consumption, and subsidies are very impor-
tant factors explaining the estimated efficiency scores, either
using DEA or SFA with GCE. The relevance of resource pro-
ductivity to the technical efficiency of the sector shows that
agricultural policy should encourage the rational and efficient
use of resources, including also environmental criteria. The neg-
ative impact of organic crops on efficiency can show that given
that these practices are still recent in many countries, it is neces-
sary to allow time for a learning curve to be built, to improve
efficiency in this type of crop. Finally, the importance of subsi-
dies to animal production as a positive influence on efficiency,
and the fact that these subsidies are coupledwith production, can
show the importance of turning to other types of subsidies
coupled with production, namely subsidies to agricultural prod-
ucts (as these showed a negative influence on efficiency).

This article has the limitation of not considering all possible
sources of influence over technical efficiency scores, as only a
few number of available possible explanatory variables were
used. As such, this work could be improved in the future by
including more variables and by extending the analysis period
tomore recent years, which will only be possible as time goes by
and data becomes available. Moreover, given the referred impor-
tance of regional aspects in Europe for the results of productivity
and efficiency, it would be interesting to assess whether variables
such as soil type, infrastructure, and climate are significant.
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Appendix

Table 3 DEA efficiency estimates for 27 European countries, by year

2005 2006 2007 2008 2009 2010 2011 2012

Belgium 0.94 0.87 0.75 0.70 0.74 0.39 0.38 0.36

Bulgaria 0.46 0.41 0.20 0.32 0.36 0.33 0.30 0.27

Czech Republic 0.32 0.27 0.21 0.30 0.29 0.19 0.25 0.21

Denmark 0.97 0.94 0.85 0.95 1.00 0.83 0.98 0.87

Germany 0.62 0.63 0.60 0.74 0.60 0.45 0.35 0.32

Estonia 0.39 0.38 0.39 0.36 0.39 0.30 0.31 0.35

Ireland 0.52 0.33 0.30 0.30 0.25 0.21 0.21 0.19

Greece 0.90 0.84 0.83 0.80 0.85 0.83 0.78 0.76

Spain 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

France 1.00 1.00 0.95 1.00 0.93 0.87 0.92 0.82

Italy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96

Cyprus 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Latvia 0.30 0.28 0.27 0.30 0.33 0.23 0.20 0.25

Lithuania 0.33 0.33 0.30 0.33 0.33 0.24 0.30 0.43

Luxembourg 0.78 0.94 1.00 0.90 1.00 1.00 1.00 1.00

Hungary 0.29 0.28 0.18 0.31 0.24 0.19 0.23 0.18

Malta 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Netherlands 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Austria 0.57 0.57 0.55 0.62 0.53 0.49 0.59 0.50

Poland 0.24 0.24 0.24 0.25 0.25 0.24 0.23 0.25

Portugal 0.55 0.60 0.54 0.54 0.51 0.49 0.49 0.50

Romania 0.50 0.51 0.36 0.37 0.37 0.32 0.34 0.33

Slovenia 0.53 0.47 0.46 0.40 0.47 0.47 0.52 0.42

Slovakia 0.26 0.26 0.19 0.25 0.26 0.16 0.15 0.13

Finland 0.52 0.54 0.55 0.57 0.59 0.56 0.57 0.48

Sweden 0.49 0.53 0.51 0.52 0.45 0.41 0.46 0.47

United Kingdom 0.75 0.75 0.65 0.73 0.60 0.59 0.61 0.60

Table 4 SFAwith GCE efficiency estimates for 27 European countries,
by year

2005 2006 2007 2008 2009 2010 2011 2012

Belgium 0.68 0.65 0.56 0.62 0.60 0.40 0.40 0.36

Bulgaria 0.69 0.62 0.39 0.55 0.57 0.47 0.42 0.39

Czech Republic 0.58 0.53 0.41 0.54 0.52 0.38 0.43 0.35

Denmark 0.68 0.68 0.61 0.69 0.72 0.66 0.70 0.68

Germany 0.61 0.60 0.54 0.65 0.63 0.52 0.44 0.44

Estonia 0.67 0.66 0.60 0.66 0.65 0.53 0.53 0.51

Ireland 0.71 0.61 0.53 0.58 0.52 0.44 0.42 0.36

Greece 0.74 0.72 0.68 0.72 0.72 0.66 0.64 0.64

Spain 0.92 0.94 0.97 0.96 0.96 0.97 0.96 0.95

France 0.79 0.79 0.76 0.78 0.79 0.78 0.78 0.77

Italy 0.73 0.78 0.76 0.79 0.78 0.72 0.69 0.70

Cyprus 0.88 0.88 0.91 0.89 0.89 0.91 0.90 0.90

Latvia 0.59 0.54 0.48 0.56 0.56 0.40 0.36 0.39

Lithuania 0.62 0.59 0.53 0.61 0.59 0.45 0.49 0.57

Luxembourg 0.68 0.76 0.76 0.76 0.82 0.83 0.78 0.82

Hungary 0.55 0.54 0.39 0.58 0.52 0.37 0.39 0.32

Malta 0.74 0.73 0.65 0.74 0.69 0.59 0.56 0.49

Netherlands 0.62 0.61 0.61 0.66 0.67 0.67 0.67 0.68

Austria 0.64 0.67 0.66 0.71 0.66 0.61 0.63 0.59

Poland 0.52 0.46 0.42 0.46 0.50 0.41 0.38 0.39

Portugal 0.67 0.73 0.67 0.70 0.68 0.60 0.57 0.57

Romania 0.64 0.68 0.57 0.59 0.61 0.48 0.47 0.45

Slovenia 0.57 0.58 0.53 0.55 0.57 0.47 0.45 0.40

Slovakia 0.55 0.52 0.39 0.50 0.50 0.32 0.28 0.24

Finland 0.59 0.62 0.58 0.64 0.65 0.62 0.61 0.55

Sweden 0.58 0.60 0.53 0.58 0.54 0.50 0.52 0.51

United Kingdom 0.73 0.72 0.64 0.70 0.63 0.64 0.65 0.64
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Table 6. Results of fixed effects
and quantile regression estimates
(DEA method)

Independent variables FE-VCE Quantile regression

Q (0.10) Q (0.25) Q (0.50) Q (0.75) Q (0.90)

DMC (Biomass) − 0.00*** − 0.00 − 0.00 − 0.00 0.00 0.00**

Resource productivity − 0.028 0.03* 0.02* 0.02* 0.04* 0.08*

Crops products 0.00*** − 0.00*** − 0.00*** − 0.00 0.00 − 0.00

Organic crop area − 0.011** 0.00*** 0.00 − 0.00 − 0.00*** − 0.01*
Subsidies on product cereals 0.00 − 0.00 − 0.00 0.00 − 0.00*** − 0.00***
Subsidies on product animals − 0.00 0.00*** 0.00* 0.00* 0.00 0.00*

Pig population − 0.00 0.00 0.00 0.00 0.00 0.00

Bovine population 0.00* 0.00 0.00*** 0.00** − 0.00 − 0.00**
Constant 0.32** 0.3167* 0.48* 0.58* 0.67* 0.82*

R2/pseudo R2 0.23 0.19 0.22 0.20 0.21 0.33

Note: Dependent variable: scores of efficiency (based on the DEA model). FE-VCE stands for fixed effects with
robust standard errors. *, **, *** means significant at 1, 5, and 10%, respectively. The number of observations
refers to the total N in our sample = 216

Table 7. Specification and
diagnosis tests Pooled Random effects Fixed Effects

Panel A: Model 1—DEA specification

Modified Wald test (χ2) 262.34***

Pesaran’s test 2.72*** 1.89*

Frees’ test 1.18*** 0.58**

Friedman’s test 17.32 14.70

Wooldridge test F(N(0.1)) 14.20***

Panel B: Model 2 SFA–GCE specification

Modified Wald test (χ2) 1023.29***

Pesaran’s test 13.68*** 10.54***

Frees’ test 5.13*** 3.75***

Friedman’s test 48.12*** 41.58**

Wooldridge test F(N(0.1)) 93.19***

Note: Dependent variable: scores of efficiency (based on the DEA model and SFA-GCE methods). *, **, ***
means significant at 1, 5, and 10%, respectively

Attending to the results of diagnosis tests presented in table A.5, we reject the null hypothesis of no cross-sectional
dependence for the Agricultural sector in the panel of 27 countries of EU. This also happens when we assume two
specifications of the two parametric and non-parametric models obtained through specifications DEA and SFA–
GCE estimators. Besides, according to table A.5 results, we reject at the 1% level the null hypothesis of no first
order autocorrelation for. A modified Wald statistics for group wise heteroscedasticity was used to analyze the
existence of heteroscedasticity. Statistical evidence suggests the presence of contemporaneous correlation across
all panel and, through both fixed and random effects model, at 1 and 5% significance level. This led us to the
rejection of the null hypothesis of cross sectional independence according to Free’s Test and Pesaran’s Test, but
not to reject the null hypothesis of cross sectional independence according to Friedman’s Test under method 1 of
DEA, but to reject the null of cross sectional independence under SFA-GCE method 2 considering all test results
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