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Abstract
Due to directly receiving high volume of untreated urban and industrial sewage and in turn transferring the pollutants to fish and
back to humans, the International AnzaliWetland has been considered to be urgently registered in theMontreux Record. Hence, the
present study was aimed to determine the spatial distribution of the linear alkylbenzenes (LABs) in surface sediments of the wetland
and its sewage contamination situation. The surface sediments (sampling stations = 167) were collected from the western, eastern,
southwest, and central regions of the wetland. The samples were extracted, fractioned, and then analyzed using gas chromatogra-
phy–mass spectrometry (GC-MS). The concentration of LABs in the sediment samples revealed a range from 394.12 to
109,305.26 ng g−1 dw. The concentrations of ΣLABs in the eastern region were significantly higher than that in the other regions.
The occurrence of low ratio of internal to external isomers (I/E ratio) of LABs (from 0.65 to 1.30) and D% (from − 0.07 to 24.13)
implied effluent row or poorly untreated sewage into the wetland. No correlation was observed between the detected LAB
concentrations with total organic carbon (TOC) and grain size. Taken together, regional anthropogenic inputs are the controlling
factors for the observed spatial distributions of ∑LABs in the International Anzali Wetland. The findings suggested that LABs are
powerful indicators to trace anthropogenic sewage contamination and also highlighted the necessity of sewage treatment plants to
be founded around the International Anzali Wetland, especially in the vicinity of the eastern and central regions.
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Introduction

The aquatic ecosystems, especially coastal areas andwetlands,
have historically been selected to dispose of human wastes.

Even today, sewage is one of the main problematic and
chronic sources of contaminants in aquatic environments
because of some limitations in sewage treatment plants in
coastal areas (Islam and Tanaka 2004). Tracking anthropo-
genic pollutants is of high importance to evaluate the type,
risk, concentration, and ultimate fate of organic contami-
nants discharged into the aquatic environment and their im-
pacts on these ecosystems and human health (Venkatesan
et al. 2010). Anthropogenic materials transported to the
aquatic environments can be deposited into sediments.
Hence, the investigation into sedimentary history could be
useful to discover the terrestrially originated materials and
in turn would help evaluate the manmade impacts on the
coastal ecosystems (Long et al. 1996; Vails et al. 1990;
Chalaux et al. 1995).

During the past decades, the deposition of chemical anthro-
pogenic pollutants, such as herbicides and linear alkylbenzenes
(LABs), has significantly been increased and accumulated in
the bottom sediments (Martins et al. 2010; Masood et al.
2016). LABs are the materials with a C10–C14 normal alkyl
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chain. These materials are industrially sulfonated to pro-
duce linear alkylbenzene sulfonates (LAS), one of the
worldwide anionic surfactants extensively used to manu-
facture detergents. During LAS synthesis, about 1–3% of
LABs escape sulfonation, thereby releasing LABs into do-
mestic wastewater and in turn discharging into aquatic en-
vironment (Isobe et al. 2004).

LABs consist of external and internal isomers (n = 26) with
different susceptibility to aerobic microbial degradation (i.e.,
the external isomers with substitutional positions near the ter-
minal of the alkyl chain are more biodegradable than the ter-
minal ones). Therefore, isometric distribution of LABs pro-
vides information on their biodegradability and also can be
applied to determine the type of sewage (untreated sewage
vs. secondary effluents) discharged into the aquatic envi-
ronments (Martins et al. 2010; Raymundo and Preston
1992; Takada et al. 1992). Due to their high hydrophobicity,
LABs settle down on surface sediments and under anaero-
bic condition residue without any microbial degradation for
many years and thus are considered as molecular markers
for tracking municipal wastewater (Martins et al. 2014; Wei
et al. 2014).

The International Anzali Wetland, with approximately
200 km2 and watershed area of about 374,000 ha, is located
in the southwest of the Caspian Sea and consists of distinctly
eastern, western (Abkenar), southern (Siakeshim), and central
regions. Due to its high ecological importance (e.g., annually
hosting more than 150 species of overwintering migrant
birds), the wetland was registered as an international lagoon
in Ramsar convention in 1970 and also as an BImportant
Bird Area^ by Bird Life International (Evans 1994).
However, due to directly receiving high volume of raw
and poorly treated wastewaters from surrounding cities, in-
cluding Rasht, Bandar-e Anzali, Rezavanshahr, Shaft,
Sumesara, Masal, and Fuman, this wetland has been con-
sidered to be urgently registered in the Montreux Record
(Rezaitabar et al. 2017; Sajedipour et al. 2017). This paper
is the first report on sewage pollution monitoring using
LABs as molecular markers in sediments in Iran. Hence,
the present study was aimed to assess the current anthropo-
genic impacts on the aquatic environment of the
International Anzali Wetland by examining the spatial dis-
tribution, compositional profile, and molecular indices of
sediment LABs as well as demonstrates the efficiency of
sewage treatment plants in this area.

Material and methods

Sampling

From October to November 2016, superficial sediment sam-
ples (upper 5 cm (to indicate modern input of target

contaminants), sampling station = 167) were collected across
the International Anzali Wetland (i.e., from its western,
eastern, southern west, and central regions). The sampling
was according to a systematic-random design in order to
cover the whole wetland and represent different types of
discharging domestic sewage into the wetland (Fig. 1).
The sediment samples were obtained using a stainless steel
Van Veen grab and placed on clean aluminum foil bags, and
then kept in a cooler box containing dry ice and stored at −
20 °C until further analysis.

Extraction and analysis of LABs

Sample preparation and the extraction and analysis of LABs
were conducted according to the previous published studies
and protocols with some modifications (Dauner et al. 2015;
Hartmann et al. 2000; Martins et al. 2010, 2014). Briefly,
sediment samples (10 g) were Soxhlet extracted for 8 h using
hexane (95% n-hexane) and dichloromethane (1:1). The ex-
traction process was conducted through an activated copper
treatment to eliminate elemental sulfur. The obtained ex-
tract was reduced to 2 ml following rotoevaporation and
then submitted to a clean-up procedure in a chromatograph-
ic column, using 5% deactivated alumina and silica. The
extractions were eluted with 10 ml of n-hexane to obtain
LABs (first fraction). The LAB fraction was then trans-
ferred to an amber vial (2 ml) and evaporated via a gentle
stream of nitrogen. The remained semi-dried substance was
resolved in 100 μl of 1 mgl-1 p-terphenyl-d14, an injection
external standard, and finally, 1 μl of the dissolved sub-
stance was injected into GC-MS (Agilent Technologies,
Avondale, PA, USA). All the authentic standards for
LABs were purchased from Sigma-Aldrich Chemical
Company (St. Louis, MO, USA). All the solvents used for
analyses were of chromatographic grade from Merck.

Instrumental analysis

The instrumental analysis of 26 LABs was conducted by
GC-MS using a 7890A Series gas chromatograph
interfaced with a C5975 MSD split/splitless injector. A
30-m fused silica capillary column of 0.25-mm internal
diameter (i.d.) and a DB-5MS capillary column of
0.25-μm film thickness were used. Helium was used as
the carrier gas at a constant flow rate of 1.2 ml/min. The
injection port was maintained at 310 °C, and the sample
was injected in the splitless mode followed by a purge
1 min after the injection. The column temperature was held
at 70 °C for 2 min, programmed at 30 °C/min to 150 °C and
then 4 °C/min to 310 °C, and held for 10 min. The hydro-
carbons were identified with comparison of the retention
times with those of the known standards of LABs.

Environ Sci Pollut Res (2018) 25:20920–20929 20921



Twenty-six individual alkylbenzenes were quantified by
comparing the integrated peak area by the summed selected
ion monitor (m/z = 91 + 105) with the peak area of the injec-
tion external standard (p-terphenyl-d14; m/z = 244) (see
supplementary data Fig. S1).

Blanks were arranged periodically with each batch of the
samples (10 samples/batches) to determine contamination,
and the values were always less than the detection limit.
Recoveries were calculated by spiking a known concentration
of SIS (phenanthrene-d10) into the sample followed by

Fig. 1 Map of the study area and locations of sediment sampling sites in International Anzali Wetland

Table 1 The concentrations of
linear alkylbenzenes (ng g−1) in
the surface sediments of the
International Anzali Wetland,
Guilan Province, Iran

West Siakeshim Center East

∑-C10 LABs 25.27–322.28 12.51–192.89 23.13–8,791.70 72.16–5,458.71

∑-C11 LABs 127.85–760.33 42.78–352.88 56.09–16,658.95 131.05–1,899.22

∑-C12 LABs 280.22–965.53 106.53–498.74 89.01–29,343.88 204.83–26,876.47

∑-C13 LABs 262.38–1,474.76 154.32–722.12 180.54–33,423.11 280.71–32,126.18

∑-C14 LABs 39.60–1,065.95 50.78–446.92 94.61–21,087.62 184.50–14,992.50

∑-LABa 1,003.15–3,964.95 394.12–2,205.12 504.60–109,305.23 925.59–91,353.08

I/Eb 0.66–1.30 0.67–1.11 0.0.65–0.95 0.66–1.05

D%c 0.37–24.13 0.75–18.76 − 0.07–13.24 0.39–16.79

C13/C12d 0.77–2.38 1.01–2.10 0.84–2.40 1.08–2.49

L/Se 0.56–6.70 1.33–6.30 1.40–12.46 1.91–6.81

a∑LAB = sum of the 26 LAB congeners
b I/E = (6-C12LAB + 5-C12LAB) / (4-C12LAB + 3-C12LAB + 2-C12LAB)
c LAB degradation (%) = 81 × log (I/E ratio) + 15
d C13/C12 = (6-,5-,4-,3-, 2-C13) / (6-, 5-, 4-, 3-, 2-C12LAB)
e L/S = (5-C13LAB + 5-C12LAB) / (5-C11LAB + 5-C10LAB)
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performing the entire analytical procedure. The surrogate re-
coveries in all samples ranged from 81 to 110% and used for
the recovery correction.

Calculations

Reproducibility was determined by five replicate analyses of
the sediment extracts, which showed acceptable relative stan-
dard deviation (RSD) values (1.1–9.31 for LAB compounds).

Limits of detection (LOD) of the analytical method were
0.05–0.20 ng/g for the for LAB series.

In addition, total organic carbon (TOC) in the sediment was
determined by ignition of the dried sediments at 450 °C for 6 h
(Dean 1974; Veres 2002; Santisteban et al. 2004).

Statistical analysis

The descriptive statistics and other statistical analyses were
performed using SPSS (version 17.0). The distribution of the
data was tested for normality by Kolmogorov–Smirnov (K-S)
test. Analysis of variance (ANOVA) was undertaken to eval-
uate the significance of the differences between LAB

Table 2 The concentrations of
LABs and I/E ratios in surface
sediments around the world
compared to our results from
International Anzali Wetland

Location ∑ LABsa (ng g−1) I/E ratiob Reference

Coastal shelf of China 5.6–77 0.5–1.2 Wei et al. (2014)

Dongjiang River 1.5–410 0.6–1.4 Zhang et al. (2012)

Outfalls of paper mills 1,160–3,270 0.8–1.3 Zhang et al. (2012)

Chaohu Lake 19–5,720 0.8–2.1 Wang et al. 2012)

Coastal zone off South China 11–160 0.5–1.2 Liu et al. (2013)

Pearl River Estuary 5.8–26 0.6–1.5 Luo et al. (2008)

Northern South China Sea 2.5–23 0.2–0.9 Luo et al. (2008)

Zhujiang River 59–2,330 0.9–1.5 Luo et al. (2008)

Dongjiang River 97–566 0.7–1.9 Luo et al. (2008)

Xijiang River 21–69 0.6–1.0 Luo et al. (2008)

Sumidagawa River 560–12,110 1.1–1.7 Takada and Ishiwatari (1987)

Tamagawa River 10–15,790 1.3–1.9 Takada and Ishiwatari (1987)

Arakawa River) 720–1,720 1.7–2.0 Takada et al. (1992)

Victoria Harbor 410–23,500 1.8–2.6 Hong et al. (1995)

Santos Bay and Estuary 16.9–431 Medeiros and Bıcego (2004)

Santos Bay < DL–117 1.1–2.9 Martins et al. (2008)

Barcelona Harbor 1,200–53,100 0.6–5.5 Díez et al. (2006)

Jakarta Bay 235–86,700 0.9–2.9 Rinawati et al. (2012)

Jakarta City 1,559,373 1.3 Alkhadher et al. (2015)

Admiralty Bay < DL–46.5 0.8–0.9 Martins et al. (2012)

Santa Monica Bay 3–9,342 Venkatesan et al. (2010)

Tokyo 3.0–5,860 1.2–6.0 Isobe et al. (2004)

Thailand 3.0–14,100 0.7–5.9 Isobe et al. (2004)

Malaysia 4.0–8,590 0.7–4.8 Isobe et al. (2004)

Philippines 56–13,000 0.6–2.9 Isobe et al. (2004)

Vietnam 3.0–8,650 0.6–2.2 Isobe et al. (2004)

Cambodia < 3.0–4,200 0.8–1.7 Isobe et al. (2004)

Indonesia < 3.0–42,600 0.9–2.1 Isobe et al. (2004)

India 2.0–4,450 0.5–2.1 Isobe et al. (2004)

Southern California Bight 1.7–93 0–4.6 Macıas-Zamora and
Ramırez-Alvarez (2004)

Tokyo Bay 1,000–3,000 1.3–3.1 Takada et al. (1992)

Anzali Wetland 394.09–109,305.24 0.66–1.32 This study

a∑LAB= sum of the 26 LAB congeners
b I/E = 6-C12LAB + 5-C12LAB/4-C12LAB + 3-C12LAB + 2-C12LAB
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concentrations in four distinct regions of the International
Anzali Wetland, i.e., eastern, Siakeshim, central, and western
ones. Pearson’s correlation analysis was performed to test the
relationship between the total LAB concentrations with TOC
and grain size fractions. The ordinary kriging interpolation
method was carried out with ArcGIS 9.3 (ESRI, Redlands,
CA, USA) to characterize the spatial distribution of LABs in
sediments and also to assess sewage contamination.

Results and discussion

Twenty-six congeners of LABs were quantified in all of the
Anzali Wetland surface sediments. The total LAB concentra-
tions showed a large scale of different concentrations, with an
arithmetic mean concentration of 5930.25 ng g−1 dw and a
range of 394.12 (station 112) to 109,305.2 ng g−1 dw (station
41) (Table 1). These detected total LAB concentrations were
much lower than those reported in the Jakarta City (Alkhadher
et al. 2015), but comparable or greater than those in the coastal
shelf of China, Dongjiang River, outfalls of paper mills,
Chaohu Lake, coastal zone off South China, Pearl River
Estuary, northern South China Sea, Zhujiang River,
Dongjiang River, Xijiang River, Sumidagawa River, Arakawa
River, Victoria Harbor, Santos Bay and Estuary, Santos Bay,
Barcelona Harbor, Jakarta Bay, Admiralty Bay, Santa Monica
Bay, Tokyo, Thailand, Malaysia, Philippines, Vietnam,
Cambodia, Indonesia, India, Southern California Bight, and
Tokyo Bay (Díez et al. 2006; Isobe et al. 2004; Koike et al.
2012; Liu et al. 2013; Luo et al. 2008; Macıas-Zamora and
Ramırez-Alvarez 2004;Martins et al. 2008, 2012; Medeiros
and Bıcego 2004; Rinawati et al. 2012; Takada and Ishiwatari
1987; Takada et al. 1992; Venkatesan et al. 2010; Wang et al.
2012; Wei et al. 2014; Zhang et al. 2012) (Table 2). Hence, the
sedimentary LAB concentrations demonstrated that the amount
of discharged sewage into the International Anzali Wetland is
fairly high and considerable.

Fig. 2 3D spatial distributions of LABs of the sediments in International
Anzali Wetland

Fig. 3 Spatial distribution of
LABs in International Anzali
Wetland
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ΣLAB concentrations showed significant levels (p < 0.05)
between the regions of the wetland and demonstrated different
ranges: west, from 1003.15 to 3964.95; center, from 504.6 to
109,305.26; east, from 925.59 to 91,353.08; and Siakeshim,
from 394.12 to 2025.12 ng g−1 dw (Table 1 and Fig. 2), and
overall, its order was eastern > central > western > Siakeshim,
respectively (Figs. 2 and 3). The observed spatial distribution
of LAB concentration in the sediments could be attributed to
higher urbanization, industrialization, and tourist attraction of
Anzali and Rasht Cities, surrounding the eastern and central
regions, than the other ones, and thereby discharging larger
amount of poorly treated or untreated domestic sewage and in
turn more LABs into these regions. Further cause of spatial
difference in LAB concentration in the sediments could be
related to release of domestic wastewater from boats following
intensive fishing activities that occurred in the eastern and
central regions.

Based on observational information, the eastern and central
parts of the wetland daily receive untreated domestic wastes in
which pathogenic microorganisms, steroid hormones, phar-
maceuticals, and personal care products could exist, and these
wastes are from hot spot areas such as hospitals, hotels, laun-
dries, schools, governmental institutes, restaurants, parks, and
shopping centers. As the household detergents are the main
source of LABs in the environment, the population may be a
major factor in distribution of LABs in the aquatic environ-
ment (Ni et al. 2008).

The lowest detected concentration of LABs in the
Siakeshim (station 112) and western parts represent lower
human activities and lesser utilization of synthetic detergents
as well as higher agricultural activities in the their surrounding
area. In addition, due to being located far from the densely
populated urban areas, these two regions illustrated lower
LAB concentrations.

The isometric composition and chain length distribution of
LABs are shown in Table 1 and Fig. 4, respectively. In most of

the sampling stations, C12 and C13 homologs (6-C12, 6-C13,
and 5-C13) demonstrated the highest relative abundances
(about 30 and 40%, respectively), whereas C10 (5-C10)
showed the lowest percentages (Fig. 5). Support for these data
have come from studies of LABs in bottom sediments at the
near-outfall and mid-shelf sites of Southern California, Santos
Estuary of southeastern Brazil, Babitonga Bay Brazil, and
Perlis River of Peninsular Malaysia, in which sediments were
enriched with C12 and C13 homologs, while the proportions of
C10 homologs were found to be lower (Magam et al. 2016;
Martins et al. 2010, 2014; Phillips et al. 2001). It has been
suggested that the abundance difference between these homo-
logs could be attributed to selective degradation or higher
solubility of the short homolog groups (e.g., C10) during set-
tling of effluent particles in the environment. However, LABs
with longer alkyl chain have lower vapor pressure and are less
volatile compared to those with shorter alkyl chain (Zhang
et al. 2012). In addition, given that the relative abundance of
LAB isomers in commercial detergents and, in turn, in raw
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sewage are stable (Takada and Ishiwatari 1987), the observed
significant changes in isomeric composition in the treated
wastewater and coastal sediment could be ascribed to selective
biodegradation (Isobe et al. 2004).

The (bio)degradation of LABs mainly occurs in aerobic
conditions (Takada et al. 1992). This phenomenon is broadly
evaluated using some indicators such as I/E ratio (6-C12LAB
+ 5-C12LAB/4-C12LAB + 3-C12LAB + 2-C12LAB), C13/
C12 =ΣC13-LAB/ΣC12-LAB, and L/S (5-C13 + 5-C12)/(5-
C11 + 5-C10) (Gustafsson et al. 2001; Luo et al. 2008). The
estimated values for all of the sediment samples showed a
range of 0.65 to 1.30 (with an average of 0.80; see Table 1,
supplementary data Fig. S2, and Figs. 6, 7, 8, and 9). The
estimated low I/E value for the International Anzali Wetland
could be mainly due to receiving poorly treated and untreated

sewage effluent as well as anaerobic condition in/on the sed-
iments. This value is similar to those recorded previously for
commercial detergents in the southern China (Luo et al. 2008)
and significantly lower than those found in sludge and
suspended particles from wastewater (Luo et al. 2008;
Takada and Ishiwatari 1987).

In a study conducted by Takada and Ishiwatari (1990), it
was suggested that D (%) = 81 × log (I/E ratio) + 15 (r2 = 0:96)
exponentially increase following increase in I/E. Similarly,
owing to the selective degradation of alkylbenzenes with long
chains relative to those with short chains, the values of ΣC13-
LAB/ΣC12-LAB and L/S in detergent and untreated sewage
were significantly lower than those in river water (Ni et al.
2008) and sediment (Luo et al. 2008). The average D% value
was 6.88 (ranging from − 0.07 to 24%). These results

Fig. 7 I/E, L/S, and C13/C12 ratios
in sediments collected from the
Siakeshim section of International
Anzali Wetland

Fig. 6 I/E, L/S, and C13/C12 ratios
in sediments collected from the
west section of International
Anzali Wetland
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suggested weak biodegradation of LABs or discharging raw
sewage into the International Anzali Wetland.

The ΣC13-LAB/ΣC12-LAB and L/S values ranged from
0.77 to 2.49 (mean = 1.33) and from 0.56 to 12.46 (mean =
3.42), respectively (Table 1 and Figs. 6, 7, 8, and 9). The
results suggest that long-chain alkylbenzenes were largely
maintained in the sediment of International Anzali Wetland
relative to short-chain alkylbenzenes. In addition, these indi-
ces were slightly higher than those found in commercial de-
tergents (Luo et al. 2008; Ni et al. 2008) but significantly
lower than those in riverine runoff from the Pearl River
Delta (Ni et al. 2008).

Pearson correlation demonstrated a weak positive corre-
lation between TOC and grain size (%silt and %clay) with
∑LABs (Fig. 10), although the spatial variability of ∑LAB

concentrations in sediments can be a result of both TOC
content and input intensities; that is, a good positive corre-
lation between LABs and organic matter content is expect-
ed because of the hydrophobicity of LAB molecules
(KOW ranging from~7 to ~9). These data corroborate the
findings of other researchers (Hassanzadeh et al. 2014;
Mortazavi et al. 2012; Wang et al. 2012; Yancheshmeh
et al. 2014) who reported weak correlations between total
DEHP, OP, LABs, PAHs, and TOC, and thus implying that
TOC and grain size could not be considered as a signifi-
cant factor in distribution of LABs in International Anzali.
Therefore, the observed spatial variability of ∑LAB con-
centrations can be attributed to direct inputs and to differ-
ent transport processes for TOC and ∑LABs as well as to
different sources of LABs and TOC inputs (Vaezzadeh

Fig. 8 I/E, L/S, and C13/C12 ratios
in sediments collected from the
center section of International
Anzali Wetland

Fig. 9 I/E, L/S, and C13/C12 ratios
in sediments collected from the
east section of International
Anzali Wetland
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et al. 2015), suggesting regional anthropogenic inputs as
controlling factors for the observed spatial distributions of
∑LABs in the Anzali Wetland.

Conclusion

This study provides the first data on the contamination levels
of 26 ∑LABs in the sediments of the International Anzali
Wetland, Guilan Province, Iran, and also, it could be a baseline
for future monitoring and management of LAB compounds in
the wetland. In addition, the data demonstrated that LABs are
powerful indicators to trace anthropogenic sewage contami-
nation and highlighted the necessity of sewage treatment
plants to be founded around the wetland (especially around
of eastern and central regions). The LAB concentrations in
surface sediments of International Anzali Wetland were high
as compared to other countries around the world and thus
indicating high ecological risk on the wildlife and may endan-
ger human health in the region. Moreover, LABs displayed no
correlation with TOC concentration and grain size (%silt and
%clay), suggesting that TOC and grain size are ineffective
factors to control spatial distribution of ΣLABs in the
International Anzali Wetland sediments.
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