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Abstract
The super-efficiency directional distance function (DDF) with data envelopment analysis (DEA) model (SEDDF-DEA) is more
facilitative than to increase traditional method as a rise of energy efficiency in China, which is currently important energy
development from Asia-pacific region countries. SEDDF-DEA is promoted as sustained total-factor energy efficiency
(TFEE), value added outputs, and Malmquist-Luenberger productivity index (MLPI) to otherwise thorny environmental energy
productivity problems with environmental constraint to concrete the means of regression model. This paper assesses the energy
efficiency under environmental constraints using panel data covering the years of 2000–2015 in China. Considering the envi-
ronmental constraints, the results showed that the average TFEE of the whole country followed an upward trend after 2006. The
average MLPI score for the whole country increased by 10.57% during 2005–2010, which was mainly due to the progress made
in developing and applying environmental technologies. The TFEE of the whole nation was promoted by the accumulation of
capital stock, while it was suppressed by excessive production in secondary industries and foreign investment. The primary
challenge for the northeast of China is to strengthen industrial transformation and upgrade traditional industries, as well as
adjusting the economy and energy structure. The eastern and central regions of the country need to exploit clean- or low-
energy industry to improve inefficiencies due to excessive consumption. The western region of China needs to implement
renewable energy strategies to promote regional development.

Keywords Energy efficiency . Super-efficiency directional distance function . Data envelopment analysis . Environmental
constraint . Total factor energy efficiency .Malmquist-Luenberger productivity index . Generalized least squares method

Introduction

Problem statement

China has implemented many effective energy development
strategies in recent years, such as the BOne Belt, One Road^
strategy, which plays a powerful role in optimizing and pro-
moting energy structure. These strategies have provided
China with low-cost access to energy and high environmental
efficiency and have effectively enhanced China’s status in

global energy governance. Compared to 2015, in 2016 coal
consumption in China fell by 1.6% and coal production fell by
7.9%, which is the largest annual decline since records began
in 1981. Also in 2016, China’s carbon dioxide (CO2) emis-
sions fell for the second consecutive year, with a decline of
0.7% compared to 2015 levels. Nonetheless, China’s energy
consumption in 2016 still accounted for 23% of global prima-
ry energy consumption (BP 2017).

According to the Global Energy Architecture Performance
Index Report (2017), among the 127 countries for which glob-
al energy data was available, the energy architecture perfor-
mance index (EAPI) score of China in 2017 was only 0.53
(against a global mean of 0.8), which resulted in the country
being ranked at 95. China lags behind other global super-
powers, with high levels of energy intensity (ranked 107)
and high CO2 emissions from electricity production (ranked
102) impacting on its comparative performance. The rapid
economic development in China has resulted in a large
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demand for energy, and the economic model of Bhigh energy
consumption, low output^ has been a constraint on the
country’s economic development. Therefore, it is a priority
for countries such as China to improve their energy efficiency
and realize a resource-intensive economy.

Given the current levels of energy consumption and the
associated environmental pollution, it was clearly proposed
in the Benhanced action on climate change-China National
Autonomous contribution^ policy that peak CO2 emissions
will be reached by 2030, but that the peak should occur as
early as possible. Compared with 2005, CO2 emissions per
GDP in 2030 are predicted to fall by 60–65%, and the propor-
tion of non-fossil fuels in primary energy consumption will be
around 20%. The efficient use of clean energy and rational
distribution of energy production is an important strategic ob-
jective of the Bthirteenth Five Year Plan^. The amount of
energy produced and consumed in China is the largest in the
world; however, there are a several issues within the energy
supply and usage patterns, such as an irrational energy struc-
ture, energy inefficiency, little use of renewable energy, and
low levels of safe energy use. The characteristics of energy
efficiency vary among the provinces in China, which is largely
due to the imbalances in regional economic development and
regional energy endowment, the process of industrialization,
and the industrial structure (Li et al. 2014).

Literature review

In recent years, data envelopment analysis (DEA) has been the
mainstream method used to determine energy efficiency. Hu
and Wang (2006) first applied the DEA model to measure the
energy efficiency of China from the perspective of multiple-
input factors, followed by a series of similar studies (Wang
and Zhou 2008; Honmas and Hu 2008; Ma et al. 2011; Wu
et al. 2012; Shen and Cheng 2015). However, factors of pro-
duction constraint rather than environmental constraint were
considered, and therefore the undesirable outputs (e.g., pollu-
tion) of energy consumption were not considered. This would
distort the evaluation of changes in social welfare and eco-
nomic performance generated by energy usage. Pollution de-
rived from inefficient production technology and the costs of
reducing pollutant emissions determine environmental effi-
ciency. Hence, previous studies have measured total factor
productivity (TFP) by introducing environmental factors and
selecting pollutants as undesirable outputs in the DEA model
(Goto et al. 2014; Wang et al. 2014; Suzuki and Nijkamp
2016). Traditional DEA models cannot effectively deal with
undesirable outputs, and many previous studies have consid-
ered environmental efficiency by means of various modified
DEAmodels. In recent years, the directional distance function
(DDF) has been widely used for estimating both energy and
environmental efficiency, because it can expand output and

reduce input (Halkos and Trezemes 2012; Ramli et al. 2013;
Diabat et al. 2015; Lee et al. 2017; Halkos and Managi 2017).

Researchers in both China and overseas have considered
how to improve China’s energy efficiency and energy conser-
vation. Measurement methods and factors influencing energy
efficiency at national and provincial levels have been investi-
gated, and a series of valuable conclusions and policy recom-
mendations have been obtained. Most studies have focused on
capital, employees, energy consumption, and investment indi-
cators to measure provincial energy efficiency under environ-
mental constraints (Guo et al. 2015; Chen et al. 2015;
Sueyoshi and Yuan 2015). Based on the slacks-based measure
(SBM), He et al. (2016) found that the excessive emission of
an undesirable output (sulfur dioxide, SO2) and redundant
resources were the main causes of the low energy efficiency
in terms of outputs to the atmospheric environment. Tian et al.
(2017) used the DDF approach to estimate the energy–carbon
performance of the Chinese transportation sector. These
models can be used for a static comparison at the same point,
but cannot be used for a dynamic analysis of energy efficiency
in different provinces; therefore, the Malmquist-Luenberger
productivity index (MLPI) (Munisamy and Arabi 2015;
Emrouznejad and Yang 2016; Du et al. 2017; Arabi et al.
2017) and the window DEA model (Halkos and Tzereme
2009; Wang et al. 2013) have been proposed as solutions to
analyze the variation of energy efficiency over time. Based on
an innovation-driven model, Huang and Shi (2015) andWang
et al. (2016) compared the utilization efficiency of innovation
elements with that of traditional elements by introducing re-
search and development (R&D) factors.When considering the
maximization of economic capacity, SO2, CO2, and nitrogen
oxides (NOx) are used as the basic indicators of undesirable
outputs to measure energy efficiency. Table 1 summarizes the
previous application of different DEA models in terms of the
industries under environmental constraints and their input and
output indicators as production factors.

Considering the high energy consumption in provinces
and administrative departments, DEA models have been
used to investigate energy efficiency across provinces and
industries under environmental constraints, including the
environmental efficiency of industrial sectors, which ac-
counts for about 70% of the total energy consumption
(Meng et al. 2013; Chen et al. 2014; Wang et al. 2016),
and the utilization efficiency of industrial water resources
and efficiency of wastewater disposal (Mai et al. 2014;
Shen and Cheng 2015). Chang et al. (2013) measured the
total energy efficiency of the transport sector, which pro-
duced 22% of global CO2 emissions, as well as the elec-
tricity generation efficiency of coal-fired power plants,
which account for almost half (41%) of the world’s CO2

emissions (Du et al. 2016).
It is very important to analyze the factors that influence

total energy efficiency because they will enable the relation
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among economic development, energy consumption, and
environmental pollution to be investigated. There is a need
to embrace sustainable development, in order to achieve
economic development, improve energy efficiency, and
reduce pollution intensity. Yuan et al. (2009) argued that in-
dustrial structure, property rights, energy consumption, and
resource variables have a significant negative influence on
the TFEE and a weak positive correlation with energy price.
Zhang and Wu (2011) reported that the accumulative growth
rate of technical efficiency, GDP per capita (PG), volume of
exhaust emissions per GDP, the degree of technical progress,
foreign direct investment (FDI), and energy consumption per
capita had a variable influence on energy efficiency, while the
growth rate of technical efficiency and technical advances,
PG, extent of industrial production, and the volume of
exhaust emissions per GDP affected the growth rate of
energy efficiency. Li et al. (2013) used a two-step DEA model
to evaluate the TFEE and reported that industrial structure was
the most influential factor. Guo et al. (2015) considered that
factors of R&D investment and the degree of openness in a
country’s trade were positively correlated with energy effi-
ciency, compared to the negative impact of industrial
structure and system variables. From the perspective of
industry, Wang et al. (2016) reported that the industrial struc-
ture, energy structure, technological innovation, and market
competition had significant impacts on efficiency, which
would be suppressed by the increasing proportion of coal
used in energy generation, and be promoted by R&D. For
Tianjin, He et al. (2016) found that trade had a significant
positive impact on the atmospheric total energy efficiency,
while the factors of PG and industry structure was not
significant.

There are several consistent features within the past litera-
ture. First, the assessment of environmental constraints in
most studies has focused on either industries and departments
or has only been measured by referring to cross-sectional data
for China. Second, most investigators have considered a di-
verse range of undesirable outputs when estimating total en-
ergy efficiency. Third, various DEAmethods have been intro-
duced to calculate the energy efficiency, but they have been
applied without considering the limitations of DEAwhen ap-
plied to undesirable outputs. This study continued the analyt-
ical framework of Yuan et al. (2009) and Zhang and Wu
(2011), but also introduced pollution emissions as an undesir-
able output into the production process alongside the desirable
outputs. In this paper, it is more important than to explore the
conversion of energy efficiency with the aspects of space and
time; and to identify the differentiations of undesirable output
within the whole national and regional comparison each other.
Meanwhile, the design and selection of multiple decision-
making units are considering and lying on the production
frontier, all at once; they will result in the consistency of ef-
fective recognition. The merit of multi decision-making units

is enough to gain further validity and consistency in the study
issues of energy efficiency; hence SEDDF-DEA will be
adopted in the paper. In this research, the researcher discusses
a multi-methodology of a systems approach in designing an
input-output structure, which not only identifies the MLPI of
SEDDF-DEA in energy efficiency, but also develops the
means of regression model in value added outputs. First,
based on SEDDF, an input-oriented DEAmodel with constant
returns to scale (CRS) was applied to measure TFEE under
environmental constraints during the period of 2000–2014.
Second, the study adopted the MLPI combined with an unde-
sirable output model to evaluate the growth rate of environ-
mental efficiency and its decomposition into changes in tech-
nical efficiency and technology. Finally, a generalized least
squares (GLS) model was used to inspect the factors of
TFEE to provide a scientific basis for policy formulation re-
garding regional energy conservation.

The remainder of the paper is organized as follows:
BMethods^ presents the methodology of the SEDDF-DEA
and explains how the MLPI was constructed. In BData^, the
variables and data are described. BDiscussion^ presents an
analysis of the results of empirical research. BQuantitative
analysis of the factors affecting TFEE^ tests the factors that
influenced the TFEE, and the final section is a conclusion.

Methods

The study used a model that was a modification of those used
in Yuan et al. (2009), Zhang and Wu (2011), and Wang et al.
(2014).

TFEE

In the study, each province was considered to be a DMU,
which enabled an efficiency frontier to be built. Due to the
minimization of related inputs, a CRS-DEA model was ap-
plied to measure the TFEE across provinces in 2001–2016. A
traditional DEA model may have resulted in multiple-DMUs
simultaneously lying on the efficiency frontier, which would
be difficult to evaluate and compare; thus, we adopted super-
efficiency DEA (Andersen and Petersen 1993) to overcome
this dilemma. According to the DDF model proposed by Färe
et al. (2007), we first needed to determine the environmental
technology that produces the maximum desirable outputs by
consuming a set of inputs. Then we calculated the distance
function, i.e., the distance that the various DMUs move up to
the efficiency frontier.

Assuming that x represents the input vector x∈RN
þ, y repre-

sents the desirable output vector y∈RM
þ , and b represents the

undesirable output vector b∈RJ
þ, the technical set of the DMU

can be expressed as P (x) = {(y, b): x can produce (y, b)}.

16890 Environ Sci Pollut Res (2019) 26:16887–16900



Given that g = (gy, gb)(g > 0) represents the directional vector,
the DDF can be defined as:

D0
�!

x; y; b; gy; gb
� �

¼ max β : yþ βgy; b−βgb
� �

∈P xð Þ
n o

β≥0ð Þ ð1Þ

In the production set P (x), y and b were increased and
decreased separately in the directional output distance func-
tion along with g, until P (x) at the critical point (b − β∗gb, y +

β∗gy). Then β* ¼ D0
�!

x; y; b; gð Þ
� �

, as shown in Fig. 1.

The purpose of the study was to expand the desirable out-
puts and reduce the undesirable outputs, and therefore desir-
able outputs were increased by 1:1 and undesirable outputs
were decreased by 1:1. We referred to the way Chung et al.
(1997) processed the undesirable outputs, in which the direc-
tion vector was set to g = (yt, bt)(g > 0). The essential feature of
a super-efficiencyDDFmodel is the addition of a restriction of
i ≠ j.
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Malmquist-Luenberger productivity index

Combining DDF model with Malmquist model, Chung et al.
(1997) formulated MLPI to estimate the change rate of total

energy efficiency (MLtþ1
t ), and further decomposed into

technical efficiency change (ECtþ1
t ) and technology change

(TCtþ1
t ). Measuring of TFEE was a type of static analysis,

while Malmquist-Luenberger productivity index (MLPI) was
a method of dynamic analysis, assessing relative position
change of each province and the production boundary (tech-
nical efficiency change) and the movement of the production

boundary (technology change) (Wang et al. 2010). So;ECtþ1
t

evaluated the extent of production efficiency frontier from t to
t + 1, and TCtþ1

t evaluated the moving extent of technical
border form t to t + 1. Hence, if EC > 1, then there is an in-
crease in the technical efficiency of converting inputs to out-
puts; if TC > 1, then there is prove of technological progress;
and vice versa. We refer to the method of Chung et al. (1997)
of combing DDF of undesirable output with adjacent cross-
efficiency frontier reference Malmquist model, employ DEA
to measure total energy efficiency, and further resolute the
MLPI into technical efficiency change index and technology
change index.

Data

In the paper, 30 provinces of China are taken as the basic
research units in 2001–2016 (considering data compilation,
Tibet, Taiwan, Hong Kong, and Macao are not included with-
in the scope of the analysis). The study employs a geograph-
ical divide of eastern–central–western and northeast prov-
inces, which is based on the social and economic growth sta-
tus according to the National Bureau of Statistics of China.
Many studies adopt such divide, such as Yuan et al. (2009), Tu
and Liu (2011), and Wang et al. (2016). Specifically, eastern
province covers ten provinces, including Beijing, Tianjin,
Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong,
Guangdong, and Hainan. Central province contains nine prov-
inces, including Shanxi, Anhui, Jiangxi, Henan, Hubei, and
Hunan. Western province consists of 12 provinces, including
Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou,
Yunnan, Xizang, Shaanxi, Gansu, Qinghai, Ningxia, and
Xinjiang. And Liaoning, Jilin, and Heilongjiang comprise
the northeast region. On the comparison of the nation and four
economic provinces, the paper tests the factors affecting
TFEE.

To apply the theoretical model described above, we used
panel data for the period from 2001 to 2016. In terms of input
and output vectors, there were three types of production input:
capital, labor, and energy. GDP was referred to as a desirable
output and pollutant emissions were undesirable outputs.

(1) Capital. According to the method for estimating the cap-
ital stock proposed by Shan (2008), we deflated the mon-
etary indicators to a constant price in 2000 and took a
9.6% depreciation rate into account.

Environ Sci Pollut Res (2019) 26:16887–16900 16891

Fig. 1 Environmental directional distance function



Capital was calculated as follows:

Ki;t ¼ I i;t þ 1−φi;t

� �

Ki;t−1 ð3Þ

The variable Ki, t represents the capital of province i and year t;
Ii, t represents the investment in the ith province and tth year; and
φi, t represents the depreciation rate in the ith province and tth year.

(2) Labor.When measuring the input of labor, quality and time
are important factors. Because of the availability of data, we
continued the method used in most studies, where the num-
ber of current employees is used as the indicator of labor in
each province.

(3) Energy. As a result of the different types of energy con-
sumption in different provinces, energy inputwasmeasured
as the four major primary energy sources of coal, coke, oil,
and natural gas. The datawas obtained from energy balance
tables across provinces in the National Bureau of Statistics
of China. The four types of energywere converted into coal
equivalent and summed.

(4) Desirable output. The annual GDP of each province was
presented as a desirable output. The figure used was the
actual GDP calculated in constant prices for 2000. The
original data were obtained from the National Bureau of
Statistics of China (2001–2016).

(5) Undesirable output. This study focused on the impact of
energy consumption on the environment. Since 2000, fossil
fuel energy generation has accounted for more than 90% of
Chinese energy consumption, with CO2 and SO2 being the
main gaseous pollutants emitted from fossil fuel consump-
tion. Based on the research focus and the availability of
data, we used CO2 and SO2 emissions as the energy con-
straint indicators. Data for SO2 emissions were obtained
from the BChina statistical Yearbook^, while data for CO2

emissions could not be obtained directly. We applied the
method used to calculate CO2 emissions in the BIPCC
National Greenhouse Gas Emission Inventory Guidebook
2006^.1 Based on the energy consumption of three major

consumers of coal, oil, and natural gas, we estimated the
CO2 emissions during 2001–2016 using the low calorific
value, the proportion of carbon oxides in emissions, and the
carbon emission coefficients of each fossil fuel. The low
calorific value was obtained from the National Bureau of
Statistics of China (2006), and the carbon content and the
rate of oxidation was obtained from the IPCC (2006). The
characteristics of the data for inputs and outputs are shown
in Table 2.

Discussion

We calculated the total energy efficiency of 30 provinces that
were divided into four economic regions of China from 2001
to 2016, and the results are presented in Table 3. The follow-
ing results were obtained. (1) The TFEE score for Beijing in
2016 was 1.75, which was the highest score obtained in the
study. Guangdong was the second highest with a TFEE score
of 1.17 in 2016. (2) After 2011, the TFEE scores for Beijing,
Tianjin, and Shanghai were similar and were all over 0.9. The
scores for some other provinces, including Liaoning, Jilin,
Jiangsu, Zhejiang, Guangdong, and Inner-Mongolia, were al-
so similar and were all over 0.8. (3) The TFEE scores of
Liaoning, Jilin, Zhejiang, Guangdong, Guangxi, and Inner
Mongolia displayed a U-shaped trend, with the scores in the
remaining provinces generally increasing from 0.5 to 0.75. (4)
Themean TFEE score of the nation displayed an upward trend
after 2002, apart from a slight decline in 2009.

Figure 2 shows the mean TFEE scores of 30 provinces
from 2001 to 2016. The mean TFEE score of Beijing and
Shanghai were higher than the values for the other provinces,
with scores over 0.85. The TFEE score of Gansu was the
lowest of all provinces, with a mean score of 0.57. The mean
TFEE scores of 11 provinces (Liaoning, Jilin, Heilongjiang,
Hebei, Jiangsu, Zhejiang, Guangdong, Shanxi, Inner
Mongolia, Ningxia, and Xinjiang) were between 0.7 and
0.8, while the scores of the remaining provinces were below
0.6.

1 IPCC guidelines for national greenhouse gas inventories. 2006. IGS, Japan:
the National Greenhouse Gas Inventories Programmer.

Table 2 Descriptive statistics for
sample input and output variables
(from 2001 to 2016) Variables

Capital (1
billion
CNY)

Labor
(million
workers)

Energy consumption
(million coal
equivalent)

GDP (1
billion
CNY)

CO2

emission
(million
tons)

SO2

emission
(million
tons)

Max 11,722.19 67.26 387.23 6349.01 904.55 2.00

Min 74.52 2.28 5.20 29.27 11.52 0.02

Mean 2233.28 25.15 105.86 1071.39 227.26 0.70

Std. 2224.20 16.77 71.49 1078.38 163.37 0.44

The panel data is a time series for 30 provinces of China over 15 years, with a total of 480 samples. The data were
obtained in accordance with the corresponding year’s BChina Statistical Yearbook,^ BChina Energy Statistical
Yearbook,^ and the statistical yearbook of each province
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Figure 3 shows the results of the mean TFEE scores of
the four regions of China. In this figure, it can be seen
that (1) compared to the central and western regions, the
TFEE scores in the eastern region, except for Fujian, were
evenly distributed around 0.66–0.85, (2) the provinces in
the western region, except Inner Mongolia, had similar
scores, and (3) Liaoning had the highest TFEE score in
the northeast region, and Shanxi had the highest TFEE
score in the central region.

Table 4 shows the results of the MLPI for 30 provinces
during three periods. (1) In half of the 30 provinces,
there was low productivity, with the MLPI score being
less than 1 during 2001–2005, while the MLPI scores in
these provinces were all above 1 during 2005–2010 and
2010–2015. After 2005, almost all the provinces had

high MLPI scores apart from Guangxi and Henan. (2)
The mean MLPI score for the whole nation increased
by 23.15% during 2005–2010 but had reduced back to
1.13 during 2010–2015, which was mainly due to TC
(with an increase of 25.39% and a decline of 8.24%).
In contrast, the score for EC displayed a trend to decline
and then to rise.

The mean MLPI and its decomposition in the four re-
gions of China during different periods, and a comparison
of the results are presented in Fig. 4. The fluctuating trends
of MLPI and its decompositions were generally similar
between the whole nation and the different regions during
the study periods. The productivity in the western region
was higher than in other regions during 2005–2010, which
was mainly due to changes in technical efficiency. The

Table 3 TFEE scores for 30 provinces in China (from 2001 to 2016)

Province 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Liaoning 0.96 0.84 0.71 0.67 0.68 0.7 0.71 0.74 0.75 0.78 0.81 0.82 0.82 0.82 0.84 0.85

Jilin 0.72 0.65 0.63 0.64 0.65 0.66 0.68 0.71 0.72 0.75 0.77 0.78 0.78 0.79 0.78 0.79

Heilongjiang 0.63 0.63 0.65 0.66 0.66 0.67 0.68 0.69 0.7 0.72 0.74 0.74 0.74 0.74 0.75 0.75

Beijing 0.75 0.76 0.77 0.76 0.77 0.78 0.82 0.84 0.86 0.89 0.89 0.91 0.93 0.95 0.97 1.75

Tianjin 0.7 0.71 0.73 0.74 0.76 0.77 0.78 0.82 0.84 0.87 0.91 0.91 0.93 0.95 0.95 0.77

Hebei 0.61 0.62 0.64 0.65 0.66 0.67 0.69 0.7 0.71 0.72 0.74 0.74 0.74 0.75 0.75 0.75

Shanghai 0.79 0.8 0.8 0.82 0.84 0.85 0.86 0.89 0.9 0.93 0.96 0.95 0.91 0.93 0.95 0.71

Jiangsu 0.57 0.58 0.61 0.63 0.67 0.68 0.71 0.73 0.75 0.78 0.82 0.82 0.84 0.86 0.88 0.91

Zhejiang 1.16 0.89 0.8 0.66 0.67 0.69 0.7 0.72 0.73 0.75 0.78 0.78 0.79 0.81 0.82 0.8

Fujian 0.56 0.58 0.6 0.61 0.64 0.65 0.67 0.69 0.7 0.73 0.74 0.74 0.76 0.77 0.77 0.79

Shandong 0.5 0.52 0.53 0.56 0.63 0.64 0.66 0.68 0.69 0.71 0.74 0.74 0.76 0.77 0.78 0.75

Guangdong 0.72 0.69 0.7 0.66 0.65 0.67 0.71 0.94 0.72 0.75 0.81 0.77 0.79 0.8 0.82 1.17

Hainan 0.59 0.6 0.61 0.62 0.63 0.64 0.66 0.63 0.64 0.66 0.69 0.69 0.69 0.7 0.71 0.72

Shanxi 0.65 0.66 0.66 0.67 0.68 0.68 0.7 0.72 0.72 0.74 0.76 0.75 0.75 0.75 0.75 0.78

Anhui 0.46 0.48 0.49 0.5 0.52 0.53 0.55 0.57 0.58 0.6 0.63 0.63 0.64 0.65 0.66 0.67

Jiangxi 0.6 0.47 0.5 0.52 0.54 0.55 0.57 0.59 0.6 0.63 0.65 0.66 0.67 0.69 0.7 0.8

Henan 0.48 0.5 0.53 0.56 0.58 0.6 0.62 0.63 0.64 0.66 0.67 0.67 0.67 0.68 0.68 0.69

Hubei 0.51 0.53 0.55 0.58 0.59 0.61 0.63 0.64 0.66 0.68 0.71 0.77 0.72 0.74 0.75 0.77

Hunan 0.51 0.52 0.54 0.56 0.57 0.58 0.6 0.63 0.64 0.67 0.69 0.69 0.7 0.71 0.73 0.74

Inner-Mongolia 1.08 0.69 0.69 0.69 0.71 0.72 0.75 0.79 0.8 0.83 0.86 0.85 0.85 0.84 0.85 0.79

Guangxi 0.7 0.6 0.47 0.49 0.51 0.53 0.55 0.58 0.59 0.61 0.64 0.66 0.67 0.68 0.69 0.7

Chongqing 0.5 0.53 0.56 0.57 0.59 0.6 0.63 0.65 0.66 0.69 0.72 0.72 0.74 0.76 0.77 0.71

Sichuan 0.45 0.47 0.49 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.67 0.67 0.69 0.69 0.7 0.98

Guizhou 0.52 0.52 0.54 0.55 0.58 0.59 0.6 0.61 0.62 0.64 0.66 0.67 0.68 0.69 0.7 0.71

Yunnan 0.49 0.51 0.52 0.55 0.56 0.58 0.59 0.6 0.61 0.62 0.64 0.65 0.65 0.66 0.67 0.84

Shanxi 0.51 0.52 0.54 0.57 0.59 0.61 0.63 0.66 0.67 0.69 0.72 0.73 0.75 0.77 0.77 0.99

Gansu 0.53 0.53 0.54 0.56 0.59 0.6 0.61 0.62 0.62 0.64 0.66 0.67 0.68 0.68 0.68 0.69

Qinghai 0.59 0.6 0.61 0.63 0.65 0.66 0.67 0.69 0.7 0.71 0.74 0.74 0.75 0.76 0.77 0.8

Ningxia 0.64 0.64 0.65 0.66 0.67 0.67 0.69 0.71 0.71 0.73 0.76 0.76 0.77 0.77 0.78 0.78

Xinjiang 0.65 0.66 0.67 0.68 0.68 0.69 0.7 0.72 0.72 0.75 0.77 0.77 0.77 0.78 0.77 0.67

Mean 0.63 0.61 0.61 0.62 0.64 0.65 0.67 0.69 0.7 0.72 0.74 0.75 0.75 0.77 0.77 0.79
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productivity in the northeast region had the lowest score
due to the decline in technical efficiency. Technological

change led to analogous changes in productivity in both
the eastern region and the whole nation.
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Fig. 2 The mean total factor
energy efficiency (TFEE) score
for 30 provinces

Fig. 3 Comparison of the mean total factor energy efficiency (TFEE) score in China’s four regions



Quantitative analysis of the factors affecting
TFEE

The results presented above demonstrate the variation of
total energy efficiency in each province. The factors
affecting TFEE were then investigated to clarify the
internal mechanisms of economic development, environ-
mental pollution, and energy consumption.

Variable description and modeling

Most researchers have applied the structure decomposi-
tion method to analyze the effects of economic structure
and technical progress on total energy efficiency. Yuan

et al. (2009) emphasized the impact of economic struc-
ture (comprising industrial structure and industrial inter-
nal structure) on energy efficiency. Zhang and Wu
(2011) focused on the factors affecting the efficiency
of CO2 emission reduction in China and found that
after economic development and industrial structure,
energy structure and CO2 emission intensity were of
most importance. Wang and Ji (2014) considered a more
comprehensive range of factors, including government,
markets, technology, and development, although they
neglected the impact of undesirable outputs. Huang
and Shi (2015) and Ma et al. (2017) reported that the
technical level was the essential factor for determining
energy efficiency.

Table 4 Malmquist-Luenberger productivity index (MLPI) scores and their decomposition in different periods

Region Province 2001–2005 2005–2010 2010–2016

M-L EC TC M-L EC TC M-L EC TC

Northeast Liaoning 0.7441 0.8659 0.8594 1.1264 0.9250 1.2177 1.0422 0.9928 1.0498

Jilin 0.7920 0.9293 0.8523 1.1596 0.9852 1.1771 1.0887 1.0250 1.0622

Heilongjiang 0.9417 0.9944 0.9470 1.0527 0.8704 1.2094 1.0670 1.0171 1.0491

Eastern Beijing 1.0591 1.0000 1.0591 1.1201 1.0000 1.1201 1.0641 1.0000 1.0641

Tianjin 1.1742 1.1009 1.0665 1.1057 0.9601 1.1516 1.1024 1.0526 1.0473

Hebei 1.1066 1.1014 1.0048 1.1246 0.9380 1.1990 1.0615 1.0108 1.0501

Shanghai 1.1529 1.0000 1.1529 1.0681 1.0000 1.0681 1.0335 0.9927 1.0411

Jiangsu 1.1579 1.0912 1.0611 1.2252 1.0053 1.2186 1.1803 1.0709 1.1021

Zhejiang 0.8030 0.9406 0.8537 1.1329 0.9846 1.1505 1.1059 0.8989 1.2303

Fujian 0.8189 0.7770 1.0539 1.2481 0.9770 1.2774 1.2103 1.0360 1.1682

Shandong 1.0545 1.0219 1.0319 1.3770 0.9751 1.4122 1.1435 1.0673 1.0714

Guangdong 0.9098 1.0000 0.9098 1.0407 1.0000 1.0407 1.0899 1.0000 1.0899

Hainan 0.9499 1.0000 0.9499 1.0598 0.6801 1.5583 1.2818 1.0385 1.2343

The Central Shanxi 1.0004 1.0943 0.9142 1.0814 0.9226 1.1721 1.0385 0.9963 1.0424

Anhui 0.7862 0.9957 0.7896 1.1796 0.8987 1.3126 1.2013 0.9976 1.2042

Jiangxi 0.6931 0.8155 0.8500 1.1465 0.9564 1.1987 1.2737 1.0594 1.2022

Henan 0.9008 1.1329 0.7951 0.8569 0.7732 1.1083 1.1068 1.0497 1.0545

Hubei 1.2023 1.1588 1.0376 1.4312 1.1254 1.2717 1.1907 1.1035 1.0791

Hunan 0.9512 1.2632 0.7531 1.2099 1.0204 1.1856 0.8849 0.7867 1.1248

Western Inner-Mongolia 0.6978 0.8255 0.8453 1.2081 1.0431 1.1582 1.0370 0.9824 1.0557

Guangxi 0.7054 0.9080 0.7770 0.8618 0.7312 1.1787 1.2199 1.1442 1.0662

Chongqing 0.8502 0.9487 0.8962 1.3508 1.0670 1.2660 1.2591 1.1286 1.1157

Sichuan 0.8778 0.9965 0.8809 1.2521 1.0949 1.1435 1.1954 1.0327 1.1575

Guizhou 0.9715 1.1230 0.8652 1.2997 1.1455 1.1346 1.1896 1.1407 1.0429

Yunnan 0.6931 0.7967 0.8700 1.1093 0.9961 1.1137 1.1582 1.1086 1.0448

Shanxi 1.0758 1.1366 0.9465 1.2804 1.0794 1.1862 1.1717 1.1099 1.0557

Gansu 1.0203 1.1787 0.8656 1.2023 1.0328 1.1641 1.1339 1.0892 1.0411

Qinghai 1.2148 1.1810 1.0286 1.1939 1.1286 1.0579 1.1194 1.0802 1.0363

Ningxia 1.0486 1.0228 1.0252 1.2112 1.1405 1.0620 1.0978 1.0569 1.0388

Xinjiang 0.9649 0.9322 1.0351 1.1603 1.0750 1.0793 1.0455 1.0052 1.0402

Nation Mean 0.9440 1.0111 0.9326 1.1625 0.9844 1.1865 1.1265 1.0358 1.0887
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Methods based on economic structure can account for the per-
spectives of micro industries, but factors of energy consumption
itself and factors associated with pollution are not considered.

Hence factors influencing TFEE can be divided into economic
factors, technology factors, government factors, and energy fac-
tors. These factors and variables are described in Table 5.

Table 5 The description of factors and variables

Factors Name of variables Definition of variables Average of
variables

Economic factors Logarithm of GDP per capita
(Ln (PG))

Logarithm of the ratio of GDP to population (thousand Yuan per capita).
Economic development and energy efficiency are highly relevant;

level of economic activity differs in each province.

2.96

(Ln 2(PG)) Logarithm of the ratio of GDP to population (thousand Yuan per capita). 9.30

Secondary industry share (IS) The share of secondary industry in GDP (%). 46.54

Capital-labor ratio
(CL)

The ratio of capital to labor (¥10,000 per capita).
Capital, labor, and energy are basic factors of production; production

endowment of provinces also determines the discrepancy in energy
efficiency.

9.76

Technology
factors

R&D expenditure input intensity
(RD)

The share of research and development (R&D) in GDP (%).
The scale and intensity of R&D activities reflect the scientific
and technological strength and core competitiveness.

1.30

Foreign direct investment share
(FDI)

The share of FDI in GDP (%).
FDI reflects the external technology absorbed and introduced in

provinces to analyze the impact of technological progress
on energy efficiency.

29.09

Government
factor

Investment share of environmental
protection (IEP)

The share of investment in environmental protection in GDP (%).
IEP reflects the influence of government on economic society.

0.94

Energy factors Energy consumption per capita
(PE)

The ratio of energy consumption to population
(10,000 tons per capita).

Energy here is consistent with the foresaid, mainly refers to primary
energy.

2.57

Proportion of coal consumption
(CE)

The proportion of coal consumption in total energy consumption (%). 67.03

Energy endowment ratio (EER) The ratio of energy production to consumption, representing the
resource endowment of provinces.

0.84
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Fig. 4 A comparison of Malmquist-Luenberger productivity index (MLPI) scores and their decomposition among different regions in different periods



Based on the variables described, we constructed the re-
gression equation as follows:

EEi;t ¼ cþ β1Ln PGi;t
� �þ β2Ln

2 PGi;t
� �þ β3ISi;t þ β4CLi; t þ β5

RDi;t þ β6FDIi;t þ β7IEPi;t þ β8CEi;t þ β9EERi;t þ εi;t (4).
The value of c is a constant; the subscripts i and t

represent the year and province, respectively; EEi, t-

represents the total energy efficiency of different prov-
inces over time; β

i
is an estimated parameter; εi, t is a

random error term, obeying a normal distribution. To re-
duce the impact of hetero-scedasticity and serial correla-
tion in the error term, a feasible GLS model was applied
for parameter estimation. According to the Hausman test
results of a regression for the nation, the value of P was
much less than 0.05, and we therefore adopted the fixed
effects model to achieve the regression results .
Considering that the random effects estimation required
more cross sections than coefs for determining between
estimators when estimating the RE innovation variance,
we performed a likelihood ratio test for the estimation of
fixed effects in the northeast and central regions.

Regression analysis

The regression results of the influential factors for the nation
and four economic provinces are presented in Table 6.

The value of the F-statistic in each regression indicated that
the dependent variable could be explained better by the inde-
pendent variables.

(1) Economic factors. The relations between PG and TFEE
were linear, U-type, or an inverted U-type. This result is
contrary to that of most previous studies, but is consistent

with the conclusion of Yao et al. (2015). The national
TFEE and economic growth had an inverted U-shaped
relation and did not reach the inflection point. With rapid
economic development and a higher PG, the relation
between economic growth and energy efficiency was
U-shaped. In contrast, PG in the central and western
regions was relatively lower and the relation was linear.

The IS factor had a negative influence on the TFEE. This
was consistent with the findings of most previous studies
(Wang et al. 2010; Wang and Ji 2014; Ma et al. 2017).
There are many energy-intensive industries within the second-
ary industry category. As an old industrial base, the northeast
has a relatively low level of industrialization, and most of the
investment made in the region has been inefficient. There is a
need for a transformation of the economic base and for struc-
tural reforms in the region. The CL factor had a significant
negative influence on the TFEE score in the western region.
This suggests that the unbalanced allocation of basic produc-
tion factors has hindered the TFEE of the western region.

(2) Technology factors and government factor. The RD fac-
tor and the TFEE score of the nation and eastern region
were positively correlated, while RD had a negative in-
fluence on the TFEE score of the northeast region. This
indicates that an increase in the intensity of R&D can
provide strong financial support for further R&D activi-
ties, strengthening the potential for regional innovation
and promoting economic development. With a relatively
mature market economy and technical level, the TFEE
score of the eastern region indicated that it is performing
efficiently. In contrast, the TFEE score of the central and
western regions indicated inefficiency due to the low

Table 6 Results of a regression
exercise with efficiency score as
the dependent variable

Regressor Nation Northeast Eastern Central Western

C 0.406743*** 0.575023** 0.527070*** 0.494037*** 0.596774

Ln (PG) 0.103295*** 0.440799* −0.107662 0.000229 0.031229

Ln2 (PG) − 0.001423 − 0.059080 0.039735 0.028586*** 0.018917*

IS − 0.018340 − 0.166721* − 0.021909 − 0.038460 − 0.098308

CL − 0.000866 − 0.000843 0.001037 − 0.002649 − 0.003028***

RD 0.040695*** − 0.170677*** 0.050301*** − 0.038068* − 0.030119

FDI − 0.014369 − 0.008580 − 0.015781 − 0.057506** 0.034426

IEP − 0.913413** − 3.408286*** − 1.064852 0.003034 − 0.448282

CE − 0.074669** − 0.458771** 0.005722 0.053270* − 0.089221

EER 0.019974** 0.026163 − 0.074368** − 0.028800*** − 0.001439

R-squared 0.890092 0.910588 0.832864 0.958454 0.785993

F-statistic 101.69815 120.55242 39.03476 133.4740 30.15519

Hausman Test 43.236694 – 54.370823 – 39.257546

Likelihood ratio 13.838121 – 14.268677 –

***, **, * indicate that the coefficient of variables was significant at the 1, 5, and 10% level, respectively
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technical levels and lack of a basic independent research
capability. This result was similar to that of Huang and
Shi (2015). The FDI factor and the TFEE score were
negatively correlated, except in the western region,
which was inconsistent with the results of Wang and Ji
(2014). The economists Crossman and Kruger (1995)
reported that the liberalization of trade and investment
would inevitably expand market and economic activities
and would unavoidably lead to more resource consump-
tion and environmental pollution. FDI brings urgently
needed development capital, production technology,
and management experience, but industrial pollution
then follows. The IEP factor had a significant negative
effect on the TFEE of both the nation and the northeast
region. The probable reason for this was the defective
market mechanism, which resulted in a low conversion
rate in investment in environmental protection.

(3) Energy factors. The influence of the CE factor was gener-
ally negative. The greater the proportion of coal used for
energy generation, the lower the TFEE score. Coal is a
typical low-efficiency energy source with a low utilization
rate, and its use therefore represents a serious waste of
resources. Large amounts of greenhouse gases are
produced during coal combustion, which has a negative
influence on the ecological environment. Wei and Shen
(2007) used the proportion of net electricity generated by
various sources as the energy structure and obtained the
opposite conclusion; thus, we confirmed their conclusions
from the opposite perspective. The EER factor had a posi-
tive influence on the national TFEE, while the EER factor
and TFEE score of the central region had a negative corre-
lation. The regions with a relatively high energy-self-
sufficiency rate had a lower TFEE score, which was in
accordance with the actual situation observed during
China’s economic development and also concurred with
the conclusion of Yuan et al. (2009). The central region
has rich reserves of coal, most of which have been exported
to other regions. Therefore, the high energy-self-sufficiency
rate was responsible for the low energy efficiency.

Conclusions

Considering the undesirable output, based on a super-
efficiency DDF, we used an input-oriented CRS-DEA model
to estimate the provincial TFEE for the period of 2001–2016.
Then we measured the MLPI and its decomposition (EC and
TC) for the whole nation and four economic regions during
the study period. Finally, a generalized least square (GLS)
model was applied to determine the factors influencing
TFEE. We obtained the following conclusions.

(1) The mean TFEE score of the nation displayed an
upward trend after 2002, apart from a slight decline
in 2009. Compared with the central and western
regions, the TFEE scores in the eastern region were
evenly distributed in 0.66–0.85, except for Fujian.
With the exception of Inner Mongolia, the prov-
inces in the western region had similar efficiencies.
Liaoning had the highest TFEE score in the north-
east region and Shanxi had the highest score in the
central region.

(2) The mean MLPI score for the whole nation increased by
23.15% during 2005–2010 but fell back to 1.13 during
2010–2015, with the largest contribution from TC. In
contrast, the EC score initially declined and then rose.
The productivity in the western region was higher than in
other regions during 2005–2010, which was mainly due
to changes in technical efficiency. The productivity was
lowest in the northeast region due to the decline in tech-
nical efficiency. Technological changes led to analogous
productivity changes in both the eastern region and the
whole nation.

(3) The regression results showed that, the dependent vari-
able could be explained by independent variables for the
whole nation and the four regions. The relations between
PG and TFEE were linear, U-type, or inverted U-type.
The IS and CL factors both had negative influences. The
influence of RD on TFEE for the nation and eastern
region were clearly positive, whereas the effect was neg-
ative in the northeast. The IEP and CE factors were neg-
atively correlated with TFEE for the nation and northeast
region, while EER had a significant negative impact in
the eastern and central regions.

From these conclusions, the following policy implications
can be offered.

(1) It is evident that technological progress has reduced
pollutant emissions and played a more significant
role in the improvement of TFEE than technical ef-
ficiency. This suggests that the implementation of
environmental technology is approaching its optimal
level; hence, the intensification of energy usage
should be possible. In contrast, there is much poten-
tial for environmental efficiency to be improved.
Currently, the best way to enhance TFEE would be
to rapidly improve the inefficient production capacity
and to develop clean and renewable energy.

(2) Compared to developed countries, the PG of China
was relatively low, with the level of economic de-
velopment varying among the regions. Considering
the environmental constraints, the relation between
energy efficiency and economic growth should be
addressed according to the actual conditions. In the
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eastern region, where the PG was higher, there is a
need to rationally control the scale of energy inputs
and to promote intensive economic growth through
energy conservation and a resetting of the factors
influencing energy efficiency. In the central and
western regions, where economic conditions are
less well developed, it is necessary to speed up
the transformation of economic growth, readjust
the industrial structure, raise the rate of energy
and resource use, and increase economic efficiency.
There is a need to focus on the energy efficiency
of heavy industry, while optimizing and upgrading
the industrial structure. This is considered the most
effective strategy for realizing high TFEE scores
and accelerating the adjustment of secondary indus-
try to tertiary industry.

(3) Technical innovation and R&D in energy conserva-
tion should be further strengthened. The eastern
region should take advantage of its location and
accumulation of technology to introduce advanced
green technology, and then improve the technical
market environment. Through industrial transfer
and cooperative energy projects, the transfer of ad-
vanced technologies to the central and western re-
gions could be promoted, which would enable them
to enhance their energy efficiency. Foreign invest-
ment policy and environmental policy should be
formulated and adjusted to coordinate the conflicts
among foreign investment, environmental pollution,
and economic growth.

(4) The northeast province used to be an industrial base.
It has a relatively lower level of industrialization and a
smaller industrial economy than the other provinces.
Hence, the primary task for the northeast is to speed
up its economic transformation and upgrade tradition-
al industries. The structure of the economy and energy
generation could also be adjusted through the imple-
mentation of internal institutional innovation.

The central and western regions have a large energy
endowment, but their energy efficiency is fairly low. The
central region is dominated by traditional industries, with
high-energy consumption, high levels of pollution, and a
lack of technical resources. There is a need to optimize the
industrial structure, designate cleaner production stan-
dards, and transform the economy to embrace green pro-
duction in the central region. In the western and central
regions, there is a need to undertake technological and
industrial transfer and to prevent the excessive and ineffi-
cient exploitation of resources. In the western region there
is a need to increase foreign exchange and create a favor-
able investment environment to promote economic
development.
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