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Abstract
The prevalence and persistence of antibiotic resistance genes in wastewater treatment plants (WWTPs) is of growing interest, and
residual sludge is among the main sources for the release of antibiotic resistance genes (ARGs). Moreover, heavy metals
concentrated in dense microbial communities of sludge could potentially favor co-selection of ARGs and metal resistance genes
(MRGs). Residual sludge treatment is needed to limit the spread of resistance from WWTPs into the environment. This study
aimed to explore the fate of ARGs and MRGs during thermophilic two-phase (acidogenic/methanogenic phase) anaerobic
digestion by metagenomic analysis. The occurrence and abundance of mobile genetic elements were also determined based on
the SEED database. Among the 27 major ARG subtypes detected in feed sludge, large reductions (> 50%) in 6 ARG subtypes
were achieved by acidogenic phase (AP), while 63.0% of the ARG subtypes proliferated in the following methanogenic phase
(MP). In contrast, a 2.8-fold increase in total MRG abundance was found in AP, while the total abundance during MP decreased
to the same order of magnitude as in feed sludge. The distinct dynamics of ARGs and MRGs during the two-phase anaerobic
digestion are noteworthy, and more specific treatments are required to limit their proliferation in the environment.
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Introduction

Antibiotic resistance genes (ARGs) and their abundance in the
natural environment are becoming a big health concern, and
wastewater treatment plants (WWTPs) are demonstrated to be
a hub and a significant source for their spread to the environ-
ment (Berendonk et al. 2015; LaPara et al. 2011; Yang et al.
2012). Sewage containing residual antibiotics from a variety
of sources, including hospitals and households, veterinary
clinics, and agriculture all end up in WWTPs (Rizzo et al.

2013). Meanwhile, heavy metals, another significant part of
anthropogenic emissions in WWTPs, can hardly be removed
by activated sludge processes and concentrate in the sludge.
They could enhance the selection of multi-resistant bacteria
and the spread of resistances into the environment (Di Cesare
et al. 2016; Gao et al. 2015). Moreover, metal resistance genes
(MRGs) could be linked to ARGs, particularly on plasmids,
and their co-selection could be highly favored if they are lo-
cated on the same mobile genetic element such as integrons,
transposons, and plasmids (Baker-Austin et al. 2006), which
could greatly facilitate their spread and proliferation via hori-
zontal gene transfer (HGT) in return. Thus, residual solids of
WWTPs have undoubtedly become an important node for
controlling the dissemination of antibiotic and metal resis-
tance genes into the natural environment.

In recent years, various existing technologies have been
used to treat excess sludge from WWTPs in order to achieve
safe disposal or land application, such as anaerobic and aero-
bic digestion, composting, air-drying, chemical stabilization,
etc. Ma et al. (2011) have already investigated the effect of
various anaerobic digestion conditions on the fate of ARGs
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and suggested that temperature is the crucial factor, and stud-
ies also showed that bacterial community composition drives
the distribution of ARGs during composting (Cui et al. 2016;
Su et al. 2015). However, owing to the specificity and limita-
tion of quantitative polymerase chain reaction (q-PCR), these
prior studies could only identify a handful of ARGs and did
not uncover the full spectrum of functional resistance genes
such as metal resistance genes and mobile genetic elements
during these processes.

In the present study, a metagenomic analysis based on
high-throughput DNA sequencingwas used to simultaneously
explore the wide-ranging profile of ARGs,MRGs, and mobile
genetic elements during two-phase anaerobic digestion pro-
cess. It is an optimization of the single-phase anaerobic diges-
tion thereby achieving more efficient sludge stabilization with
separation of acidogenic and methanogenic processes to two
reactors in series (Pohland and Ghosh 1971). Apart from this,
two-phase anaerobic digestion processes are designed to con-
sider the different ecophysiological optima of the microbes
involved in these processes (Demirel and Yenigun 2002;
Pohland and Ghosh 1971). The first phase (acidogenesis) is
maintained at low pH and short hydraulic residence time
(HRT) resulting in a consortium of acid-consuming organ-
isms, while the second phase (methanogenesis) is operated
at longer HRTand neutral pH in order to facilitate proliferation
of slow-growing methanogenic archaea. Thus, two distinctly
different microbial communities are selected and enriched in
the acidogenic and methanogenic phases, which is believed to
harbor different communities of resistance genes as previously
mentioned.

The objective of present study, therefore, was to determine
the effect of two-phase anaerobic digestion on the fate of
ARGs and MRGs under thermophilic condition, and investi-
gate their associations during the process. The occurrence and
abundance of mobile genetic elements were also investigated.
Moreover, metagenomics can overcome the limitations of
PCR detection methods, such as applicability of primer/
probe systems in a difficult matrix and possible biases in the
amplification process (Volkmann et al. 2007). We believe this
study provided a comprehensive profile and monitored the
dynamics of these functional genes in the two-phase anaerobic
digestion, and increased our knowledge on the role of two-
phase anaerobic digestion in the spread and dissemination of
ARGs and MRGs into the natural environment.

Materials and methods

Reactor start-up and operation

Two-phase anaerobic digesters were set up in the lab. An
acidogenic phase reactor (AP) was 1 L continuously stirred
tank reactors (CSTR) with flask working volume of 0.3 L

preceding a methanogenic-phase reactor (MP), 1.5 L CSTR
with flask working volume of 1 L. The reactors were main-
tained at 55 °C through circulating hot water around the flask.
Bench-scale two-phase anaerobic digesters were initiated with
seeding sludge obtained from an anaerobic bioreactor of
Linan municipal wastewater treatment plant (Hangzhou,
China). Dewatered sewage sludge was also collected from
the Linan municipal wastewater treatment plant and stored at
− 20 °C as the source of feed sludge through the duration of
the experiment. The characteristic of feed sludge was de-
scribed in our previous work (Wu et al. 2016).

To maintain the sludge retention time (SRT) of AP andMR
at 3 and 10 days, 0.1 L effluent fromAPwas replaced by same
sludge feedstock once a day, and 0.l L of effluent from MR
was replaced by the AP effluent (0.1 L) once a day. The feed-
ing was started after the effluent was withdrawn. pH of AP
was controlled around 6.0 by adding 8 g/L NaHCO3, which
could promote the growth of hydrolytic and acidogenic bac-
teria in the acidogenic phase (Luo et al. 2011). Biogas produc-
tion in AP and MR was monitored by water replacement de-
vices. Total solid content and volatile solid (VS) were ana-
lyzed according to standard methods (Zhan 2009). Volatile
fatty acids (VFA) concentration was measured by using gas
chromatograph (GC) (Agilent, 6890 N) equipped with a flame
ionization detector and DB-624 column (30 m × 0.53 mm×
3.0 μm). Samples analyzed for volatile fatty acids were cen-
trifuged at 10,000 rpm for 10 min and then the supernatant
was filtrated though a 0.45-μm membrane. Formic acid was
added to adjust the pH to approximately 2.0 before loading
onto the GC. Both reactors had achieved stabilized perfor-
mance with respect to biogas production, VS reduction, and
VFA production at the time samples collection commenced.

Sample collection, DNA extraction,
and high-throughput sequencing

Raw feed sludge, effluent of AP, and MR were collected over
three sampling events with a time interval of 6 days. These
three composite samples for each point were immediately
centrifuged at 10,000 rpm for 10 min, and after freeze-
drying and sieving through a 2-mm mesh, the pellet was
stored at − 80 °C before DNA extraction. DNA extraction
was performed using a FastDNA Spin Kit for Soil (MP,
Biomedicals) from approximately 0.1 g of lyophilized sam-
ples. The purified DNA concentration and quality were deter-
mined by 1.5% agar gel electrophoresis and spectrophotome-
ter analysis (NanoDrop ND-2000c, Thermo).

High-throughput sequencing was performed in Analysis
Center of Agrobiology and Environmental Sciences of
Zhejiang University using Ion Proton™ system. About
100 ng of DNA of the feed sludge, AP, and MR was used
for library construction and DNA sequencing. Approximately
22.8 Gb of data was generated for all the samples.
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Metagenomic data were deposited in the NCBI Short Read
Archive.

Bioinformatic analysis

The metagenomic data sets were filtered using a self-written
script to remove the reads containing five or more ambiguous
nucleotides and those with lengths of less than 100 bp. The
detailed information about the sequencing reads for each sam-
ple was described in Table S1. In order to compare the abun-
dance and diversity of functional genes in different sludge
samples, sequencing data was normalized to 10,000,000 reads
for each dataset. ARG-like sequences were identified by
aligning the sequences against the Antibiotic Resistance
Database (ARDB) using BLAST with the e-value at 1 ×
10−5. The sequence was annotated as an ARG-like sequence
if its best hit in the ARDB had ≥ 90% amino acid identity and
an alignment length longer than 25 amino acids (Kristiansson
et al. 2011; Zhang et al. 2011). MRGs annotation was con-
ducted similarly by searching against the BacMet database
(Pal et al. 2014). Mobile genetic elements were obtained by
aligning the sequences against the SEED subsystems database
(Overbeek et al. 2005) using a maximum e-value of 10−5.

Statistical analysis

The portion of types or subtypes of sequences with different
functions in Btotal metagenome sequences^ was defined as
Babundance^ (using the unit of Bppm^, one read in a million
reads), and the composition of functional gene sequences was
described using the unit of B%^ to represent the portion of a
type or a subtype of functional gene-like sequences in total
sequences with the same function. Previous studies about the
functional genes in the environmental samples also applied
the units of Bppm^ and B%^ (Li et al. 2015; Zhang et al.
2015). Correlations between the prevalence of ARGs,
MRGs, and mobile genetic elements were analyzed using
MATLAB R2016a (The MathWorks, Natick, MA). In addi-
tion, the correlation analyses between antibiotic or metal re-
sistance genes and microbial community were performed, re-
spectively. A p value < 0.05 was considered statistically
significant.

Results

Occurrence and abundance of ARGs in two-phase
anaerobic digesters

ARG-like reads corresponding to 6 ARG types were identified
in feed sludge with a total abundance of 229.8 ppm.
Sulfonamide resistance genes (121.6 ppm, 53%), aminogly-
coside resistance genes (51.8 ppm, 23%), and tetracycline

resistance genes (27.4 ppm, 12%) were the most abundant
ARG types found in feed sludge (Fig. 1). A fluctuation of total
ARG abundance was found during two-phase anaerobic di-
gestion. The total ARG abundance in AP (169.8 ppm) de-
creased by 26.1% on basis of feed sludge, while that of MP
rebounded to 355.7 ppm (1.1 fold of AP), specifically regard-
ing tetracycline resistance genes. The abundance of tetracy-
cline resistance genes in MP was approximately eight times
higher than that in AP.

The abundance of 27 ARG subtypes from the top 3 abun-
dant resistance genes of sulfonamide, aminoglycoside, and
tetracycline is shown in Fig. 2. Sul1 (114.8 ppm), aph6Id
(17.7 ppm), and tetC (17.2 ppm) were the most abundant
ARG subtypes in feed sludge. Through two-phase anaerobic
digestion, the major ARG subtypes changed to sul1, aph33Ib,
and ant3Ia in the AP, and sul1, tetC, and tetM in the MP. After
the AP digestion, 9 ARG subtypes decreased based on feed
sludge, especially aph3Ib, sul2, tetX, aph6Id, tetG, and sul1,
which all had a reduction of over 50% based on feed sludge,
while another 13 ARGs increased within the same order of
magnitude as feed sludge. In contrast to AP, 17 ARG subtypes
proliferated in the methanogenic phase, specifically tetM and
tetW which increased from 0 to 46.8 ppm and from 0.2 to
43.2 ppm, respectively, while 5 subtypes of aminoglycoside
resistance genes and 4 subtypes of tetracycline resistance
genes decreased.

Occurrence and abundance of MRGs in two-phase
anaerobic digesters

NineMRG types were identified in the feed sludge with a total
abundance of 145.3 ppm, and all of them were shared by AP
and MP including MRGs corresponding to copper, arsenic,
mercury, chromium, lead, zinc, iron, nickel, as well as multi-
metal resistance (MRGs that encoded resistance to two or
more metals) (Fig. 3). Copper, arsenic, and chromium resis-
tance genes were the major MRG types in feed sludge, which
occupied the largest fraction of 71%. During two-phase anaer-
obic digestion, the abundance of total MRG-like sequences
changes. An obvious increase of total MRG abundance was
found in AP, which added up to 399.7 ppm, a 2.8-fold increase
compared to the feed sludge. In contrast, the total MRG abun-
dance falling in MP was 194.7 ppm, which was well within
the same order of magnitude as the feed sludge.

Sixty-five subtypes of MRGs were found in feed sludge
and two-phase anaerobic digesters (Fig. 4). DnaK (16 ppm),
arsB (14.5 ppm), ruvB (11.7 ppm), and copB (10.1 ppm) had
the highest abundances in the feed sludge, while the abun-
dance of other MRG subtypes was lower than 10 ppm.
Through two-phase anaerobic digestion, the major MRG sub-
types changed to ziaA, dnaK, and mgtA in AP, and arsB,
dnaK, and ziaA in MP. In addition, obvious fluctuations were
found in the abundance of a few MRG subtypes, especially
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the zinc resistance gene ziaA. After the acidogenic phase of
anaerobic digestion, ziaA significantly increased from 0.5 to

220.6 ppm, while most MRG subtypes fluctuated at a much
smaller scale and the abundances of cinA, cueR, mmco, and
arsR did not change. In the following MP, 56.9% subtypes of
MRGs decreased within a small range of 0.1–5.9 ppm based
on AP, while ziaA decreased by 88.1% of the value at AP. In
contrast, 29.2%MRGs slightly increased within a small range
of 0.1–3.2 ppm while arsB increased by 2-fold based on AP.

Mobile genetic elements in thermophilic two-phase
anaerobic digester

The occurrence and abundance of genes encoding mobile ge-
netic elements were obtained from the SEED database
(Table S2). Fifty-two types of mobile genetic elements were
found in feed sludge and two-phase anaerobic digesters. The
total abundance of mobile genetic elements was 253.2 ppm in
feed sludge, and traC (32.6 ppm, 12.9%), traG (23.6 ppm,
9.3%) as well as integron integrase gene (22.4 ppm, 8.8%)
were the major types of mobile genetic elements. After the
two-phase anaerobic digestion, obvious reductions of the total
relative abundance of mobile genetic elements were found in
both AP and MP. The total abundance of mobile genetic ele-
ments in AP and MP was 43.7 and 76.5 ppm, respectively,
which decreased by 209.5 ppm (82.7%) and 176.7 ppm
(69.8%) based on feed sludge. In addition, sulfonamide resis-
tance genes were positively correlated with IntIPac and TraI
(p < 0.05), and tetracycline resistance genes were found to be
correlated with nine types of conjugative transposon signifi-
cantly (data not shown). In contrast, Pb and Fe resistance
genes were both correlated with mobile genetic elements of
IncF plasmid. No positive correlations were found between

Fig. 1 Occurrence and
abundance of ARG types in feed
sludge (FS), acidogenic phase
sludge (AP) and methanogenic
phase sludge (MP)
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ARGs and MRGs during thermophilic two-phase anaerobic
digestion (p > 0.05).

Microbial community structures during two-phase
digestion

The taxonomic structure including both bacteria at the phylum
level and two archaea classes is shown in Fig. S1. It revealed
that microbial communities in two-phase digestors are dynam-
ic, capable of changes at acidogenic and methanogenic phase
relative to feed sludge. Proteobacteria occupied the largest part
(53.3%) in the feed sludge, followed by Nitrospirae (28.8%)
and Actinobacteria (9.2%). Large differences in microbial
community structures were observed after two-phase diges-
tion. The AP reactor was dominated by Firmicutes with a high
percentage up to 95.3%, which is a unique pattern greatly
affected by acidogenic condition. Although Firmicutes was
still the most abundant organism (54.5%) in the MP reactor,
a more diverse microbial community was found, especially
the methane-generating archaea such as Methanomicrobia
and Methanobacteria increased to a larger percentage, 19.3
and 11.5%, respectively. Thus, very distinct microbial com-
munities have been formed in the AP and MP reactor, sepa-
rately. In the correlation analysis between microbial commu-
ni ty and ant ibiot ic res is tance genes (Table S9) ,
Methanomicrobia was negatively correlated with β-lactam
resistance genes while Firmicutes and Synergistetes both were
correlated with macrolide resistance genes positively

(p < 0.05). In the aspect of metal resistance genes, both
Thermotogae and Aquificae were positively associated with
zinc resistance genes, and Nitrospirae was associated with
arsenic resistance genes negatively (p < 0.05).

Discussion

Municipal wastewater from different sources such as house-
holds, hospitals, farms, and factories are mixed in the WWTP,
often containing antibiotics, heavy metals, and other organic
matters. Accordingly, the dense microbial communities of res-
idue sludge could be a hotspot for the potential co-selection of
ARGs and MRGs (Di Cesare et al. 2016; Li et al. 2015). The
technical literature, however, contains relatively little informa-
tion about the influence of two-phase anaerobic digestion on
the changing pattern of genes that encode for antibiotic and
metal resistance determinants. In the present work, we thus
used a metagenomic approach to investigate the effect of two-
phase anaerobic digestion on the abundances of ARGs and
MRGs and mobile genetic elements, and explore the link be-
tween these resistance genes and the microbial community.

Sulfonamide, aminoglycoside, and tetracycline resistance
genes were the major ARG types found in feed sludge and the
two-phase anaerobic digesters. The prevalence of sulfonamide
and tetracycline resistance genes in sludge samples may result
from the frequent use of sulfonamides and tetracycline for
livestock (Cheng et al. 2013; Sui et al. 2016). Moreover, high
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concentrations of sulfamethoxazole and oxytetracycline were
also detected in this WWTP according to our previous study
(Li et al. 2016). In addition, aminoglycoside antibiotics play
an important role in the therapy of serious staphylococcal
infections, and prevalence of aminoglycoside resistance genes
were widely discovered in clinical isolates (Schmitz et al.
1999). It indicated that a hospital might be one of the sources
that altered the composition of ARGs in sewage, and further
contributed to the widespread occurrence of aminoglycoside
resistance genes in the WWTP.

A decrease in abundances of most ARGs within AP would
suggest either that the organisms harboring genes encoding
antibiotic resistance determinants are inactivated within the
acidogenic phase or that the rate of HGT is low. The relatively
low pH and acidogenic conditions within AP lead to a very
different microbial structure, which enriched Clostridia and
disinfect others from the feed sludge. On the other hand, the
abundance of mobile genetic elements in AP was significantly
lower than in feed sludge and the two abundant types of ARGs
(sulfonamide and tetracycline resistance genes) were both
positively correlated with mobile genetic elements; thus, it
might influence the spread of these antibiotic resistance genes
by HGT (Broaders et al. 2013). This finding may be respon-
sible for the decrease of ARGs in the AP. On the contrary, the
abundance of macrolide resistance genes was increased in AP
reactor, and it was positively associated with Firmicutes in the
correlation analysis. Soge et al. reported that macrolide resis-
tance gene (mefA) was found in environmental Clostridium
perfringens, one species belonging to the Firmicutes phylum
(Soge et al. 2009). This indicates that microbes in the phylum
of Firmicutes may be the host microorganism of macrolide
resistance genes in our study.

In feed sludge and two-phase anaerobic digesters, the genes
encoding resistance determinants for copper, arsenic, zinc, and
chromium were the most common in all the detected MRGs,
because these metal ions are essential for most microorgan-
isms, yet they can be toxic at high concentrations (Ji and Silver
1995). Meanwhile, Copper and arsenic compounds have been
widely used as antimicrobial, pesticidal, and antifungal
agents, and as animal feed additives (Hobman and Crossman
2015). Zinc was the most primary heavy metal in sewage
sludge as galvanized pipes were quite widespread in China,
while chromium is commonly found in effluents from tanner-
ies and relevant industries (Aravind et al. 2016). The extensive
use of those metals could contribute to the high abundance of
copper, arsenic, zinc, and chromium resistance genes in sew-
age sludge.

Compared to ARGs, more subtypes ofMRGs were discov-
ered in feed sludge and two-phase anaerobic digesters, but
their abundance was much lower. This may indicate that var-
ious types of metals were present in sludge, but the bioavail-
ability and mobility of metals were different due to their spe-
ciation, both physical and chemical. Moreover, previous

studies had found that sewage sludge exhibited higher con-
centrations of heavy metals bound to the oxidizable and resi-
due fractions, compared to the mobile ones (Jamali et al. 2007;
Tytla et al. 2016). Thus, large amount of metals may not be
freely available to bacteria, and this may be one explanation
for the lower abundance of MRGs in present study.

It should be noted that zinc resistance gene subtype ziaA
largely increased during the acidogenic phase of anaerobic
digestion. Zn was found to be significantly present in the
acid-extractable fraction but had a very low proportion in the
oxidizable fraction in sewage sludge, which suggests that zinc
is more likely released into the surrounding environment and
taken up by organisms (Fadiran et al. 2014; Tou et al. 2017).
Accordingly, the low pH in acidogenic phase would result in a
high concentration of zinc in the AP reactor. In order to deal
with excess zinc, microorganisms have zinc-specific efflux
pumps, encoded by ziaA, that transport Zn2+ from the cyto-
plasm to the periplasmic space. This efflux system expression
is induced by zinc and is regulated by a zinc-specific repressor
protein, ZiaR (Barnett et al. 2012; Thelwell et al. 1998). Thus,
the surge of ziaA is activated by significantly high bioavailable
zinc concentrations in the acidogenic phase. On the other
hand, although zinc resistance genes were found to signifi-
cantly correlated with Thermotogae and Aquificae positively
(p < 0.05), no direct evidence in literature shows that micro-
organisms in these two phyla harbored zinc resistance genes.
In the following MP, however, more than half of MRG sub-
types decreased especially ziaA, indicating that the abundance
of bioavailable metal ions in environmental niches ofMPmay
decrease, thus declining the selection pressure. On the other
hand, no significant correlations were found between MRGs
and ARGs, suggesting that the changingmechanism ofMRGs
and ARGs is different. And the mobile genetic elements such
as IncF plasmid may also play a role in the spread of Pb and Fe
resistance genes, which is comparable with the early recogni-
tion of Pb resistance locating on pMOL30 plasmid (Diels et al.
1989).

The potential of two-phase anaerobic digestion process
to mitigate the spread of ARGs and MRGs requires further
researches. In this study, ARG patterns may be affected by
bacterial community structures in the two-phase anaerobic
digesters as previous study suggested (Wu et al. 2016). In
contrast, the abundance of MRGs seems to be driven by the
metal concentrations, more so than the different composi-
tion of bacterial community in the two phases. Thus, more
specific measures should be taken to control the spread of
ARGs and MRGs in the environment. The results of this
study could also be used to guide selection for q-PCR assays
to target representative ARGs, MRGs, and mobile genetic
elements of importance, and provide support for advanced
biological risk assessment evaluations, which are needed to
determine how polluted environments affect the prolifera-
tion of antibiotic resistance.
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Conclusion

This study has revealed the impact of two-phase anaerobic
digestion on the profile of ARGs and MRGs. ARGs showed
higher prevalence in feed sludge and two-phase anaerobic
digesters in comparison to MRGs. AP was an effective phase
to eliminate most ARGs. The elevated abundance of zinc re-
sistance gene and no significant correlations between ARGs
and MRGs indicates their distinct fate during two-phase an-
aerobic digestion. Mobile genetic elements possibly mediated
the spread and proliferation of ARGs and MRGs. Further
research is needed to explore the potential transfer mecha-
nisms of specific ARGs andMRGs in the digesters to develop
advanced sludge treatment.
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