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Abstract
Increased environmental pollution and energy consumption caused by the country’s rapid development has raised considerable
public concern, and has become the focus of the government and public. This study employs the super-efficiency slack-based
model–data envelopment analysis (SBM–DEA) to measure the total factor energy efficiency of 30 provinces in China. The
estimation model for the spatial interaction intensity of regional total factor energy efficiency is based on Wilson’s maximum
entropy model. The model is used to analyze the factors that affect the potential value of total factor energy efficiency using spatial
dynamic panel data for 30 provinces during 2000–2014. The study found that there are differences and spatial correlations of energy
efficiency among provinces and regions in China. The energy efficiency in the eastern, central, and western regions fluctuated
significantly, and was mainly because of significant energy efficiency impacts on influences of industrial structure, energy intensity,
and technological progress. This research is of great significance to China’s energy efficiency and regional coordinated development.
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Introduction

To promote energy revolution, reform energy production, and
utilization modes, and improve the energy utilization rate,
China proposed to build a clean, low-carbon, safe, and highly
effective modern energy system that focuses on the adjustment
of the energy structure, construction of modern energy storage,
and transportation networks, and an intelligent energy system in
its Thirteenth Five-Year Plan. However, given the actual condi-
tions within its vast territory, economic development and ener-
gy efficiency remain unbalanced across various provinces, and
thus, it is essential to consider regional discrepancy when for-
mulating energy conservation policies (Bian et al. 2017). To
this effect, analyzing the effects of factors, spatial conditions,
and the dynamic distribution of discrepancies among various
provinces on energy efficiency can help reduce the energy

efficiency gap, and accomplish the task of building a new mod-
ern energy system under the Thirteenth Five-Year Plan.

Since its accession to the WTO in 2001, China opened
itself up to foreign investments. By 2014, it became the top
destination for FDI, reaching an amount of US$1.28 trillion.
However, at the same time, the country was faced with the
disadvantages of a fast-growing economy, including increased
consumption of resources and environmental deterioration;
lowering of environmental regulations by local governments
to attract pollutive enterprises; market segmentation derived
from an officer promotion mechanism; and restricted flow of
labor force, capital, and energy elements into markets. There
is growing public demand for environment protection given
the increasing pollution levels because of energy consump-
tion, strength, and efficiency problems. Despite this, research
on the effects of factor flow at the regional spatial level to
other provinces remains rare.

The following research work is carried out in this paper.
First, by adopting the super-efficiency slack-basedmodel–data
envelopment analysis (SBM–DEA) method (Tone 2002) that
accounts for output, this study estimates the total factor energy
efficiency of every Chinese province. Second, considering
geographical spatial interactions, a measuring model for the
spatial interaction strength of total factor energy efficiency is
constructed. Third, against a possible spatial autocorrelation,
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the space Durbin model is used to quantitatively analyze the
effects of industrial structure, governmental interference, and
energy strength on the spatial interaction strength of energy
efficiency. Third, based on spatial correlation, the factors of
influence of industrial structure, government intervention, and
energy intensity on spatial interaction of energy efficiency are
analyzed. The main innovation of this paper is to construct a
spatial dynamic model based on Wilson’s maximum entropy
model to analyze the direct and indirect effects on the factors
that affect energy efficiency.

Literature reviews

Following a century of development, there are three main types
of energy efficiency definitions—energy production efficiency,
energy strength, and total factor energy efficiency. Energy pro-
duction efficiency is expressed by the ratio of gross domestic
product (GDP) to one input factor derived from the productiv-
ity of a single factor in a department’s production function.
Energy productivity is a single-factor productivity, which is
usually expressed as a ratio of output (usually GDP) to an
energy input factor. Energy strength is generally used to reflect
the level of energy utilization efficiency; it is expressed by the
ratio of energy input to output. However, these two definitions
do not account for other input factors related to production. In
fact, total factor energy efficiency considers not only energy
input factors, but also other relevant factors. Hu and Wang
(2006) proposed an estimationmethod for total energy efficien-
cy that obtains maximum output under a restricted input factor
level, and relatively sequences energy efficiency by comparing
distances from the samples to the production frontier.

As for China’s regional energy efficiency, scholars have
conducted extensive research, and derived conclusions with
practical significance. They have studied energy efficiency
and intensity improvements to explore the relationship between
energy and economy (Alam et al. 2015). Schleich et al. (2009)
stated that the EU emissions trading scheme could improve
energy efficiency and reduce carbon emission through environ-
mental regulations, such as restrictions on energy price. Many
scholars highlight the close relationship between improved
economic development and energy efficiency and strength
(Hang and Tu 2007; Stern 2015). Technical efficiency in the
industrial sector (Wang et al. 2012), technological progress,
governmental intervention, and change in energy consumption
structure (Lv et al. 2015; Yuxiang and Chen 2010; Ai et al.
2015) have a certain impact on energy efficiency changes.

Research on factors that influence regional energy efficiency
with consideration for spatial interactions dates back to as early
as the end of the nineteenth century. For instance, Ravenstein
(1976) examined population migration on the basis of spatial
feature rules. In the article Commodity Circulation in America,
geographer Ullman (1957) explored spatial interactions using

multidisciplinary theory models by referring to Ohlin (1934)
and Stouffer (1940). In the context of China, some scholars dem-
onstrated the spatial effect or dependency in provincial energy
efficiency (Guan and Xu 2016; Ying-Zhi and Guan 2011). Lv
et al. (2017) showed a significant spatial spillover effect in the east
and west regions of China, suggesting that spatial factors should
be introduced in research on variations in energy efficiency.

While numerous achievements have been made in research
on China’s energy efficiency and factors that influence it,
studies that consider spatial interaction strength and employ
a spatial econometric model to analyze regional energy effi-
ciency and influencing factors still have scope for improve-
ment (Cheng et al. 2013; Guan and Xu 2016; Wang et al.
2014). Moreover, considering rapid information exchanges
among provinces, and how such communication could result
in a spatial spillover effect, energy efficiency studies that mea-
sure the strength of spatial interactions among provinces and
influencing factors remain insufficient.

In recent years, scholars have also considered reducing
carbon emissions in order to improve eco-efficiency from
the perspective of the industry’s overall supply chain and re-
gion (Gunasekaran 2014; Gul et al. 2015; Govindan and
Sivakumar 2016; Carvalho et al. 2017). Considering industrial
agglomeration analysis, some scholars researched industrial
energy efficiency from the perspective of a space Markov
chain test of China’s energy efficiency convergence and the
Bclub effect^ (Costantini et al. 2017; Pan et al. 2015), and
others focused on regional research, usually conducted by
regions east, west, and center (Song et al. 2017; Chen et al.
2016; Lv et al. 2017), or traditionally, six major geographical
locations, in order to explore variations in energy efficiency
and its relationship with economic growth. Li and Wu (2016)
divided regions on the basis of their political attributes.

The data envelopment analysis (DEA) model becomes an
important technical means in energy efficiency research. It is
based on a nonlinear mathematical programming method, differ-
ent from the econometrics method. Rojas-Cardenas et al. (2017)
compared and analyzed the difference in energy intensity
between the graphite industry in Mexico and that in China and
the USA. Lin and Liu (2017) analyzed the energy efficiency of
China’s transportation sector using DEA, and truncated regres-
sion and its influencing factors. All of the explorationsmentioned
above have broadened the academic scope for other scholars.

Model

Estimation method for energy efficiency

DEA is a nonparametric method derived through solving a
linear programming problem. It is widely used because it does
not require many forms of data and production frontiers, eval-
uates every decision-making unit (DMU), and compares input
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and output factors. Other methods that evaluate total factor
energy efficiency include the stochastic frontier analysis
(SFA) and Solow residual method (SRM). The accuracy of
total factor energy efficiency values is affected by that of the
selection of a production function. The basic approach of a
DEA is to estimate the nonparametric envelopment frontier of
effective production to identify effective and ineffective points
on the basis of whether these points are on the frontier line.
Suppose there are DMUs; here, each province is treated as a
DMU, and every province has K types of input factors to
produce M output. The following linear programming is used
to determine the efficiency value of the ith DMU:

Min ∑
θ;λ

θ s:t:−yi þ Yλ≥0; θxi−Xλ≥0
λ≥0 ð1Þ

where constant vector λ is the N × 1 order and scalar θ is the
energy efficiency value. The evaluation rule is θ = 1, indicat-
ing that the point is on the production frontier, and technically
effective. θ ≤ 1 denotes that the ineffective point is not on the
production frontier and generally under the frontier.

Although the traditional DEA models that are based on con-
stant returns to scale (such as CCR model) and variable returns
to scale (such as BCC model) consider multiple inputs and
outputs, they generally ignore the problem of slack variables
in the inefficiency calculation because they adopt a viewpoint
that rests on radial distance function. The super-efficiency
SBM–DEA, which is based on Tone (2001, 2002), resolves this
problem by conducting an evaluation from a nonradial view-
point; moreover, it addresses the undesirable output problem in
which Bbad output^ in economic activities and the slack vari-
able problem are avoided, and sequences multiple DMUswhen
they are all effective. An increasing number of scholars have
adopted the SBM model for performance evaluation consider-
ing the environmental pollution resulting from economic pro-
duction activities (Guo and Sun 2013; Qian and Liu 2013;
Zhang et al. 2015; Zuo and Yang 2011):
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slack variable. This study uses the super-efficiency SBM–DEA

model to calculate the total factor energy efficiency of Chinese
provinces.

Spatial interaction model for regional energy
efficiency

Spatial interaction is defined as population mobility, commod-
ity circulation, industrial transfer, capital inflow, and material
and information exchange among different provinces and re-
gions (Long et al. 2016). According to its form and connota-
tion, spatial interaction is divided into three types—convection,
radiation, and transmission. Improvements in regional energy
efficiency not only depend on economic level, geographic lo-
cation, and technical and institutional factors, but also involve
population, commodity, industrial, and technical innovation.

Research on Ravenstein’s gravity model finds that distance
and spatial interaction are inseparable (Ravenstein 1976).
Moreover, spatial interaction is related to regions’ sizes, de-
gree to which economic activities are related, and social de-
velopment level. Combined with universal gravitation theory,
the gravity model is used to calculate the strength of regional

spatial interaction, that is, I ij ¼ pip j=D
b
ij, where pi and pj de-

note size of region, Db
ij is the distance between regions i and j,

and b is the friction coefficient used to calculate distance.
Accordingly, a potential model is developed to examine the
strength of interaction among multiple regions, and obtain the

summation of Iij: M ¼ ∑n
j¼1I ij ¼ ∑pip j=D

b
ij; this process is

called Bpotential.^ These two models have similar limita-
tions—they lack rigorous mathematical formula derivation,
the friction coefficient is not fixed, and its selection is subjec-
tive, all resulting in errors. Therefore, this study adopts
Wilson’s (1967) maximum entropy model to estimate the spa-
tial interaction strength of energy efficiency for each province
in China.

First, it assumes that the regional system is closed and
satisfies the physics law of energy conservation. Then, when
the entropy of the subsystem reaches maximum value, the
macroscopic quantity will be stable, and the total system en-
tropy will peak. In the long run, the instant flux will remain
stable, and such a flux is called the strength of spatial
interaction:

∑
j
T ij ¼ Oi

∑
i
T ij ¼ Dj i; j ¼ 1;⋯; n

∑
ij
cijT ij ¼ C ;

ð3Þ

where Tij is the strength of regional interaction. The total supply
of region i is set to Oi, and the total demand of region j is Dj.
Current cost is denoted by C. We obtain the extreme value using
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W Tij
� � ¼ T !

∏
ij
T ij!

: ð4Þ

This mode is set up by using probability, as well as permu-
tation and combination knowledge, which is different from the
aforementioned gravity and potential models.

Prasad (2005) attempted to measure regional interaction
influence using a spatial interaction model. Some other
scholars combined Wilson’s model with commodity inflow
and outflow in logistics theory to examine logistics spatial
interaction. This study introduces a total factor energy effi-
ciency index on the basis of a maximum entropy model.
Regions with low energy efficiency often strive to bring in
experiences, scientific technologies, and policy institutions
of regions with high efficiency, in which case an appealing
force tends to emerge. Thus, we put forward our first
proposition.

Proposition 1 The appealing force between a supply region
and a demand region denotes the total factor energy efficiency
of each region.

Spatial damping factors, such as distance, communication,
information, and degree of mutual exchange among different
regions, also tend to differ. First, suppose 30 Chinese prov-
inces are in a closed system. Tij is used to express spatial
interaction strength based on total factor energy efficiency
when the macroscopic quantity is maximum. The model is
constructed as follows:

∑
n

i¼1
Tij ¼ E1i i ¼ 1;⋯n

∑
m

j¼1
Tij ¼ E2 j j ¼ 1;⋯m

∑
n

i¼1
∑
m

j¼1
cijT ij ¼ C

; ð5Þ

where E1i is the total supply of the ith region and E2j is the total
demand of the jth region. The entropy of the subsystem in

thermodynamics is S j ¼ − ∑
N

i¼1

Tij

E1i
logTij

E1i
. The Lagrange func-

tion is used to obtain the extreme value of this formula, and
when using the point of this extreme value, the subsystem’s
entropy and the macroscopic quantity of the closed system
become stable. At this time, Tij = KiE1i exp(−βcij) = KjE2j

exp(−βcij), where β denotes the spatial damping function.
Thus, we put forward our second proposition.

Proposition 2 When analyzing population diffusion and spa-

tial interaction, the diffusion coefficient is D ¼ h2
2T and

β ¼
ffiffiffiffiffiffiffiffi
2T

tmaxD

q
. Here, h is the region diameter, and T is the resi-

dence time of persons in a given region.

The following equation is used to estimate spatial interac-
tion strength for multiple regions while accounting for energy
efficiency factors under the maximum entropy model:

Ti ¼ ∑
n

j¼1
Tij ¼ E1iE2 jexp −

ffiffiffiffiffiffiffiffiffiffiffiffi
2T

tmaxD

r
γij

� �
i≠ jð Þ; ð6Þ

where D is the administrative area of 30 provinces; T is the
quantity of regions with interaction; tmax is the quantity of
regions with high energy efficiency value; E1i and E2j are
the energy efficiency values of a region with supply i, and a
region with demand j; and Ti is the sum of spatial interactions
among each province, and termed the potential value of total
factor energy efficiency.

Spatial econometric model

Model introduction

The traditional econometric framework has been reformed
with the development of spatial econometrics. In fact, the
spatial spillover effect can be quantitatively analyzed on the
basis of space, space and time, and geographical location con-
siderations. In general, a data point in a spatial data sample
expresses observed values related to regions, in which case the
concept of Bspatial dependence^ is derived. This indicates that
spatial correlation and time sequence correlation concurrently
exist among regions.

Spatial autocorrelation analysis

When the values of variables for adjacent regions are similar,
spatial autocorrelation may exist, which is also known as spa-
tial dependence (Long et al. 2015). Introduced in 1950,
Moran’s index I is a commonly used method to test for spatial
autocorrelation. This study employs Moran’s index to explore
the clustering effect of spatial interaction for each Chinese
province, and then test the spatial correlation, the spatial inter-
action strength of the total factor energy efficiency for each
province during 2000–2014. Stata 14.2 is used to calculate the
value of Moran’s I.

Moran
0
sI ¼ ∑

n

i¼1
∑
n

j¼1
W ij Y i−Y

� �
Y j−Y

� �
=S2 ∑

n

i¼1
∑
n

j¼1
W ij; ð7Þ

where S2 is the sample variance of an observed value (total

factor energy efficiency value); Yi, for the ith region; and S2

¼ ∑
n

i¼1
Y i−Y
� �

=n, Y ¼ ∑
n

i¼1
Y i=n. The value range for Moran’s

I is [‐1, 1], where the negative value denotes a negative auto-
correlation among regions, while a positive value refers to a
positive autocorrelation. I > 0 means that high values are close
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to high values, and low values are near low values, and I < 0
denotes that high values are next to low values. The geograph-
ical distance spatial weight matrix is the [0, 1] matrix under
the adjacent criterion, and is standardized as follows:

W ¼
w11 w12 ⋯ w1n

w21 w22 ⋯ w2n

⋮ ⋮ ⋮ ⋮
wi1 wi2 ⋯ wij

�;

2
664 ð8Þ

i, j refer to regions i, j. When the two regions are adjacent and
have a common boundary, wij = 1, and when there is no com-
mon boundary, wij = 0. Finally, statistical magnitude Z is used
to perform a significance test of Moran’s I.

Z dð Þ ¼ Mora n
0
s I−E Ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VAR Ið Þp : ð9Þ

Spatial econometric analysis of factors influencing potential
values of total factor energy efficiency

First, it is certain that a change in the potential value of total
factor energy efficiency is caused by the combined action of
multiple factors. Since it is difficult to list all influencing factors,
drawing in the literature, this study focuses on industrial struc-
ture, FDI, transportation infrastructure, technical progress, and
governmental intervention. To avoid multicollinearity and
heteroscedasticity, this study takes the logarithm of each variable.

The spatial econometric model compensates for the defi-
ciency in the traditional measurement model, that is, the latter
does not account for spatial correlation, and includes a spatial
function for each region. When setting up the model and an-
alyzing the spatial effect, if the explained variable Ti for prov-
ince i is related to every explanatory variable of the province
and independent variables for adjacent provinces, then

T ¼ Xβ þWXδ þ ε; ð10Þ
where WXδ is the influence of an independent variable for an
adjacent province; δ is the influence coefficient; and T is the
explained variable, the total factor energy efficiency potential
value. When combined with a spatial autoregression model,
we derive the space Durbin model:

T ¼ ρWT þ Xβ þWXδ þ ε: ð11Þ

According to the above theoretical basis, we set up the
dynamic panel space Durbin model

Tit ¼ τTi;t−1 þ ρwiT it þ X itβ þ wiX itδ þ μi þ γt þ εit;ð12Þ
where Ti, t − 1 is the one-order lag for an explained variable, wi

is row i in spatial weight matrix W, the spatial lag term of the

energy efficiency potential value is wi Xtδ, and the time effect
is γt.

The study follows the spatial dependence model (SDM) to
observe the spatial effect of an adjacent province (LeSage and
Pace 2008):

Tit ¼ X itβ þ wiX itδ
In−ρwið Þ þ μi þ γt

I n−ρwið Þ þ
εit

I n−ρwið Þ
¼ ∑

5

k¼1
Hk wð ÞX it þ L wð Þ μi þ γtð Þ þ L wð Þεit

Hk wð Þ ¼ L wð Þ Inβ þ wiδð Þ
L wð Þ ¼ In−ρwið Þ−1 ¼ In þ ρwi þ ρ2wi

2 þ ρ3wi
3 þ⋯:

ð13Þ

Changes in an independent variable for one province will
indirectly affect those in dependent variables for other prov-
inces. wiTit fits the difference in the potential values for total
factor energy efficiency among provinces by capturing those
for total factor energy efficiency of adjacent provinces, and
given the independent variable feature level, wiXit. In other
words, the spatial effect of each province is influenced by
adjacent provinces. To measure the influence of change in
an independent variable on Tit, the partial derivative of period
t, which corresponds to the kth explained variable for one
region at a certain period point, is solved:

∂Tit

∂X it
Hk wð Þij: ð14Þ

Such an effect will simultaneously influence province i.
The degree of reaction depends on the location of every prov-
ince, the spatial weight matrix that reflects relationships
among each province, and the spatial autocorrelation coeffi-
cient ρ and parameters μi, δ, γt. The elements on the diago-
nals of matrix Hk(w) represent a direct effect, while those not
on the diagonals and mean values denote an indirect effect.
Pace and LeSage (2006) presented a measurement method by
defining the mean value of the ith row of matrix Hk(w) as the
accepted average total effect of this region. A simple method
tomeasure the average direct effect is to obtain the mean value
of elements on the diagonal. In this case, the difference in
subtracting the average direct effect from the average total
effect will be the average indirect effect.

Average direct effect :

M kð Þdirect ¼ Hk wð Þii=n ¼ n−1tkHk wð Þ:

ð15Þ

Average total effect :

M kð Þtotal ¼ Hk wð Þijsum μi þ γtð Þ=n i≠ j:

ð16Þ
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Average indirect effect :

M kð Þindirect ¼ M kð Þtotal−M kð Þdirect

ð17Þ

In Eq. (16), ijsum is the row sum average value of elements
that are not on the diagonals in matrix Hk(w).

Empirical analysis

Data selection and variables

The Rawski (2001) study showed that, since the mid-1990s,
China’s economic growth trend and energy consumption
growth trend have been in contrast with each other. Sinton
and Fridley (2000), Sinton (2001) explored the relationship be-
tween China’s economic growth, energy production, and actual
output in this period, and stated that relevant statistical indicators
were less credible. Thus, this study selects 2000 as the base year.
Energy consumption data are released every other year, and rel-
evant energy data are available till 2015 on the National Statistics
Bureau’s official website. Considering data availability and com-
pleteness, this study uses relevant energy data for 30 provinces
for 2000–2014. The following regions are excluded owing to
missing data: Tibet, Hong Kong, Macau, and Taiwan. Missing
data are fixed using the mean value, ratio, and interpolation
methods. Data for Tianjin city’s transportation infrastructure are
expressed in the total length of operational lines, as stated on the
National Statistics Bureau’s official website.

For data on GDP output, the gross regional domestic prod-
uct for each province and a GDP deflator are used. Relevant
data for the constant price of each year are obtained using
2000 as the base year. For the labor force index, it is preferable
to employ average labor time and labor productivity for each
region. However, considering data availability, this study uses
the number of employees at the end of each year, data for
which are taken from the relevant year’s statistical yearbook
for every province, which is half of the sum of last year’s and
current year’s year-end employee number. For energy data,
the total energy consumption for each province is chosen
and converted into a unified unit, that is, 10,000 t of standard
coal. Using relevant capital stock data updated to 2014, the
perpetual inventory method is employed, that is, Kit =Kit − 1(1
− δit) + Iit, where Kit is the capital stock of the ith province in
the tth year. Given space constraints, this study does not con-
duct a detailed estimation of the economic depreciation rate
δit, but assumes it to be 9.6%, drawing on Zhang et al. (2004).
As for the selection of data for investment Iit, the current
system of national accounts provides a fixed asset price index
and data on fixed asset investments for each province. The
annual constant price for each fixed asset investment is calcu-
lated with 2000 as the base year. Accordingly, each year’s
capital stock is estimated by incorporating a fixed asset price

index in the formula. Undesirable output data include indus-
trial solid waste emissions, industrial emissions, and industrial
waste water discharge, and other major pollutant emission
targets for each province during the last 15 years. Table 1
presents the statistical description indexes used to calculate
energy efficiency from 2000 to 2014.

Geographically, 30 provinces are divided into three loca-
tions according to traditions, respectively, for the eastern, cen-
tral, and western regions (Table 2).

In calculating the spatial interaction strength of regional
total factor energy efficiency, T = 30 denotes the number of
research objects, and tmax is the number of provinces whose
mean value for the Malmquist–Luenberger (ML) index is
greater than 1. The adjacent relationship is defined on the basis
of whether a common boundary or interregional distance ex-
ists, and if great-circle/economic distance or transportation
cost reflects travel time from one place to another. When de-
ciding interregional distance, this study considers the signifi-
cant development of railway and road systems, for example,
G-series high-speed train lines, in cities with a population
higher than 500,000, which will definitely reduce the time
and cost of interregional exchanges of institutions, informa-
tion, and industrial transfer, and increase spatial interaction
strength. Considering data availability, the present analysis
used minimum train arrival time for 30 provinces till
May 30, 2017.

This study highlights five factors that influence the spatial
interaction strength of total energy efficiency. First is industrial
structure (IS). The related literature largely adopts the GDP of
the secondary or tertiary industry. However, the energy con-
sumption level tends to differ by industry; in the recent 2 years,
the proportion of China’s tertiary industry has exceeded 50%.
Thus, it would be one-sided to examine the industrial structure
level for each province using the proportion of one industry.
Employing an industrial upgrading coefficient method, which
has been increasingly used to measure industrial structure in
recent years, this study assumes the upgrade level of provincial
industrial structure to be 1 × provincial proportion of second-
ary industry + 2 × provincial proportion of secondary industry
+3 × provincial proportion of tertiary industry. The second
influencing factor is transportation infrastructure (TI),
expressed by the railway operating mileage of each province;
the third is technical progress (TECH), which is replaced by
transaction volume for each province’s technical market. The
fourth is the degree of government interference (GI), denoted
by the ratio of local general budget expenditure to gross re-
gional domestic product; and finally, FDI in each province
during the study period was collected and converted into the
constant value of 2000. Data for these factors are obtained
from the China Statistical Yearbook, China Statistical
Yearbook on Energy, China City Statistical Yearbook, China
Statistical Yearbook on Environment, and statistical yearbooks
of every province from 2000 to 2015.

13750 Environ Sci Pollut Res (2018) 25:13745–13759



Total factor energy efficiency for each province

The values of total factor energy efficiency for the 30 Chinese
provinces during 2000 and 2014 are obtained using MaxDEA
6.0. Table 3 presents the results for the efficiency change (EC)
index, technology change (TC) index, and Malmquist–
Luenberger index, as well as the mean values.

Table 3 indicates the following trends for average total
factor energy efficiency in China during 2000 and 2014.
Ningxia, Inner Mongolia, and Qinghai report the highest total
factor energy efficiency, of which Ningxia has the highest
mean value of 1.196, with an increase of 19.6%. All three
provinces are in northwest inland of China, where economic
development lags, there are few industrial enterprises, and the
environmental quality and energy consumption are better than
those in developed areas. The ML index is bounded by 1, and
its results indicate that total factor energy efficiencies for 19
provinces during the period examined are on the production
frontier. The gaps in the ML index for mid-level provinces
(i.e., those ranking 9–19) are small, and the maximum is
2.3%. In addition, Beijing, Liaoning, Anhui, Hainan, and
Guangxi appear to be falling behind, of which Hainan’s factor
energy efficiency is 78% and descended by 22%, which is
significantly lower than those of other provinces (Table 4).

Figure 1 illustrates that the growth in the average total
factor energy efficiency of the western region is perennially
higher than those of other regions and the entire nation, which
is also consistent with the results in Table 4. However, prior to
2009, changes in total factor energy efficiency were not stable.
The energy efficiency in the middle region fluctuated most

closely to the national average, and the ML index was the
most stable with a mean of 0.998. In the eastern region, the
total factor productivity fluctuated greatly. It declined rapidly
from 2000 to 2002, and reached a low level from 2002 to
2005, after which it rose to a stable state, with the exception
of 2010–2011, when the total factor productivity retained sta-
ble status.

Spatial interaction strength

Since the data for spatial interactions constantly change,
whereas the present index is a static result, first, this study
calculates each year’s value, and then compares them. This
discussion is limited to the potential values of each province’s
energy efficiency for specific years owing to space con-
straints. Table 5 presents the results.

The table shows that the top ranking of Gansu, Inner
Mongolia, Qinghai, and Ningxia did not fluctuate, and for
mid-level provinces like Henan, Heilongjiang, Hubei, and
Shandong, the fluctuation trends are the same. Provinces with
a significant increasing trend in recent years are Tianjin (from
28th to 5th), Chongqing (from 17th to 8th), and Qinghai (from
14th to 4th). It is noteworthy that, in 2012, the decline in
spatial interaction strength in Jiangsu Province (from 16th to
25th) and Anhui Province (from 6th to 27th) coincided with
that in total factor energy efficiency change in the eastern
region. In addition, the rankings for Heilongjiang, Liaoning,
and Jilin marginally decreased, while the spatial interaction
strength for Inner Mongolia increased by 141.3% to 113.36
in 2003 than 46.98 in 2002.

Table 1 Statistical description of input and output indexes for 30 provinces

Index Expression Maximum value Minimum value Mean value Standard error Total

GDP (CNY100 million) Y 49,708 263.68 8244.8 8091.7 450

Labor force (10,000 persons) L 6670.4 273.9 2447.3 1643.7 450

Energy (10,000 t of standard coal) E 35,363 479.95 10,010 7183.9 450

Capital stock (CNY100 million) K 34,178 739 9198.2 6949 450

Industrial solid waste (10,000 t) sw 45,576 75 6412.592 6682.85 450

Industrial emissions (billion cubic meters) T = 30 79,121.3 434 13,180.05 12,338.98 450

Industrial waste water (10,000 t) tmax 838,551 3453 94,177.98 99,923.89 450

Table 2 Territory classification
Location Province

East Beijing City, Tianjin City, Hebei Province, Liaoning Province, Shanghai City, Jiangsu Province,
Zhejiang Province, Fujian Province, Shandong Province, Guangdong Province, Hainan Province

Middle Shanxi Province, Jilin Province, Heilongjiang Province, Anhui Province, Jiangxi Province, Henan
Province, Hubei Province, Hunan Province

West Inner Mongolia, Guangxi Zhuang Autonomous Region, Chongqing City, Sichuan Province,
Guizhou Province, Yunnan Province, Shanxi Province, Gansu Province, Qinghai Province,
Ningxia Hui Autonomous Region, Xinjiang Uygur Autonomous Region
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Spatial econometric model results

Spatial autocorrelation test

In this section, Stata 14.2 is used to calculate Moran’s index
for the potential values of the total factor energy efficiencies in
30 provinces. Table 6 presents the results.

The results show that the values for Moran’s I in each year
are greater than 0, indicating that the potential values of total
factor energy efficiencies for each province have a spatial
positive correlation. The statistical values for Moran’s I during

the 12-year research period ranged between 0.058 and 0.267,
and were significant at the 10% level. Thus, we can conclude
that the spatial interaction of total factor energy efficiency for
all provinces is not completely random, but is in a positively
related state of spatial dependence. In addition to local eco-
nomic development, industrial restructuring, resource con-
sumption, technological development, and increased environ-
mental regulation strength in adjacent regions could affect the
strength of total factor energy efficiency for all provinces, and
intensify the spatial correlation.

Scatter diagram for local autocorrelation

On the basis of the aforementioned discussion, Fig. 2 presents a
four-quadrant Moran’s I scatter diagram for the potential values
of total factor energy efficiency for 30 provinces in select years.

The scatter diagram reveals that, in the selected 4 years,
two thirds of the provinces are in the first and third quadrants,
thus proving the existence of spatial positive correlation or the
spatial dependence of the potential value for total factor ener-
gy efficiency among the provinces. Most provinces demon-
strate a clustering effect on adjacent provinces, and the poten-
tial values for the remaining provinces are atypical.

In 2011 and 2014, Inner Mongolia, Gansu, and Ningxia are
in the first quadrant, of which Inner Mongolia and Qinghai
show an increasing trend to the first quadrant in 2008 and
2011. Inner Mongolia jumps from the fourth quadrant to the
first quadrant in 2009. These four provinces also rank among
the top four in terms of spatial interaction strength of total
factor energy efficiency, indicating a high-high (H-H; high
strength of energy efficiency integration and high spatial lag)

Table 3 Evaluation results for total factor energy efficiencies for 30 Chinese provinces (2000–2014)

Province EC index TC index ML index ML ranking Province EC index TC index ML index ML ranking

Anhui 1.004 0.959 0.963 24 Liaoning 0.995 0.948 0.943 27

Beijing 0.998 0.921 0.919 28 Inner Mongolia 1.068 1.076 1.149 2

Fujian 0.999 0.993 0.992 22 Ningxia 0.976 1.224 1.196 1

Gansu 1.065 1.006 1.072 5 Qinghai 0.995 1.151 1.146 3

Guangdong 0.998 1.000 0.998 20 Shandong 0.993 1.001 0.994 21

Guangxi 1.014 0.795 0.806 29 Shanxi 1.004 1.017 1.021 10

Guizhou 1.001 1.037 1.039 6 Shanxi 1.007 1.011 1.018 13

Hainan 1.008 0.774 0.780 30 Shanghai 1.000 1.000 1.000 19

Hebei 0.996 1.008 1.003 18 Sichuan 0.999 1.006 1.006 17

Henan 0.999 1.025 1.023 9 Tianjin 1.021 1.050 1.073 4

Heilongjiang 1.004 0.976 0.979 23 Xinjiang 0.998 1.032 1.030 8

Hubei 0.997 1.010 1.007 16 Yunnan 1.004 1.016 1.020 11

Hunan 1.002 1.033 1.035 7 Zhejiang 0.997 1.016 1.013 14

Jilin 1.006 1.003 1.009 15 Chongqing 1.007 1.012 1.019 12

Jiangsu 0.967 0.981 0.949 26 Mean value 1.004 0.997 1.002 –

Jiangxi 1.013 0.938 0.950 25 – – – – –

− data are unavailable

Table 4 ML index mean values for each Chinese region

Year The whole nation East Middle West

2000–2001 1.010 1.386 0.973 1.034

2001–2002 1.014 0.930 0.972 1.093

2002–2003 1.023 0.975 1.003 1.147

2003–2004 1.028 0.944 1.009 1.095

2004–2005 1.004 0.942 0.980 1.047

2005–2006 1.011 1.073 0.980 1.040

2006–2007 1.005 1.056 0.986 1.035

2007–2008 1.006 0.992 0.985 1.002

2008–2009 0.996 1.022 0.981 1.050

2009–2010 1.008 1.020 0.994 1.061

2010–2011 1.013 0.863 1.203 1.091

2011–2012 0.968 0.999 1.009 1.018

2012–2013 0.988 1.068 1.005 1.015

2013–2014 1.018 1.006 0.995 1.031

Mean value 1.006 0.969 0.998 1.045
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positive autocorrelation clustering mode. Provinces with spa-
tial interaction of high strength are surrounded by provinces
with high spatial interaction strength.

Hebei, Shanxi, Liaoning, Jilin, Heilongjiang, Sichuan,
Shanxi, and Xinjiang are located in the second quadrant, and
report a clustering low-high (L-H; low strength of energy
efficiency integration and high spatial lag) negative autocorrela-
tion, of which Shanxi, Liaoning, and Xinjiang have low spatial
interaction strength in terms of energy efficiency, and are
surrounded by provinces with higher strength. Beijing,
Shanghai, Jiangsu, Anhui, Zhejiang, Fujian, Jiangxi, Shandong,
Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan,
Chongqing, and Yunnan lie within the third quadrant, and the
potential values of total factor energy efficiency rank low. Most
of these regions are located in the low-low quadrant and East
Chinese region; they meet the condition that provinces with low
spatial interaction strength are surrounded by provinces with
higher strength. Tianjin is in the fourth quadrant, while
Guizhou stretches across both the third and fourth quadrants.

Referencing Rey’s (2001) space time translation method,
17 provinces can be classified as HH→HH and LL→LL, and
their transition is at the same level. The transition of Beijing
Tianjin (LL→HH), Jilin and Shanxi (HH→HL), and Ningxia
(HL→HH) is geographically of adjacent type. InnerMongolia
(LH→HH) and Hainan’s (LL→HL) transitions can be termed
as relative displacement. Guizhou stretches across the two
quadrants and thus belongs to an atypical type. Qinghai is in
the second quadrant in 2005 and 2014, stretches across the
first and fourth quadrants in 2011, and reaches the fourth
quadrant in 2012 and 2014, rendering it an unstable region.

Solution of spatial econometric model

According to the above analysis, the explained variables in this
study may have time inertia, that is, one region may become the

Bsupply region^ of demand in the early phase, and exert an
appealing force on adjacent regions. Such an appealing force
may persist throughout the current period.When using themodel
with fixed time and individual effects, to avoid endogeneity
resulting from the first-order lag term of the dependent variable
being the explained variable and the spatial spillover effect, this
study adopts the space Durbin model for parameter estimation.
Tables 7 and 8 present the results for the entire nation, as well as
the east, west, and middle regions, calculated using Stata 14.2.

From above regression results, we can draw the following
conclusions. First, the one-order-lagged potential value for
total factor energy efficiency is significant at the 1% level.
The regression coefficient is positive, indicating that the pre-
vious year’s economic development level, environmental im-
provement, and policymaking among provinces had a signif-
icant positive effect on the current year’s energy efficiency
potential value. Regression coefficient lncyjg for the spatial
lag term of the explained variable is not significant as per
the regression model. The study attempted to set an economic
distance matrix (the value of every factor in the matrix is
expressed by the product of the reciprocal of the square of
the geographical distance between two regions and the ratio
of local average GDP to national total GDP) to perform a
regression on the space Durbin model, and derived a regres-
sion coefficient lnjtss of 0.039, and a p value of 0. This indi-
cates that the spillover effect of the potential value for total
factor energy efficiency for all provinces is significant when
provinces have similar economic development levels.

Second, the industrial structure variable has a significant
negative effect on the potential value of the regional and pro-
vincial total factor energy efficiency; it is significant at the 1%
level. However, when testing the eastern, western, and mid-
regions, the industrial structure level positively impacts the
potential values of total factor energy efficiency across all
regions, especially in the west. This further highlights

0.8

0.9

1

1.1

1.2

1.3

1.4

The whole na�on East Middle West

Fig. 1 Change trend for total
factor energy efficiency
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China’s development strategies, industrial transfers in the mid-
and western regions, and the advantages of the BOne Belt One
Road^ initiative in these regions. The industrial structure

coefficient in the eastern region is the lowest, indicating that
the blind pursuit for industrial upgrading may not improve the
potential value for energy efficiency because of the high

Table 5 Potential energy efficiency values for each Chinese province (select years)

Province Potential
value

Ranking
(2001)

Potential
value

Ranking
(2005)

Potential
value

Ranking
(2011)

Potential
value

Ranking
(2014)

Beijing 20.27 22 35.33 23 38.91 15 15.95 16

Tianjing 18.51 29 45.98 5 124.54 2 127.13 3

Hebei 20.46 20 36.75 16 45.29 8 53.15 10

Shanxi 20.55 19 26.15 27 53.81 5 66.66 4

Inner Mongolia 22.37 5 226.19 1 290.47 23 334.25 28

Liaoning 21.16 13 19.81 28 16.99 3 23.24 2

Jilin 21.39 10 39.51 9 48.54 19 58.93 19

Heilongjiang 21.41 9 28.19 25 42.19 10 39.23 9

Shanghai 20.71 16 35.78 21 44.20 30 50.99 30

Jiangsu 20.71 17 36.64 18 28.07 6 24.98 7

Zhejiang 20.81 15 37.17 12 55.83 24 61.47 24

Anhui 20.26 23 37.02 13 35.12 22 30.27 22

Fujian 19.93 27 36.73 17 39.74 17 46.00 17

Jiangxi 15.14 30 26.90 26 15.05 14 25.37 13

Shandong 20.12 24 28.66 24 28.98 7 46.44 6

Henan 20.02 26 35.99 20 59.48 29 67.82 29

Hubei 20.08 25 36.41 19 48.35 20 55.40 20

Hunan 20.36 21 36.88 14 69.99 28 79.98 25

Guangdong 20.70 18 35.55 22 43.36 12 50.40 11

Guangxi Zhuang
Autonomous Region

22.37 4 14.59 29 2.76 1 2.56 1

Hainan 114.70 1 3.34 30 0.54 9 1.63 8

Chongqing 21.19 12 39.34 10 55.67 26 67.37 26

Sichuan 21.31 11 38.33 11 49.84 11 56.55 14

Guizhou 21.07 14 40.98 7 63.75 16 85.44 15

Yunnan 21.44 8 39.55 8 56.25 21 69.31 23

Shanxi 19.55 28 36.86 15 51.37 25 62.65 21

Gansu 22.36 6 73.51 2 107.76 4 137.95 5

Qinghai 23.05 2 66.81 4 264.67 13 347.48 12

Ningxia Hui
Autonomous Region

22.59 3 67.06 3 470.36 18 618.65 18

Xinjiang Uygur Autonomous
Region

21.89 7 41.97 6 57.24 27 79.96 27

Table 6 Moran’s I for potential
values of China’s provinces,
2000–2014

Year 2000 2001 2002 2003 2004 2005 2006 2007

→ 0.395 0.038 0.216 0.038 0.006 0.004 0.041 0.091

Z value 3.85 2.128 2.396 1.015 0.749 0.592 1.03 1.474

P value 0 0.017 0.008 0.155 0.227 0.277 0.151 0.07

Year 2008 2009 2010 2011 2012 2013 2014 –

→ 0.117 0.182 0.193 0.15 0.144 0.157 0.154 –

Z value 1.474 2.238 2.505 1.965 1.919 2.063 2.068 –

P value 0.07 0.013 0.006 0.025 0.027 0.02 0.019 –

− data are unavailable
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Fig. 2 Moran’s I scatter diagram
for potential value of energy
efficiency (select years)

Table 7 Regression results for spatial dynamic panel Durbin model

Variable The whole nation East Middle West

lnTi, t − 1 1.091*** (56.75) 1.092*** (21.00) 0.972*** (18.84) 1.080*** (50.76)

W ⋅ ln Ti, t − 1 − 0.346* (− 1.84) − 0.118 (− 1.42) 2.26**) 0.528 (1.00) 2.437 0.395*** (12.13)

lnIS − 1.180*** (− 4.05) 2.26** (2.26) 2.437*** (7.03) 15.071*** (31.24)

lnTI 0.545 (1.48) 0.486 (0.64) 0.108* (1.82) − 0.167*** (− 3.37)
lnTECH − 0.556*** (− 2.82) − 0.558 (− 1.43) 0.743* (1.9) − 0.333*** (− 12.86)
lnGI 0.173* (1.66) 0.492 (1.92) 0.155 (0.75) 0.523*** (4.34)

lnFDI 0.256 (0.43) − 0.616*** (− 3.88) − 0.212* (− 1.68) 1.243*** (14.48)

W*lnIS 0.427*** (3.6) 2.619*** (3.14) 0.849*** (4.29) 3.191*** (13.88)

W*lnTI − 0.192* (− 1.71) − 0.046 (− 0.09) − 0.432 (− 1.61) 0.002 (0.13)

W*lnTECH 0.110 (1.44) − 0.242 (− 0.86) − 0.419** (− 2.11) − 0.231*** (− 16.45)
W*lnGI 0.106** (2.11) 0.393 (1.28) − 0.309** (− 2.59) − 0.198*** (− 3.03)
W*lnFDI − 0.484** (− 2.27) − 0.192 (− 1.40) 0.329 (0.54) − 0.556* (− 1.87)
ρ 0.008 (0.43) – – –

Values in parentheses are Z statistic values

*Significance at the 10% level; **significance at the 5% level; *** significance at the 1% level
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economic development levels and complete industrial struc-
ture. This also explains the negative coefficient when consid-
ering industrial structure within the nationwide range.

Third, the effects of transport infrastructure and techni-
cal progress on the potential values of total factor energy
efficiency were significant at the 1 and 10% levels. The
construction of highways, railways, and civil aviation route
networks will enable provinces to reach the maximum ef-
fect of interconnection. The costs of such links as technol-
ogy exchange, population migration, commodity circula-
tion, industrial transfer, and policy learning will also de-
crease in these provinces, directly enhancing the spatial
interaction intensity of total factor energy efficiency.
During the industrial transfer, eight provinces in the mid-
region underwent an upgrading process from the primary
to the secondary industry. Given a large proportion of in-
dustrial enterprises, industrial enterprise clustering can
boost local economic development and potential value in
the short term. However, in the long run, industrial enter-
prises are mostly pollutive. Thus, improvements in scien-
tific and technological levels could improve productivity
and reduce energy consumption. However, at the same
time, they can reduce enterprises’ treatment cost, which is
favorable to enterprises’ operating activities, and counters
governmental environmental regulations. The west has the
highest technical progress coefficient with a high signifi-
cance level and p value of 0. This is because the west has
been in a state of lag, and technological development in the
region seems to have an instant effect.

Fourth, of the five independent variables, FDI and degree
of government interference negatively affected the potential
value of China’s total factor energy efficiency; they pass the
10% significant test. On the other hand, the mid- and western
regions passed the significance test. At present, in addition to
FDI, governmental fiscal expenditure in the western region
also promotes GDP growth. This is also reflected in the values
of independent variable coefficients. The coefficient of gov-
ernment interference is the second largest independent vari-
able after industrial restructuring to affect the potential value
of total factor energy efficiency in the west.

The regression coefficients for the space Durbin model are
not the elastic coefficients of explained variables. In Eq. (14),
Hk(w)ij is used to measure the influence of change in indepen-
dent variables on the observed value of the explained variable
and that of the observed value on itself in the feedback circuit.
The effects are divided into short- and long-term influences.
The effect of explained variable Ti caused by a change in the
ith observed value for the kth explained variable is called the
average direct effect, and the effects on other regions are
called spatial spillover effect (average indirect effect). See
Table 8 for details.

Fifth, judging from the nationwide range, the direct effects
of other independent variables, except FDI, have contrary

results in the short and long term. For example, the economic
environmental benefits from industrial regulations may not
have direct short-term effects; even areas with strict environ-
mental regulations may compel industrial enterprises to exit
the regions, resulting in the slowing down of economic devel-
opment. However, in the long run, the optimization of propor-
tions of various industries and restrictions on high energy-
consuming and highly pollutive enterprises could positively
stimulate the potential value of total factor energy efficiency in
China. Another example is the degree of government interfer-
ence. An increase in the general budge expenditure for local
finance would increase local economic governance in the
short term, promote technical progress, and improve the pro-
duction efficiency of industrial efficiencies. However, long-
term dependence of the local government on government ex-
penditure will reduce productivity and economic growth,
which, in turn, will hinder the potential value of total factor
energy efficiency in the corresponding area.

Sixth, the spatial effect produced by the increase of FDI in
the western region all passed the significance test at the 1%
level, indicating high investment potential in western China.
However, examining the spatial effect of FDI in the whole
country shows results that are contrary to those of the western
region, which needs further research (Table 8).

Finally, technical progress has the best spatial effect across
all provinces. Irrespective of the direct or spillover effect, it
has a positive influence on adjacent regions. Technical devel-
opment, R&D input, and clean energy technology have a di-
rect bearing on the environmental performance of each prov-
ince. The value of the long-term average indirect effect, 0.128,
is considerably higher than that of the short-term average in-
direct effect, 0.031. This indicates that, in addition to in-
creased technological levels significantly improving the po-
tential value of total factor energy efficiency in the short run,
such an influence persists in both the relevant and adjacent
areas.

Conclusions and implications

Conclusions

This study adopts a nonradial and slack variable perspective,
and employs a super-efficiency SBM–DEAmodel to calculate
the total factor energy efficiency of 30 Chinese provinces
during 2000–2014. Since total factor energy efficiency has a
spatial spillover effect, by referencing Wilson’s maximum en-
tropy model, this analysis attempted to set up a model to
calculate the strength of spatial interactions that are based on
energy efficiency, which is also known as the potential value
for total factor energy efficiency. After testing for the exis-
tence of the spatial positive autocorrelation of the potential
value for total factor energy efficiency, a space Durbin model
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was set up to examine influencing factors, including industrial
structure, energy strength, and technical progress.

For the period of 2000–2014, 16 provinces reported
mean values for the ML index that were greater than 1.
Provinces with front rankings are located in the Northwest
China, where there are few industrial enterprises, and en-
vironmental pollution is low. According to the calculation
results for the potential value of total factor energy effi-
ciency, the abnormal fluctuation in the ML index during
2003 and 2012 tallied with those of rankings of the po-
tential value for each province’s energy efficiency in
terms of time and location. This study also adopted
Moran’s I scatter diagram to observe the clustering effect
of the potential value of all provinces’ total factor energy
efficiency. It shows that the transitions of 22 provinces
were of the same type. However, the industrial structure
of the three major eastern, central, and western regions
has a positive effect on the total factor energy efficiency
potential of all regions.

Implications

Based on the empirical results in the article, the following
implications can be drawn:

1. Optimize economic structure and improve energy
efficiency. Currently, China still has low energy efficien-
cy. In some areas, it is far away from the production front
of DEA, and there is still substantial room for improve-
ment in energy efficiency. According to the research in
this article, the industrial structure and technological level
have different impacts on energy efficiency. Therefore,
accelerating the structural adjustment is conducive to
China’s economic restructuring and energy efficiency.

2. Improve the technical level and promote energy
conservation. One of the main reasons for the low energy
efficiency in China is the excessive emission of pollut-
ants. According to this research, the emission of unwant-
ed pollutants from energy sources limits the energy effi-
ciency improvement. Therefore, energy conservation and
environmental governance need to be strengthened to en-
hance energy efficiency and achieve effective energy ef-
ficiency improvements.

3. Strengthen regional coordination and promote common
development. According to the analysis in this paper, the
energy efficiency in the western region is higher than that
in the middle and eastern parts of the country, and there is
a direct impact and spillover effect between regions.
Therefore, it is necessary to strengthen the coordination
of regional energy issues on environmental governance
and give full play to the exemplary role of energy-
efficient regions for energy efficiency improvement.
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