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Abstract
The minireview is devoted to the analysis of the influence of soil pollution with heavy metals, polyaromatic hydrocarbons
(PAHs), and the polychlorinated biphenyls (PCBs) on the distribution of antibiotics resistance genes (ARGs) in soil
microbiomes. It is shown that the best understanding of ARGs distribution process requires studying the influence of
pollutants on this process in natural microbiocenoses. Heavy metals promote co-selection of genes determining resistance
to them together with ARGs in the same mobile elements of a bacterial genome, but the majority of studies focus on
agricultural soils enriched with ARGs originating from manure. Studying nonagricultural soils would clear mechanisms of
ARGs transfer in natural and anthropogenically transformed environments and highlight the role of antibiotic-producing
bacteria. PAHs make a considerable shift in soil microbiomes leading to an increase in the number of Actinobacteria which
are the source of antibiotics formation and bear multiple ARGs. The soils polluted with PAHs can be a selective medium
for bacteria resistant to antibiotics, and the level of ARGs expression is much higher. PCBs are accumulated in soils and
significantly alter the specific structure of soil microbiocenoses. In such soils, representatives of the genera Acinetobacter,
Pseudomonas, and Alcanivorax dominate, and the ability to degrade PCBs is connected to horizontal gene transfer (HGT)
and high level of genomic plasticity. The attention is also focused on the need to study the properties of the soil having an
impact on the bioavailability of pollutants and, as a result, on resistome of soil microorganisms.
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Introduction

The development of antibiotic resistance is considered a
major threat to the mankind. The large-scale use and mis-
use of antibiotics in medicine and agriculture have led to
the selection of strains resistant to several or even all
known classes of clinically relevant antibiotics. The threat
had been long recognized by major international organi-
zations, and World Health Organization takes efforts to
increase public awareness on the issue (WHO 2015;

Pires et al. 2017). Taking into account the severity of
the human health and economic consequences, action
plans are proposed by scientific organizations (Fuentes
et al. 2017), and measures are taken by governments of
many countries (WHO 2015; Xiao and Li 2016; Assiri
and Banjar 2017).

Though the global efforts to struggle with the antibiotic
resistance are focused mainly on the clinically relevant strains
of pathogenic bacteria, it should be noted that the origin of
antibiotic resistance is in the environment, rather than in hu-
man or animal organisms. It has been shown that the ARGs
existed before the onset of the antibiotic era, and ARGs of
pathogenic bacteria are identical to those found in environ-
mental strains (D'Costa et al. 2011). It has been recently
shown that horizontal gene transfer (HGT) took place both
in the past and quite recently, and there is direct evidence that
the source of ARGs is antibiotic-producing actinobacteria
(Jiang et al. 2017).
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It is now well established that the environments such as
soil, water bodies, plant and animal-associated, and artificial
ecosystems harbor microorganisms with ARGs and capabili-
ties for their mobilization (Surette andWright 2017). The sum
of all ARGs in a particular environment is often referred to as
Bresistome^

The community-level studies, including the resistome stud-
ies based on isolation of ARGs from the diversity of environ-
mental strains, always rely on the local conditions that influ-
ence community composition and functions. Such conditions
include abiotic factors, biotic factors, and various disturbances
(Luzuriaga et al. 2012). Bacterial communities are particularly
sensitive to anthropogenic stress, which leads to their possible
use in bioindication (Gorovtsov et al. 2017). However, this
sensitivity makes it quite difficult to predict and control the
processes linked to antibiotic resistance in complex natural
environments, especially in soils. Thus, the interactions be-
tween the anthropogenic impact on the soils and the soil
resistome remainmostly unclear. Still, there is a growing body
of research dedicated to such interactions.

The present review aims to analyze the available data on
the influence of pollution on the soil resistome, with particular
attention paid to heavy metals, PAHs, and PHBs. This study is
aimed to highlight the significance of major anthropogenic
pollutants in co-selection of ARGs in soils that are not affected
by resistant strains originating from clinical or veterinary prac-
tices. Heavy metals, PAHs, and PCBs are among the sub-
stances that are introduced into the environment in large quan-
tities from industrial and urban sources. To date, only a few
studies link the persistent organic pollutants, including PAHs
and PCBs, to the selection of ARGs in the soil. The present
review is an attempt to summarize and analyze the available
scarce data.

The influence of heavy metals
on the emergence of antibiotic resistance
in polluted soils

Heavy metals have been used for different purposes for thou-
sands of years. Their adverse effects on human health are well
known, but in some areas, the exposure to heavy metals con-
tinues to grow (Järup 2003). Heavy metal contamination has
been studied extensively for decades, but the vast majority of
the papers consider either the issues of potential health risks
linked to their accumulation in agricultural products (Blanco
et al. 2017; Marrugo-Negrete et al. 2017) or the influence of
pollution on natural ecosystems functioning and stability
(Ding et al. 2018; Wang et al. 2017).

However, there is a significant indirect consequence of
heavy metal pollution, that is the selection and accumulation
of ARGs in the microbial communities of the polluted soils.

The first report of the link between resistance to antibiotics
and heavy metals appeared in the 1960s when this threat was
only starting to be recognized (Novick and Morse 1967). By
now, the mechanisms of co-resistance to several agents have
been well established. Co-resistance development in microor-
ganisms is caused by location of two or more different resis-
tance genes on the same plasmid, transposon, or integron
(Chapman 2003). It has been shown that the antibiotic resis-
tance genes are not an intrinsic trait of such genetic structures
and that the acquisition of ARGs by pre-existing plasmids and
transposons is a recent event (Mindlin et al. 2005).

It is quite natural to assume that the R-plasmids and trans-
posons comprise a multi-tool, developed by microorganisms
to cope with environmental threats, and that the core of such
genetic structures remain stable, while the Bweaponry^ that is
included changes in response to changing environment. Still,
the exact pathways and conditions leading to the transfer of
ARGs cassettes to R-plasmids remain largely unclear. One of
the proposedmechanisms includes the class I integrons, which
are widespread and act as recruiters of ARGs from environ-
mental strains (Gillings 2014). It is noted that class I integrons
are prevalent in metal-contaminated environments (Poole
2017). Thus, the process of ARGs transfer is enhanced, and
the resistant strains may be selected by the local heterogeneity
of metal concentrations. It should be noted that the majority of
the studies of ARGs transfer in metal-contaminated environ-
ments were performed in aquatic ecosystems (Rosewarne
et al. 2010; Su et al. 2014). The cause of this high attention
to aquatic ecotopes is that water bodies are well-recognized
sources of clinically relevant antibiotic-resistant bacteria
(ARB) spreading (Guo et al. 2017; Hsu et al. 2017).

However, the soil comprises an environment with more
uneven properties, especially at the microscale level, which
is the real niche for soil microorganisms. The levels of heavy
metals capable of influencing the bacteria are dependent on
the processes of adsorption-desorption of metals on clay min-
erals, interactions with humic substances, microaggregate sta-
bility, and many other factors (Dror et al. 2017). This leads to a
view of contaminated soil as a highly heterogeneous matrix
with myriads of hot spots for the selection of resistant strains.

The most recent findings of the linkage of heavy metal
contamination of soils and antibiotic resistance genes are
summarized in Table 1.

The analysis of recent data on co-resistance to antibiotics
and heavy metals in soil bacterial communities has shown that
most of the studies are focused on agricultural soils. The most
frequent objects of study are the farmland soils amended with
composts produced from manure, or less frequently, with
wastewater sludge.

The search for metal-antibiotic co-resistance in manure-
amended soil is due to extensive use of both heavy metals
and antibiotics in animal husbandry. The livestock feeds are
often supplemented with trace elements, but most of them do
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not absorb in the intestines which leads to their accumulation
in the manure (Xiong et al. 2010). The prophylactic use of
antibiotics remains a widespread practice in animal husbandry
despite the criticism and concerns for its role in antibiotic
resistance development. Even the therapeutic use of antimi-
crobials poses an environmental threat (Cabello and Godfrey
2016). This makes the agricultural soils affected by animal
waste the most apparent object for the research of co-resis-
tance. As for the wastewater sludge, it is a well-documented
source of ARB (Xie et al. 2016) and can contain relatively
high concentrations of heavy metals, precipitated during the
water treatment.

There is only limited evidence and few papers dealing with
antibiotic resistance in soils, contaminated with heavy metals
from other sources. However, the development of antibiotic
resistance in microbial communities without obvious source
of antibiotics (like sewage sludge or manure) is an issue of
great importance. The intentional applications of wastewater
treatment sludge or organic fertilizers take place on specific
sites and therefore can be monitored and controlled. The un-
intentional metal pollution, originating from industrial sources
and spreading with air or groundwater, is much more wide-
spread and hard to prevent.

It has been shown that the microbial communities of soils
amended with copper and that had not been previously subject
to other agricultural or industrial discharges still developed
antibiotic resistance via co-selection (Berg et al. 2005).
There is an urgent need to study the non-agricultural soils,
which are subject to metal pollution, including the urban
soils, soils of mining areas, soils along the major highways,
etc. The studies of soils which had not been in direct contact

with antibiotics produced artificially can contribute to our
knowledge of the process of gene transfer from the natural
pool of ARGs present in environmental strains.

Another major concern is the existing gap between the
studies of the ARGs in polluted soils and the studies of the
environmental fate of the antibiotics. The reviews of antibiotic
resistance tend to focus on the ARGs and the mechanisms of
HGT but do not pay attention to the antibiotic substances
themselves and their interaction with the environment. There
is significant data available on the interaction of antibiotics
with soil inorganic and organic matter (Pils and Laird 2007),
and the current knowledge of processes of sorption, desorp-
tion, and degradation of antibiotics in soil was summarized in
a recent review (Hashmi et al. 2017). The origin of this gap is
the complete difference in methods utilized in the studies of
the ARGs and soil-antibiotic interactions, which are difficult
to be combined in a single study. However, a joint research
could bring new insights into the development of antibiotic
resistance in soil environment.

Most of the studies focused on the ARGs and microbial
communities leave the basic soil properties aside, though
they can have a significant influence on the development
of resistance. The data on soil properties, if present, are
taken into supplementary materials and are almost never
used in the discussion of the results. At the same time, it
has been shown that clay minerals may be a significant
source of DNA for soil bacteria, adsorbing up to 70 μg
of DNA per dry gram of soil.(Gardner and Gunsch 2017).
Lv et al. (2017) have shown that montmorillonite drastically
reduces antimicrobial activity of tetracycline, which could
lead to selection of antibiotic-resistant bacteria. Kaolinite

Table 1 The relationship between heavy metal contamination and antibiotic resistance in soils

Metal Antibiotics Antibiotic resistance genes Soil type Reference

Ni β-lactams, aminoglycosides,
tetracycline, vancomycin

β-lactams, aminoglycosides,
tetracycline, vancomycin
resistance genes, not specified

Red soils, fluvo-aquic soils,
China

Hu et al. 2017

Cd Tetracycline, sulfadiazine,
roxithromycin

tetM, tetX, sulI, sulII Topsoil samples, dairy farm,
China

Ye et al. 2016

Cu, Zn Aminoglycoside, tetracycline,
polypeptides, chloramphenicol,
sulfonamides

strB, strA, sulI, tetA, cmxA Topsoil samples, dairy farm,
China

Zhou et al. 2016

Zn Sulfamethazine sul1, sul2, dfrA7 Calcaric fluvisol, China Duan et al. 2017

Cu, Zn Tetracyclines sulfonamides tetA, tetG, tetW, sul1, sul2
and IntI1

Paddy soil, clay loam, China Lin et al. 2016

Cu, Hg Tetracyclines sulfonamides sul1, sul2, tetM, tetW, tetQ,
tetO, tetT, tetB/P

Farmland soils, China Zhou et al. 2017

As, Co, Cu, Hg, Mn,
Ni, Pb, Se, U, V, Zn

β-lactams, tetracyclines,
sulfonamides

blaTEM, blaCTX, blaSHVand
blaOXA sul2 sul3 tetM tetW,
tetB, tetC, tetD, tetA, tetE,
tetG, tetK, tetL, tetM, tetO,
tetS, tetA(P), tetX, tetQ

Residential areas,
sandy soils, Australia

Knapp et al. 2017

Hg, Ni Zn Amoxicillin, ampicillin,
vancomycine, tetracycline

ND Mining waste, pasture, and
agricultural soils, Iran

Sinegani and
Younessi 2017
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had a less pronounced effect. This data leads to the conclusion
that the physical properties of soils, such as particle size
composition, should not be underestimated in research of
antibiotic resistance development.

To conclude, the soils as a major pool of environmental
ARGs and an optimal environment for HGT and selection of
resistant strains should receive proper attention from the re-
searchers. The focus of these studies should be moved from
farmland soils, and wastewater treatment sludge-amended
soils to a broader range of soils subject to atmospheric metal
pollution and include undisturbed soils as controls. Finally,
the studies of ARGs and metal resistance genes (MRGs) dis-
tribution in metal-polluted soils should come along with the
studies of soil properties significantly influencing all aspects
of soil microbial communities functioning.

The influence of PAHs on the emergence
of antibiotic resistance in polluted soils

PAHs are ubiquitous molecules of predominantly anthropo-
genic origin that pose a considerable threat to humans and
environment. The primary sources of anthropogenic PAHs
include coal pyrolysis, liquid fossil fuels, and biomass com-
bustion (Bosch et al. 2015). Many of the PAHs possess
genotoxic and mutagenic effects. Some of them are
established or suspected human carcinogens. The mechanism
of PAH action is based on metabolic activation of their mole-
cules with cytochrome P450 leading to formation of highly
reactive electrophilic species binding with DNA (Binková and
Šrám 2004). This mechanism leads to high level of toxicity to
both eukaryotic and prokaryotic organisms.

The PAH contamination has been shown to influence the
microbial community significantly, leading to major shifts in
phylum-level community composition in the affected soils
(Yang et al. 2014). The dominant phylum in most of the
PAH-contaminated soils is Proteobacteria (Yu et al. 2017).
However, a significant growth of Actinobacteria abundance
has been shown in batch experiments after contamination
(Muangchinda et al. 2017; Zhu et al. 2017). The representa-
tives of Actinobacteria are known for their capabilities to de-
grade PAHs which is best known for such genera as
Arthrobacter and Rhodococcus. However, there is enough
evidence for the existence of PAH-degrading strains in
Streptomyces genus (Chaudhary et al. 2011; Balachandran
et al. 2012). At the same time, the members of Streptomyces
genus are the main source of antibiotic production and have
been identified as bearing multiple antibiotic resistance genes
(D'costa et al. 2006).

These findings have led to concern that PAH-contaminated
soils could be a selective environment for antibiotic-resistant
bacteria and that the ARGs could be further transferred to
pathogenic species. The screening of major scientific

information databases has shown that the number of recent
studies linking the PAHs contamination with antibiotic resis-
tance is several times lower in comparison to research of
heavy metal contamination. This difference may be due to
complicated methods of isolation and quantification of PAHs
in environmental objects that need labor- and time-consuming
methods and advanced analytical instruments.

In this section of present review, we shall summarize the
available findings in this area. Some of the examples of the
coincidence of PAH tolerance and degradation and antibiotic
resistance in soil bacteria are given in Table 2.

The examples listed in the table show that most frequently,
the antibiotic resistance developed in the representatives of
Proteobacteria and Actinobacteria phyla. Among the
Proteobacteria, the genus Pseudomonas was mentioned in
the majority of studies, which corresponds to their remarkable
capability to degrade organic pollutants.

The study of diesel-contaminated soils (Arenic anthrosols)
in Bălan, Romania, has shown that there was a significant
correlation between heavy metal tolerance and antibiotic re-
sistance as well as between antibiotic resistance and hydrocar-
bon degradation ability in the isolated strains of bacteria. Most
of the identified species belong to Pseudomonas genus, in-
cluding Pseudomonas corrugata, Pseudomonas fluorescens,
Pseudomonas putida, Pseudomonas veronii, Pseudomonas
mandelii, and Pseudomonas syringae. Some representatives
of Actinobacteria, including Rhodococcus erythropolis and
Dietzia psychralcaliphila were also isolated (Máthé et al.
2012).

The level of expression of ARGs in PAH-contaminated soil
was found to be significantly higher. It was also influenced by
the presence of willow plants due to rhizosphere effects, and
the ARG expression levels measured by Illumina mRNA se-
quencing were higher in the rhizosphere regardless of contam-
ination level (Yergeau et al. 2014). The increased expression
of ARGs in the rhizosphere is a worrying finding, as
phytoremediation is a widely used practice in the recultivation
of PAH-polluted soils (Bisht et al. 2014).

It should be noted that after entering the soil, PAHs can
interact with soil particles and are not always bioaccessible.
Sun et al. (2015) found that there is no correlation between
total content of phenanthrene in soil and the ARGs abun-
dance, but significant correlations were found for the bioac-
cessible portion of the contaminant. The bioaccessibility of
PAHs in soil is a subject of many separate studies and can
not be covered in detail in this review.

However, some of the mechanisms of PAH interaction with
soil should be mentioned. PAHs comprise nonpolar hydro-
phobic compounds that may interact with soil particles
through hydrophobic partitioning or via chemical or physical
bond formation. The concentration and composition of soil
organic matter are also of great importance. In general, the
contaminants in soils with higher organic matter content tend
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to have lower bioavailability. The same is true for clay con-
tent, due to high level of pollutants sorption on the surfaces of
soil clay minerals (Rostami and Juhasz 2011). Therefore, the
soil properties can significantly alter the effective concentra-
tions of PAHs in soil, which can lead to errors in the estimation
of the influence that contamination has on the development of
antibiotic resistance.

The exact mechanisms underlying the observed enrichment
of ARGs in PAH-contaminated soils are not understood in full
details. There is considerable evidence that many of the efflux
pumps that discharge organic pollutants from bacterial cells
are functionally similar or even homologous to multidrug
efflux pumps, determining the antibiotic resistance
(Martinez et al. 2009). EmhABC efflux pump has been
shown to remove both antibiotics and PAHs, including
phenanthrene in Pseudomonas fluorescens (Adebusuyi
and Foght 2011). The genes, coding for such pumps, can
be inserted to the same mobile genetic elements with the
help of intl1 integrons, which is supported by higher abun-
dance of intl1 in contaminated soils (Sun et al. 2015).
Hydrocarbons have been shown to increase the level of
ROS in the bacterial cell, which can damage DNA and,
accordingly, activate its reparation. This may be the reason
for the intensification of mutagenesis and HGT processes
(Pérez-Pantoja et al. 2013; Sazykin et al. 2016).

It has been shown in a recent study that the contamination
of soil with PAHs enriched the abundance of Proteobacteria
and ARGs in soil. The identified genes were mostly rep-
resented by efflux pump-encoding ARGs associated with
aromatic antibiotics and were located at the chromosomes
of PAH-tolerant bacteria rather than plasmids, suggesting
that the plasmids were not the primary vector of gene
transfer (Chen et al. 2017). The contamination of soil with

hydrocarbons has been shown to promote not only antibi-
otic resistance but also to increase production of antibiotic
compounds by indigenous soil bacteria (Hemala et al.
2014). This enhanced antibiotic production could contrib-
ute to the selective pressure, leading to the enrichment of
resistant strains.

However, there are some recent evidence that PAH contam-
ination can even reduce the horizontal transfer of the ARGs. It
has been shown that due to non-covalent binding of PAHs and
plasmids, the rate of transformation is significantly reduced.
This effect was most pronounced for smaller PAHs, namely
phenanthrene, less significant for pyrene, and no significant
influences on transformation rates was obtained for benzo-a-
pyrene (Kang et al. 2015). These findings, supported by the
data of Chen et al. (2017), of predominantly chromosomal
location of efflux-pump encoding genes lead to a hypothesis
that the mechanism of ARG enrichment in PAH-contaminated
soils may be different from what has been shown for heavy
metal pollution.

If the HGT is suspended in PAH-contaminated environ-
ment, the number of ARG copies can still increase with the
growth of ARG-bearing PAH-degrading bacteria popula-
tion. Moreover, the growth of this community will eventu-
ally lead to a decrease in bioavailable PAH content due to
biodegradation.

After exhausting the pool of available polyaromatic
hydrocarbons, the population will inevitably decline due
to increasing competition from bacteria that are not able
to utilize PAHs. It has been shown in a model experiment
by phospholipid fatty acid analysis (PLFA) that the mi-
crobial community structure of oil-treated experimental
plots became similar to unoiled controls 14 weeks after
treatment (MacNaughton et al. 1999). At this stage, the

Table 2 The coincidence of tolerance to aromatic hydrocarbons and antibiotics in soil microorganisms

Aromatic hydrocarbons Antibiotics Microorganisms References

Naphtalene, phenantrene Ampicillin, cephalothin, trimethoprim,
rifampicin, novobiocin, nalidixic acid,
chloramphenicol, erythromycin,
tetracycline, streptomycin, kanamycin,
gentamicin, neomycin

Pseudomonas fluorescens
biotypes I-VI, Ps. putida
biotype B

Campbell et al. 1995

Phenanthrene, anthracene
and fluoranthene

Chloramphenicol nalidixic acid Ps. fluorescens Hearn et al. 2003

Diesel fuel, oil, residual oil,
naphthalene, toluene

Nalidixic acid Pseudomonas sp. Pyrchenkova et al. 2006

Naphthalene, 2-methylnaphthalene,
fluorene

Ampicillin, kanamycin Bacillus, Lysinibacillus,
Rhodococcus, Shewanella,
Aeromonas, Pseudomonas,
Klebsiella

Stancu and Grifoll 2011

Toluene, styrene, o-xylene,
ethylbenzene

Ampicillin, kanamycin, chloramphenicol Rh. erythropolis Stancu 2014

Pyrene Gentamicin ampicillin kanamycin
erythromycin

chloromycetin spectinomycin

Acinetobacter sp.
Kocuria sp.

Sun et al. 2014

Phenanthrene Roxithromycine, sulfadiasine Soil metagenome Sun et al. 2015
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HGT is likely to happen, as the environmental DNA from
dead cells serves as an essential source of genetic material
for bacteria (Takeuchi et al. 2014).

It may be concluded that our knowledge of PAH interac-
tions with soil resistome remains mostly fragmented and a lot
of research has to be done to elucidate the mechanisms and
factors underlying the observed findings.

The influence of PCBs on the emergence
of antibiotic resistance in polluted soils

PCBs are a class of organochlorine compounds that have been
considered as persistent organic pollutants (Lyall et al. 2017).
Their usage in many countries was banned decades ago, but
due to meager rates of degradation, they are still found in
atmospheric precipitation and soils all over the world
(Chakraborty et al. 2016). Their distribution in the environ-
ment is highly uneven with elevated concentrations found in
urban areas, particularly at the electronic waste recycling sites
(Jiang et al. 2011). The PCBs in urban areas tend to originate
from multiple pyrogenic sources, which has been shown for
the soils of eastern London (Vane et al. 2014).

The soil is a major sink for the PCBs which is similar to
many other classes of organic pollutants due to their strong
affinity to the soil organic matter. However, these substances
are semi-volatile which leads to exchange between polluted
soil and atmosphere. It has been shown that for some
polychlorinated compounds, including PCBs, diurnal
variations of this exchange are present, with increased
volatilization during the day and deposition at night
(Degrendele et al. 2016).

This process can lead to increased persistence of PCBs in
the surface soil layers, unlike many other contaminants that
are found deeper into the soil profile with time. The process of
leaching and deposition of new material on the soil surface
eventually leaves the pollutants in the buried soil layers, which
is not the case for semi-volatile organic compounds. It should
be noted that surface soil layers are characterized by the
highest activity of soil microorganisms, and thus, the PCBs
comprise a persistent threat to soil microbial communities and
ecosystems as a whole.

PCBs have been shown to cause significant shifts in
bacterial community composition of affected soils. A recent
study has shown that in the soils polluted with PCBs
originating from e-waste processing bacteria belonging
to Acinetobacter, Pseudomonas, and Alcanivorax, became
dominant species (Liu et al. 2015). The representatives of
these bacterial genera have been previously shown to degrade
PCBs (Field and Sierra-Alvarez 2008) which explains their
selective enrichment in contaminated soils.

At the same time, pathogenic strains of Acinetobacter and
Pseudomonas are considered the most capable of developing

antibiotic resistance, which leads to an assumption that the
PCBs pollution can cause co-selection of antibiotic-resistant
bacteria in the same way as it was shown for heavy metals and
PAHs.

Another finding indicates that commonly used antiseptic
triclosan causes overexpression of MexAB-OprM efflux
pump, which leads to multi-drug resistance in Pseudomonas
aeruginosa (Chuanchuen et al. 2001). Triclosan (5-chloro-
2-(2,4-dichlorophenoxy)phenol) is structurally very similar
to PCBs and PBDEs (Lee and Chu 2013). Thus, PCBs are
likely to cause the development of resistance to antibiotics.

To date, the number of studies on this issue is insufficient.
The PCB-degrading bacteria from Psychrobacter genus, iso-
lated from shallowAntarctic sediments, were tolerant to heavy
metals and resistant to chloramphenicol and ampicillin
(Giudice et al. 2013).

PCB-degrading strain of Pseudomonas putida was shown
to have remarkable genomic instability, including the presence
of four plasmids, an integrative and conjugative element (ICE)
bph-sal (Suenaga et al. 2017). The PCB-degradation genes in
Acidovorax were also located on ICE (Ohtsubo et al. 2012).

ICE are recognized as an essential factor of microbial
adaptation to environmental conditions (Burrus and
Waldor 2004) and have been shown to harbor ARGs in
previous studies (Carraro et al. 2015). Rhodococcus spe-
cies harbor a wide set of conjugative plasmids, including
PTA421, PSP6, and PLP3 coding for PCBs degradation
genes and PFiD188 plasmid determining chloramphenicol
resistance (Fetzner et al. 2007).

These findings indicate that the ability to degrade PCBs is
strongly associated with the mechanisms of HGT and a high
level of genomic plasticity which makes the PCB-polluted
soils the most likely environment for the emergence of antibi-
otic resistance. Despite this fact, the data on the enrichment of
ARGs in PCB-degrading bacteria in soil is currently missing.

Conclusions and perspectives

The development of antibiotic resistance is the most serious
challenge of the recent decades. The efforts to cope with this
problem should not be limited to the restriction of the uncon-
trolled use of antibiotics in healthcare and agriculture antibi-
otic leading to their discharge into the environment. Despite
the fact that these aspects of combating antibiotic resistance
remain fundamental, attention should also be paid to the study
of environmental enrichment and selection of the ARGs.

The study of recent findings on that issue revealed that
there are significant gaps in our knowledge of the environ-
mental fate of the ARGs in heavy metal contaminated soils.
The research is focused on the farmland soils, where both
metals and antibiotics originate from animal feeds. The
ARGs start to be enriched in the animal guts, and then
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enrichment continues in the manure (Xiong et al. 2010) and
manure-amended soils (Ji et al. 2012). Much less data is avail-
able for the non-agricultural soils polluted by industrial dust
reaching the soil with atmospheric precipitation. The studies
of such soils could elucidate the mechanisms of ARG transfer
from the natural gene pool and the role of antibiotic-producing
bacteria in the emergence of new ARGs. The study of co-
selection process in the environments that are not affected
by an external source of antibiotics is likely to bring new
insights into this field.

There is a certain degree of controversy in our knowledge
of the antibiotic resistance development in PAH-contaminated
soils. On the one hand, there are many examples of coinci-
dence of antibiotic resistance and PAH tolerance is the same
strains of bacteria. On the other hand, there are indications of
reduced rate of HGT in PAH-contaminated soils (Kang et al.
2015). The proteins of EmhABC family that can pump out
both antibiotics and hydrocarbons are studied not sufficiently,
especially concerning the regulation of their work. The exact
mechanisms of interaction between the gene coding for such
efflux pumps other ARGs and intl1 integrons are also not clear
enough.

An insufficient amount of data is available for the develop-
ment of antibiotic resistance in soils, contaminated with per-
sistent organic pollutants, particularly with PCBs. Though the
PCB pollution of soils has been studied for decades, and many
efforts are taken in the field of biodegradation and bioremedi-
ation, they are rarely considered in conjunction with antibiotic
resistance. However, many facts support their possible role in
antibiotic resistance development, including high genomic
plasticity of PCB-degrading strains and the dominance of tax-
onomic groups known for high rates of ARGs emergence.

Finally, in the studies of antibiotic resistance development
in heavy metal, PAH, and PCB contaminated soils, more at-
tention should be paid to the soil properties, including the
interactions of the contaminants with soil organic matter, pro-
cesses of sorption on clay minerals, the issues of bioavailabil-
ity of the pollutants in the specific soil conditions, etc.

The attention paid to the environmental issues regarding
the antibiotic resistance development would help to find
and implement adequate measures against spreading the
antibiotic-resistant bacteria in soils. At the same time, these
studies can increase public awareness of the negative con-
sequences of soil contamination.

Such problems are widely recognized for agricultural soils,
as the possibility of contaminants entering the food chain and
affecting human health is evident. The contamination of soils
that are not used for growing crops, for instance, of urban soils
or soils of industrial areas attracts the attention of scientists but
not of the general public. The data analyzed in the present
review shows that the threat of soil contamination far exceeds
the food quality issues and should not be underestimated
regardless of the type of land use.
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