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Abstract
Theoretically, agriculture can be the victim and the cause of climate change. Using annual data for the period of 1970–2014, this
study examines the interaction between agriculture technology factors and the environment in terms of carbon emissions in
Jordan. The results provide evidence for unidirectional causality running from machinery, subsidies, and other transfers, rural
access to an improved water source and fertilizers to carbon emissions. The results also reveal the existence of bidirectional
causality between the real income and carbon emissions. The variance error decompositions highlight the importance of subsidies
and machinery in explaining carbon emissions. They also show that fertilizers, the crop and livestock production, the land under
cereal production, the water access, the agricultural value added, and the real income have an increasing effect on carbon
emissions over the forecast period. These results are important so that policy-makers can build up strategies and take in
considerations the indicators in order to reduce carbon emissions in Jordan.
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Introduction

In the recent decades, significant attention has been placed on
developing actions and regulations aimed to protect the envi-
ronment and allow for sustainable development. In order to
meet the challenges facing development and environmental
issues, financial resources are needed to increase the capacity
of implementing institutions as well as the need for greater
cooperation among and between countries so as to accelerate
and achieve a sustainable development process.

Global warming and climate change are key sustainable
development issues (Dolsak 2009). Policy-makers around
the world must understand the risks involved beyond the
emissions of greenhouse gas (carbon dioxide, methane, and

nitrous oxide). As greenhouse gas emissions increase, envi-
ronmental sustainability is under threat. Therefore, many gov-
ernments are taking steps toward reducing the emissions of
greenhouse gases by introducing carbon and energy taxes and
regulations on energy efficiency and emissions (Kroll and
Shogren 2008).

It is now evident that agriculture and the environment are
firmly related. Carbon dioxide can be emitted from agricultur-
al activity especially Bfactory farming^methods of production
(NRDC 2006). In the agricultural production process, the ex-
istence of irrational utilization of land and water, the overuse
of chemical fertilizers and energy utilization enhances the ef-
fect of agriculture production on environment quality through
high emissions of greenhouse gas. However, the application
of appropriate technology and environment friendly innova-
tions could allow agriculture to produce less greenhouse gas-
es, for example, by applying low-energy expenditure methods
(Popp et al. 2009).

In 2014, the agricultural sector contributed to about
3.8% of the GDP in Jordan and employed 2% of the total
labor force. The sector was developing and growing during
the last decades. In fact, the value added by the sector to the
GDP increased from JD31.9 million in 1964 to about JD
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134.7 million in 2002 and then to about JD 845.7 million in
2014. During this development and growth, the use of ag-
ricultural inputs has increased dramatically, which might
cause an increase in carbon (CO2) emission. Specifically,
the number of agricultural tractors and machines had in-
creased from 2507 in 1968 to 5077 in 2014. Farmers’ ex-
penditures on fertilizers had increased from USD 2.1 mil-
lion in 1968 to USD 27.5 million in 2014. Moreover, water
scarcity is an even greater problem for agriculture sector
because Jordan has one of the lowest levels of water re-
sources availability, per capita, in the world (UNFCCC
2014). Thus, the impact of water access and subsidies on
water may be important since the non-renewable water
comes from non-renewable and fossil groundwater extrac-
tion and the reuse of reclaimed water (UNFCCC 2014).
According to the World Resources Institute Climate
Analysis Indicators Tool (WRI CAIT 2016), Jordan emitted
27 million metric tons of carbon dioxide equivalent
(MtCO2e) in 2011 compared to 16.8 MtCO2e in 1990.
However, the agriculture sector was responsible for 4% of
emissions (around 1.1 MtCO2e) in 2011 compared to
2.62% (around 0.44 MtCO2e) in 1990. In sum, total green-
house gas (GHG) emissions grew 10.2 MtCO2e from 1990
to 2011, averaging 2.3% annually, while GHG emissions
from agriculture sector grew by 152.02%, averaging 4.5%
annually. The Higher Council for Science and Technology
has set research priorities in different fields in Jordan for the
period of 2011–2020. Among these priorities is the focus on
the size of CO2 emission from agriculture.

In order to understand the principal causes of agricultural
CO2 emissions and to achieve a sustainable agricultural
green economy, we consider the relationship between agri-
culture sector and the environment. In particular, we focus
on the impact of agricultural technologies on carbon emis-
sions in Jordan using annual data from 1970 to 2014. Our
contribution to the existing literature is threefold: first, until
now, no one has emphasized the importance of this subject
for Jordan. Second, the analysis of the relationship between
agricultural technologies and CO2 emissions will be under-
taken by taking into account the role of subsidies and the
rural access to an improved water source as potential deter-
minants of environmental pollution. Finally, Toda-
Yamamoto version of Granger non-causality tests and gen-
eralized error variance decomposition analysis will be used
in order to establish the direction of causations and impact
of various shocks in the system. Hence, the objective of the
paper is more specifically to investigate the nature of the
long-run equilibrium and the causal relationship between
carbon emissions and agricultural technologies. Up to our
knowledge, there is no research that has been done in
Jordan covering the linkage between agricultural technolo-
gies and CO2 emissions. This study attempts to fill this gap.
In this respect, we argue that this research is essential for

policy-makers and decision-makers to understand the main
determinant of carbon emissions in order to develop an
efficient policy to limit the pollution arising from agricul-
ture production.

The remainder of the paper is organized as follows: the
following section provides a brief review of the literature,
the BMethodology and data^ section outlines the specifica-
tions of the methodology and data, the BEmpirical results^
section presents the obtained results, and the BConclusion
and policy implications^ section gives the concluding remarks
and policy implications.

Brief literature review

The effect of agricultural technologies on environmental
pollution and climate change has received growing atten-
tion in the literature. Indeed, efforts to reduce emissions are
of relevance to the agriculture sector because the natural
processes associated with food production result in emis-
sions of some greenhouse gases, particularly methane and
nitrous oxide. In addition, agriculture will also be impacted
by climate change because increasing global temperatures,
changes in rainfall patterns, extreme events like floods,
droughts, and heat waves will put pressure on the world-
wide capacity to produce food.

Kennedy (2000) argues that not only machines can influ-
ence the environment but also fertilizers. The impact of agri-
cultural machines and the use of fertilizers, the fore can be
studied and included in the model. Further, Acemoglu et al.
(2012) consider a model with direct technical changes to study
the different effects of several technological innovations on
environment. Their results reveal that government interven-
tion in the form of subsidies and taxes is required only mo-
mentarily, although delaying the intervention is costly.

Based on panel data, Valin et al. (2013) focus on the
effects of crop yields on GHG emissions from agriculture
and land use in developing countries using different tech-
nological paths. It is shown that yield increase could miti-
gate some agriculture-related emission growth in the long
run. In particular, sustainable land intensification would
decrease GHG emissions by one third comparing to fertil-
izer intensive path. Moreover, Seebauer (2014) evaluates
existing GHG quantification tools to quantify GHG emis-
sions and removals in smallholder condit ions by
conducting cluster analysis to identify different farm typol-
ogy GHG quantification using sustainable land manage-
ment practices (SALMs) and verified carbon standard
(VCS). The results show that the adoption of SALMs has
a significant impact on emission reduction. In particular,
the mitigation benefits range between 4 and 6.5 tCO2/ha/
year depending on crop typologies (maize, beans, sweet
potatoes, and cowpeas) and their agricultural practices such
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as general farm structure, cropping system, crop yields, and
current and future management practices.

While different kinds of crops have different experiences
in carbon emissions, Arapatsakos and Gemtos (2008) in-
vestigate the contribution of the tractors in the environmen-
tal pollution by focusing on grain and maize tillage. They
found that CO2 contribution to the environment during
tillage is the greatest compared to other gases, which
means that tractors are considered as main pollutant.
Using official statistical data and market surveys for the
year 2010, Zou et al. (2015) estimate GHG emissions from
agricultural irrigation in China aiming to reduce environ-
mental pollution through water irrigation mechanism. The
results indicate that the total CO2 emissions from agricul-
tural irrigations are from 36.72 to 54.16 Mt. In addition,
emissions from energy activities in irrigation (including
water pumping) account around 60% of total emissions
from energy activities in the agriculture sector.

Using energy input-output analysis, Soni et al. (2013) study
energy consumption in agricultural production systems asso-
ciated with their corresponding GHG in Thailand. It is shown
that transplanted rice provides the highest CO2 emission
among crops. At the same time, the reduction of mineral fer-
tilizers and the reduction of exploitation of fossil energy con-
sumption of agricultural equipment lead to decline the emis-
sions of GHG in France (Pellerin et al. 2013; Directorate-
General for Internal Policies 2014).

Based on tillage technologies in maize cultivation,
Šarauskis et al. (2014) assess the energy efficiency of maize
cultivation technologies in different systems of reduced till-
age in Lithuania. The study considers five different tillage
systems: deep plowing, shallow plowing, deep cultivation,
shallow cultivation, and no tillage. It is shown that the
greatest amount of fuel was used in the traditional deep
plowing. The reduced tillage systems required 12–58% less
fuel, and the lowest energy input was associated with no
tillage technology. Lower fuel consumption reduces the
technology costs and thus the emissions of CO2.
Buragiene et al. (2011) focus on the impact of previously
mentioned tillage machines on the emission of CO2 from
soil. The results expose that the highest CO2 gas emissions
were found in the case of intensive plowing, and the lowest
emissions were observed from no tillage soil. Similarly,
Silva-Olaya et al. (2013) use different tillage methods in
Brazilian sugarcane fields to study their effects on CO2

emissions. They find that conventional tillage method pro-
duces CO2 emissions more than both reduced and minimum
methods. In particular, 350.09 g/m2 of CO2 is generated in
conventional method, while 51.7 and 5.5 g/m2 are produced
by using the reduced and minimum methods, respectively.
Likewise, Rádics et al. (2014) show that conservation till-
age methods generate less pollution.

Methodology and data

To investigate the impact of agricultural technology factors on
carbon emissions, we consider the following multivariate
model:

CO2t ¼ αþ β1Machineryt þ β2Fertilizerst þ β3Landt

þ β4AVAt þ β5GDPt þ β6Cropþ β7Livestock

þ εt ð1Þ

where t and ε denote the time and the error term. CO2 is
carbon emissions (estimated in kilo ton per capita), GDP is
the per capita real gross domestic products (measured in
LCU), Machinery refers to the number of wheel and crawler
tractors in use in agriculture at the end of the calendar year
specified or during the first quarter of the following year,
Fertilizers refer to the amount of fertilizers used in agricultural
production (measured in kilograms per hectare of arable land),
land indicates the land area under cereal production (measured
in hectares), AVA stands for the agriculture value added (mea-
sured in percent of GDP), and Crop and livestock are the crop
production index and livestock production index, respectively.
They show agricultural production for each year relative to the
base period 2004–2006.

While the parameters β1, β2, β3, β4, β5, β6, and β7measure
the long-run elasticity of CO2 emissions with respect to the
number of machines, the amount of fertilizers, the cereal land,
the agriculture value added, the real GDP, the crop production,
and the livestock production, respectively. The annual data is
obtained from World Development Indicators published by
the World Bank (2015) and covers the period from 1970 to
2014. The temporal dimension was restricted due to data
availability. The per capita real GDP is obtained from the
Jordan Department statistics for the period of 1970–1974,
and fertilizer consumption is extracted from the Jordanian
ministry of the agriculture.

Unit root tests

A necessary condition for cointegration between N variables is
that these variables are I(1), i.e., stationary in first differences. To
test for stationarity, we first perform the conventional DF-GLS
test of Elliott et al. (1996), which applies the well-known ADF
test after a GLS correction to demean and the conventional
Kwiatkowski et al. (1992) or (KPSS) unit root technique for
each variable. The first and the second techniques test the null
hypothesis of a unit root against the alternative of stationarity.
The KPSS method tests the hypothesis that the series is station-
ary against the alternative of non-stationarity.

Perron (1989) states that conventional unit root tests are
subject to misspecification bias and size distortion when the
series involved undergo structural breaks, which leads to a
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spurious acceptance of the unit root hypothesis. To capture a
possible structural break during the sample periods, we also
apply the Zivot and Andrews (1992) sequential test procedure
for unit roots in which the breakpoint is estimated endoge-
nously. Zivot and Andrews (1992) consider three alternative
models. Model A allows for a one-time shift in the intercept,
model B allows for a break in the slope of the trend function,
and model C includes the hybrid of the two.

a. Cointegration test

Practically, researchers usually use Johansen (1988, 1991)
test to test the cointegration since it can check the existence of
more than one long-run relationship if data contains more than
two series.

Let M be a P × 1 vector that contains

Mt ¼ CO2;Machinery;Fertilizers; Land;AVA;GDP;Crop; Livestockð Þ
ð2Þ

where all variables in this vector are in the first-differenced
stationary I(1). Once first-order stationary variables exist, then
according to Johansen (1991), Mt has a vector autoregressive
(VAR) representation taking the following form:

Mt ¼ αþ π1Mt−1 þ π2Mt−2 þ…þ πkMt−k þ νt ð3Þ

where α is the intercept and υt is a vector of white noise
processes together with zero mean. All information regarding
the long-term relationship between variables exists in Π ma-
trix. This VAR equation can be written as

ΔMt ¼ αþ ψ1ΔMt−1 þ ψ2ΔMt−2 þ…þ ψkΔMt−k

þ νt ð4Þ

where the rank of the parameter Ψk represents the number
of cointegrating vectors.

Furthermore, Johansen (1988) proposes different ap-
proaches to study the long-run relationship between variables,
the trace test (λtrace) and the maximum eigenvalue test (λmax).
If the above two tests provide different results regarding the
number of cointegrated equations, then the researcher must
consider the λmax since it is more reliable in a small size data.

b. Granger causality tests

In order to assess the long-run relationship between the
series, we follow the Toda-Yamamoto (TY hereafter) proce-
dure (Toda and Yamamoto 1995). This procedure has been
found to be superior to ordinary Granger causality tests, since
it ignores any possible non-stationarity or cointegration be-
tween the series between the series when testing for causality.
TY procedure employs a modified Wald (MWALD) test for
restriction on the parameters of the vector autoregression

(VAR) (k) (k is the lag length). The correct order of the system
(k) is augmented by the maximal order of integration (dmax).
VAR (k + dmax) is estimated with the coefficients of the last
lagged dmax vector being ignored. The Wald statistics follows
chi-squared distribution asymptotically with degrees of free-
dom equal to the number of the excluded lagged variables.

AVAR of order p can be represented by

yt ¼ a0 þ a1t þ ∑
p

i¼1
∅iyt−i þ γwt þ ut

where yt is a (n × 1) vector of endogenous variables, t is the
linear time trend, a0 and a1 are (n × 1) the vectors, wt is a (q
×1) vector of exogenous variables, and ut is a (n × 1) vector of
unobserved disturbances where ut ~ N (0,Ω), t = 1, 2…, T.

In our case, TYversion of VAR (k + dmax) can be written as

CO2t
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2
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þ
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where d is the first-difference operator and the order of p
represents (k + dmax). Directions of Granger causality can be
detected by applying standard Wald tests to the first “k” VAR
coefficient matrix. For example,

H01: A12,1 = A12,2 =… = A12,k = 0, implies that Machinery
does not Granger cause CO2.

H02: A21,1 = A21,2 =…=A21,k = 0, implies that CO2 does not
Granger cause Machinery and so on for the other pairs.

c. Generalized forecast variance decomposition analysis

The decomposition of variance measures the percentage of
a variable’s forecast error variance that occurs as the result of a
shock from a variable in the system. Therefore, by employing
this technique, one can find the relative importance of a set of
variables that affect a variance of another variable.

Generalized forecast variance decomposition can be de-
fined as

σ−1
ij ∑n

l¼0 e
0
Gl∑ej

� �2� �

∑n
l¼0 e0Gl∑Gi

l∑ej
� �2

where Gn = Φ1Gn-1 + Φ2Gn-2 +… + ΦpGn-p; n = 1, 2, 3….
G0 = I, Gn = 0 for n < 0; and ej is a (8 × 1) selection vector
with unity as its jth element and zero elsewhere and covari-
ance ∑ = σij.

d. The role of water access and subsidies

Jordan is considered as one of the driest countries in the
region and has the lowest levels of water supply resources.
The world water poverty line is around 500 m3 per person,
while the annual water consumption in Jordan is around
147 m3 (UNFCCC 2014). Every year, the renewable water

resources consist of 130 m3 per person, while actual total uses
of water are much more than the renewable supply. To afford
the difference, government use non-renewable and fossil
groundwater extraction (UNFCCC 2014).

In addition, Jordan is in front of an enormous defy regard-
ing the massive refugees coming from disturbed neighboring
countries (recently, 2 million of Syrian refugees), and this of
course puts higher pressure on the limited natural resources.
This rapid growth in the number of populations imposes a
questionable point regarding the energy efficiency and pollu-
tion of water pumping, overpumping of aquifers, and distri-
bution systems.

In Jordan, government subsidizes irrigation water serious-
ly. The subsidy consists of very small tariffs for surface water
deliveries to the Jordan Valley, in addition to extremely low
tariffs with almost no restrictions on abstraction of groundwa-
ter in the highmountains. As a result, for any possible increase
in the costs of water supply, the government would face a
higher burden budget in terms of higher investment and more
subsidies (UNFCCC 2014).

Hence, it would be informative to include the access to an
improved water source (measured as a percent of rural popu-
lation with access) and the public subsidies (measured in

Table 1 Conventional unit root
test Variable ADF-GLS KPSS

Level First difference Level First difference
Test statistic Test statistic Test statistic Test statistic

CO2 −0.25 −3.19*** 0.68** 0.43

Land −1.45 −10.24*** 0.74** 0.5

AVA −1.05 −3.92*** 0.73** 0.13

GDP −0.28 −1.16*** 0.58** 0.35

Crop −2.16 −14.83*** 0.84** 0.36

Livestock −1.68 −5.12*** 0.83** 0.23

Note: ADF-GLS; Elliot-Rothenberg-Stock Dickey-Fuller GLS detrended. KPSS; Kwiatkowski-Phillips-Schmidt-
Shin. ADF-GLS critical values are taken from MacKinnon (1991); KPSS critical values are sourced from
Kwiatkowski et al. (1992). *** Rejection of the null hypothesis at the 1% significance level. ** Rejection of
the null hypothesis at the 5% significance level

Table 2 Zivot-Andrews minimum statistics

Variable Level First difference

t-statistics Periods t-statistics periods

Machinery −3.74 1995 −5.26** 1995

Fertilizers −4.52 1980 −5.6*** 1985

Note: t-statistics are estimated from a break in intercept. Critical values
are those reported in Zivot and Andrews (1992), *** Rejection of the null
hypothesis at the 1% significance level. ** Rejection of the null hypoth-
esis at the 5% significance level
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current LCU) as main indicators relating to the amount of
pollution in Jordan over the period. As these two variables
are available only for the 1990–2014 period, a second model
is estimated by augmenting Eq. (1) with subsidies and the
rural access to an improved water source, and we employ
the fully modified OLS estimation approach. This technique
allows for the consistency of the long-run relation along with
short-run adjustment; it arranges with the problem of
endogeneity, and it takes into account the time series proper-
ties of the data. Dynamic causal links are investigated using an
eight variable error correction model (ECM).

Empirical results

Empirical results are presented from two models. The first set
of results investigates the relationship between machinery,
fertilizers, land area under cereal production, agricultural val-
ue added, real income, crop and livestock production, and
carbon emissions for the full sample period of 1970–2014.
The second set of results investigates the relationship between
machinery, fertilizers, land area under cereal production,

agricultural value added, real income, crop and livestock pro-
duction, subsidies, rural access to an improved water source,
and carbon emissions for the subsample period of 1990–2014.
For the subsample period, Eq. (1) is augmented to include
subsidies and rural access to an improved water source.

Empirical results for the full sample period

Unit root tests

The purpose of unit root test is to check the stationary prop-
erties of the variables, and this is necessary to conduct the
cointegration test. Table 1 summarizes the outcomes of the
conventional unit root tests.

Results indicate that the unit root hypothesis cannot be
rejected when CO2, land, AVA, GDP, crop, and livestock are
taken in levels. However, when the first differences are used,
the hypothesis of unit root non-stationary is rejected at the 1%
level of significance for ADF GLS test and at 5% level for the
KPSS test.

Table 2 reports the minimum t-statistics from testing the
stationarity assuming a shift in mean for the two variables.

Table 4 Toda-Yamamoto causality test results (1970–2014 sample period)

Causal flow MWALD
statistics Probability

Causal flow MWALD
statistics Probability

Accepted causal flow

Machinery→CO2 3.34* 0.06 Machinery←CO2 4.02 0.55 Machinery→CO2

Fertilizers→CO2 3.43* 0.06 Fertilizers←CO2 0.54 0.46 Fertilizers→CO2

Land→CO2 0.19 0.66 Land←CO2 1.23 0.27

AVA→CO2 0.53 0.47 AVA←CO2 0.03 0.85

GDP→CO2 6.1** 0.01 GDP←CO2 9.58*** 0.00 GDP↔ CO2

Crop→CO2 1.31 0.25 Crop←CO2 0.52 0.47

Livestock→CO2 0.54 0.46 Livestock←CO2 0.97 0.32

Note: → indicates the direction of causality

***, ** and * denote the significance at 1%, 5%, and 10%, respectively

Table 3 Results of the Johansen
cointegration analysis (1970–
2014 sample period)

Rank r Eigenvalue Maximum eigenvalue
statistics

Trace test statistic

0 0.95 130.2** 393.64**

≤ 1 0.84 75.76** 263.44**

≤ 2 0.76 60.58** 187.68**

≤ 3 0.64 43.91** 127.1**

≤ 4 0.51 30.16 83.18**

≤ 5 0.44 24.33 53.03**

Note: Rank r expresses the number of cointegrating equation according to each tested hypothesis. No restriction is
imposed in the cointegration test. The lag length has been chosen based onminimumAkaike information criterion
(1 lag interval in first differences for each series). Critical values were taken from McKinnon (1991) ** denotes
significance at 5% level
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The results suggest that at 5% level of significance, none of
the estimated variables are stationary around a shift in the
mean. These results enable to test the cointegration among
variables in I(1) level.

Cointegration analysis

In general, if two variables have long-run relationship, then these
variables are cointegrated. If two variables are integrated of order
one I(1), there could be a linear combination between them and
integrated of order zero, I(0). Therefore, we have to check the
possible cointegration relationship between CO2, AVA, machin-
ery, GDP, fertilizers, land, crop, and livestock. In order to conduct
cointegration test, we perform the Johansen cointegration test
where the null hypothesis states that there is no cointegration.
We use an intercept and but no trend. The optimum lag length for
Johansen cointegration test is determined based on minimum
Akaike information criterion (AIC) through unconstrained vector
autoregression (VAR) estimation. The lag length is further vali-
dated by tests for normality and absence of serial correlation in
the residuals in VAR to make sure that none of them violates the
standard assumptions of the model.

Table 3 indicates that variables in the equation (CO2, ma-
chinery, fertilizers, land, AVA, GDP, crop, and livestock) for
the 1970–2014 sample period have more than one
cointegrating relationship (H0: r = 0 and r ≤ 1 is rejected at
5% level). The evidence of cointegration has two important
consequences. It eliminates spurious correlations, and

suggests at least a unique channel for Granger causality test
(either unidirectional or bidirectional).

Granger causality results

In order to select optimal lag length for the VAR expressed by
Eq. (4), Lütkepohl’s (2005) procedure is employed by linking
the lag length (mlag) and number of endogenous variables in
the system (m) to the sample size (T) based on the formula,
m×mlag = T1/3. On the basis of Schwarz Bayesian (SBC)
and adjusted log-likelihood ratio (LR) test criteria, the optimal
lag order of the VAR is chosen as 2. In the next stage, we
augment the VAR by the maximum order of integration of
the series (dmax) and estimate VAR (8) model. The residual
series passes the required diagnostic tests for serial correlation,
heteroscedasticity, miss-specification of functional form, and
normality. Table 4 presents the results of the TYversion of the
Granger causality tests. The significance of the p values of the
MWALD statistic indicates that there is unidirectional causal-
ity running from machinery and fertilizers to CO2. Findings
similar to this were found in the studies by Ben Jebli and Ben
Yousef (2015), West and McBride (2005), Rádics et al.
(2014), and Rajaniemi et al. (2011). These results indicate that
agricultural technologies are closely related to carbon emis-
sions. There is also bidirectional causality between GDP and
CO2 emissions. This bidirectional causality can be explained
by the fact that an increase in CO2 emissions is associatedwith
higher consumption of fertilizers, machinery, oil, and other

Table 5 Variance decomposition
results for CO2 (1970–2014
sample period)

Horizon CO2 Machinery Fertilizers Land AVA GDP Crop Livestock

1 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 89.49 2.66 3.26 0.23 2.22 0.54 1.03 0.55

3 82.02 5.27 5.18 0.21 4.36 1.56 0.86 0.54

4 74.64 7.94 5.94 0.18 7.12 2.85 0.76 0.56

5 68.32 10.05 6.19 0.19 9.73 4.23 0.68 0.61

10 52.02 13.45 5.51 0.25 16.69 10.04 0.56 1.47

Table 6 Conventional unit root
test ADF-GLS KPSS

Level First difference Level First difference
Test statistic Test statistic Test statistic Test statistic

Subsidies 0.44 −4.44*** 0.68** 0.17

Water −0.42 −5.38*** 0.73** 0.12

Note: ADF-GLS; Elliot-Rothenberg-Stock Dickey-Fuller GLS detrended. KPSS; Kwiatkowski-Phillips-Schmidt-
Shin. ADF-GLS critical values are taken from MacKinnon (1991). KPSS critical values are sourced from
Kwiatkowski et al. (1992). ADF-GLS null hypothesis is unit root; while, in KPSS, null is stationarity. ***
Rejection of the null hypothesis at the 1% significance level. ** Rejection of the null hypothesis at the 5%
significance level
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energy intensive economic activities. These energy resources
are primary inputs to agriculture and hence raise real income if
their use increases and consequently enhance CO2 emissions.

Variance decomposition results

The causality test presented above indicates only Granger
causality within the sample period, and does not allow us to
gauge the relative strength of the Granger causality among the
series beyond the sample period. Thus, to complement the
above, we decomposed the forecast error variance of CO2

emissions into proportions attributed to shocks in all variables
in the system including itself. By doing so, we can provide an
indication of the Granger causality beyond the sample period.
The variance decomposition results for CO2 are presented in
Table 5 over a horizon of 10 years. Results indicate that ma-
chinery will have an increasing effect on variability,
explaining 10.05 and 13.45% at the end of 5 and 10 years,
respectively. GDP, fertilizers, livestock, crop, and land have
innovations in carbon emissions, accounting for 10.04, 5.51,
1.47, 0.56, and 0.25% of variation at the end of the forecast
period, respectively. This seems to support the Granger cau-
sality results which found unidirectional causality running
from machinery and fertilizers to CO2 and bidirectional cau-
sality between GDP and CO2. Our results also imply that AVA
is the most important component in explaining CO2 variability
accounting for 16.69% of variability in the long run.

Empirical results for the subsample period

Subsidies and other transfers (current LCU) and rural im-
proved water source (percent of rural population with access)
are taken from World Development Indicators (2015). These
two variables are not available for the full sample period
1970–2014, and thus, data availability necessitates that the
original sample period be reduced to a subsample period of
1990–2014.

i. Unit root tests

Here, we perform the unit root test while including both
subsidies and other transfers (subsidies) and rural improved
water source (water). Table 6 summarizes the outcomes of
stationarity test based on ADF-GLS and KPSS. Results show
that the variables are non-stationary and integrated of order 1.

ii. Cointegration analysis

Table 7 reports the results of the fully modified OLS
cointegration test for the relationship between machinery, fer-
tilizers, land area under cereal production, agricultural value
added, real income, subsidies, rural access to an improved
water source, and carbon emissions.

The ADF and the PP test reject the null of a unit root at 1%
level in the residuals of this relationship. The KPSS test rein-
forces the results of ADF and PP tests and does not reject the
contrary null of no unit root at 1% level. These tests show the
presence of cointegrating relationship between the variables.
In order to get the direction of these relationships, we consider
the Granger causality test.

iii. Granger causality tests

Table 8 reports the results of the TYversion of the Granger
causality tests. The null hypothesis of non-causality from sub-
sidies to CO2 cannot be rejected at 5% level of significance.
This result may be explained by the fact that Jordanian gov-
ernment, as previously mentioned, subsidizes heavily the irri-
gation water; as a result, farmers would utilize more water
inputs in farming, which means more energy and more emis-
sions (Karkacier et al. 2006; Turkekul and Unakitan 2011;
Cleveland 1995). Further, if CO2 emissions increase in the
atmosphere, the government can motivate farmers and firms
by increasing subsidies to green technologies and reduce sub-
sidies to polluted technologies.

In addition, the existence of a unidirectional causality run-
ning from water to CO2 is shown. This finding justifies the
consideration of improved water source in our model.
Indeed, Jordan is among the poorest countries in the world
with regard to water availability. Around 92% of Jordanian
regions receive less than 200 mm yearly of rainfall (Ministry
of Water and Irrigation 2016a). The total amount of water
utilization exceeds the renewable water supply; therefore, the
use of non-renewable supply such as the groundwater extrac-
tion is necessary. According to data of the Ministry of Energy
and Natural Resources, 17.6% of the GDP are spent on energy
andwater sectors (including pumping, piping, and equipment).
Water sector consumes 14% of generated electricity1 and half
of consumption goes to water drinking pumping. The high cost
of watering is because the water sector comprises an energy-

Table 7 FMOLS cointegration test result (1990–2014 subsample
period)

Test statistic 1% critical
value

ADF −6.41*** −2.67
PP −6.54*** −2.67
KPSS 0.07*** 0.74

Note: The adjusted R-squared of the FMOLS regression is 0.86. The 1%
critical values are those for the null of a unit root in the residuals for the
ADF and PP tests (Phillips and Ouliaris 1990) and no unit root in the
residuals for the KPSS test. *** Rejection of null hypothesis of no
cointegration at the 1% significance level

1 Jordan is highly dependent on fossil fuel in producing electricity (Holtz and
Fink, 2015).
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wide operation by installing big-size water pumping, improv-
ing and treatment, and distribution facilities (Busche and
Hayek 2015).

Moreover, according to Ministry of Water and Irrigation,
the entire water supply in 2014 was 370 million cubic meter
(MCM), with total electricity demand of 1592 GWh. The
water demand is assumed to have an annual growth rate of
5%, which is equivalent to 521 MCM in 2021 and 633 MCM
in 2025. Given the high attention of Jordanian government
toward the clean energy, it is estimated that by 2025,
Jordanian economy will save around 350 K tons/year of
CO2 emissions if government continues using both renewable
energy and energy efficiency (Ministry ofWater and Irrigation
2016b).

iv. Variance decomposition results

The results of the variance decomposition for CO2 are re-
ported in Fig. 1 over a horizon of 10 years. Compared to the
results of the full period, the impact of AVA on CO2 remains
higher than any other variables in the system. Subsidies and
water explain 5.96 and 2.41% of the forecast error variance of
CO2 at the end of horizon and confirming the Granger causal-
ity tests. Moreover, the variance of CO2 is explained by GDP
(8.92%), machinery (7.7%), livestock (7.57%), fertilizers
(4.53%), crop (2.99%), and land (1.12%) by the 10th year.
These results indicate that agricultural technologies are linked
to carbon emissions in Jordan.

Conclusion and policy implications

Jordan faces two main challenges, the scarcity of both water
and fossil energy resources and the increase in demand for
these goods in the recent time. The current policies regarding
the management of water resources and the utilization of clean
technologies will significantly affect the future environmental
state. For policy implications, in order to perform the (2011–
2020) target of CO2 emissions in Jordan, policy-makers have
to consider the amount of CO2 emitted from agricultural tech-
nologies. Hence, the objective of this paper is to study the
interrelationships between carbon emissions and agricultural
technologies for Jordan. The cointegration approach and the
Toda and Yamamoto (1995) Granger causality tests were
employed before reporting the variance error decompositions.

Our results validated the presence of cointegration between
carbon emissions, machinery, fertilizers, land area under cere-
al production (land), the agriculture value added (AVA), real
income (GDP), crop and livestock production, water access.
and subsidies. We find a unidirectional relationship running
from machinery and fertilizers to carbon emissions. From a
policy standpoint, policy-makers may be interested to develop
and use advanced production methods and techniques with
lower CO2 emission in farm production processes. Our results
also discover a unidirectional relationship running from sub-
sidies to carbon emissions. The policy implication is that mea-
sures aimed at subsidies could ultimately affect carbon emis-
sions. Therefore, Jordan can aim to mitigate adverse environ-
mental effects from subsidies by implementing policies that
alter carbon emissions. Moreover, the paper finds a unidirec-
tional relationship running from access water to carbon emis-
sions. This is important as water demand in Jordan continues
to rise. From technical viewpoint, our result is comparable to
Busche and Hayek (2015), where they show that the annual
energy-saving potential from all the investigated pumps ar-
rives to around 33%, equivalently to 3.3 million Euros.
According to this study, if the authority raises the renewable
energy resources in power consumption up to 10%, there will
be a total saving of 0.31 kg of CO2 emissions per each billed
cubic meter of water (Ministry ofWater and Irrigation 2016b).
Hence, Jordanian authorities should design and adopt technol-
ogies that have a proven CO2 reduction potential in the water
extraction and delivery processes. The variance error decom-
positions highlight the importance of subsidies and water
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Fig. 1 Variance decomposition of CO2

Table 8 Toda-Yamamoto causality test results (1990–2014 subsample period)

Causal flow Wald statistic Probability Causal flow Wald statistic Probability Accepted causal flow

Water →CO2 3.37* 0.06 Water←CO2 0.78 0.38 Water→CO2

Subsidies→CO2 3.63** 0.05 Subsidies←CO2 1.8 0.18 Subsidies→CO2

Note: → indicates the direction of causality. We only report results for water and subsidies to conserve place

*** and **denote the significance at 1% and 5%, respectively
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access in explaining carbon emissions. They also show that
AVA, GDP, machinery, fertilizers, livestock, crop, and land
have an increasing effect on carbon emissions over the fore-
cast period.

The above results provide an interesting view regarding the
carbon emissions based on agriculture sector; however, one
caveat of our analysis is that our results are drawn from a
quantitative econometric analysis of the interaction effect be-
tween agricultural technologies and the emissions of CO2.
Therefore, we are likely to ignore qualitative factors, such as
the age of machinery and the type of livestock reared. Since
data on qualitative factors are not available for our sample
period, this topic will be left for future research.
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