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Abstract
The PM2.5 as one of the main pollutants in Tehran city has a devastating effect on human health. Knowing the key parameters
associated with PM2.5 concentration is essential to take effective actions to reduce the concentration of these particles. This study
assesses the relationship between meteorological (humidity, pressure, temperature, precipitation, and wind speed) and environ-
mental parameters (normalize difference vegetation index and land surface temperature of MODIS satellite data) on PM2.5

concentration in Tehran city. The Geographically Weighted Regression (GWR) was employed to assess the impact of key
parameters on PM2.5 concentrations in winter and summer. For this purpose, first the seasonal average of meteorological data
were extracted and synchronized to satellite data. Then, using the ordinary least square model, the important parameters related to
PM2.5 concentration were determined and evaluated. Finally, using the GWRmodel, the relationships between parameters related
to PM2.5 concentration were analyzed. The results of this study indicate that meteorological and environmental parameters in
winter season (71%) have a much higher ability to explain PM2.5 concentration than summer season (40%). In winter, PM2.5

concentration has a negative correlation with vegetation at most parts of the study area, a negative correlation with LST in the
western and a positive correlation in the eastern part of the study area, a positive correlation with temperature, and a negative
correlation with wind speed in the northeastern part of the study area. Precipitation has a positive correlation with PM2.5

concentration in most parts of the study area in both seasons. But, it was investigated in case of higher precipitation (more than
2 mm), PM2.5 concentration decreases. But, there is no negative relationship in any of the dependent parameters with PM2.5

concentration in summer. In this season, the air temperature parameter showed a high correlation with PM2.5 concentration. Also,
spatial variations of the local coefficients for all parameters are higher in winter than in summer.
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Introduction

These days, air pollution is known as one of the main prob-
lems in urban areas. Outdoor air pollution is mainly derived
from urban growth, expansion of industrial activities, and un-
controlled consumption of fossil fuels (Johansson et al. 2008;
Shi et al. 2014; WHO 2008). At the first stage, this leads to

impact on citizens’ respiratory illness and to increase intensity
of heart and lung diseases (Fan et al. 2016; Hwang et al. 2017;
Yang et al. 2017) and, at the second stage, this plays an im-
portant role as a parameter in aggravation of climate changes,
climatic fluctuations, and environmental impact (Ren et al.
2007). Hence, air pollution always has been as a major envi-
ronmental issue by/for the experts and urban planners (White
and Engelen 2000). Tehran is among the cities which are sub-
ject to severe air pollution and facing unhealthy days more
than a third of the year (Rowshan et al. 2009).

In recent years, one of the greatest threats for Tehran
has been particulate matters less than 2.5 microns, which
causes most unhealthy days (Brajer et al. 2012). High concen-
tration of PM2.5 is a serious threat to the environment and
human health (Luo et al. 2015; Miri et al. 2017; WHO
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2016) Therefore, the ability of understanding the relevant pa-
rameters on PM2.5 concentration becomes an increasing key
prerequisite to take effective steps to reduction and prevention
of aerosol pollution. Parameters like traffic, industries, and
land use have a relationship with air pollution in a constant
form during the year. Climate and vegetation cover have
changing relationship with air pollution (Fisher 2002; Makra
et al. 2011; Pcu and Bosiacka 2011). The climate system is a
complex, dynamic system, and the elements of this system are
mutually influenced by PM2.5 concentration (Chen et al. 2015;
Kaufman et al. 2002). Therefore, exact analysis of various air
pollutants and evaluation of environmental and meteorologi-
cal parameters such as wind speed, wind direction, relative
humidity, and air temperature are essential (Khokhar et al.
2017). As shown by previous studies, meteorological condi-
tions can largely diffuse, dilute, and accumulate pollutants
(Pohjola et al. 2002); thus, PM2.5 mass concentration is mainly
due to meteorological condition (Tai et al. 2010). Yang et al.
(2011) concluded that meteorological conditions can, at least,
make a contribution of 16% to the reduction of PM2.5 mass
concentration.

Since the access to ground measurements of related param-
eters to air pollution faced many limitations, satellite data can
be used in areas where groundmeasurements are not available
(Gupta et al. 2006). Potentials definitely exist in using remote
sensing information for the validation of emission inventories
and for a better understanding of the atmospheric processes
controlling air pollution episodes. In addition, remote sensing
can complement ground monitoring data when performing
assessments of air pollution levels (Veefkind et al. 2007).
The idea of using satellite imagery and use of analyst space
of different sciences such as geographic information system
(GIS) on various topics related to air pollution has spread in
recent years. Impacts of different parameters differs basis on
the spatial changes (Wu et al. 2017). In recent years, a rela-
tively simple, but effective, new technique for exploring spa-
tially varying relationships, called Geographically Weighted
Regression (GWR), has been developed (Brunsdon et al.
2001; Fotheringham et al. 2001). Definitely, for analysis of
spatial relationships of meteorological and environmental pa-
rameters with air pollution, GWR is more efficient than pre-
vious methods such as OLS (one of global spatial models).

In the field of particulate matters, especially PM2.5, many
studies predicted and estimated the PM2.5 concentration using
different models and methods. Up to date, some previous
studies predicted surface PM2.5 concentration by establishing
the direct relationship between PM2.5 and aerosol optical
depth (Hu 2009; Schaap et al. 2009), while others estimated
ground-level PM2.5 concentrations using satellite aerosol op-
tical depth in conjunction with diverse variables and fields
(Liu et al. 2009; Parkinson 2003). In general, the aims of these
studies were to recognize the meteorological and land use
variables as effective predators of PM2.5 and improve the

model predictability using those variables (Lin et al. 2015;
Liu et al. 2007; Liu et al. 2005; Tian and Chen 2010). The
result of Chen et al. (2017a) proved that the higher PM2.5

concentration, the stronger influences meteorological factors
exert on PM2.5 concentration. In another study of Chen et al.
(2017b), at the national scale, temperature, humidity, wind,
and air pressure exert stronger influences on PM2.5 concentra-
tions than other meteorological factors.

In recent years, the application of satellite remote sensing to
air quality research, especially the application of aerosol opti-
cal depth (AOD) has been greatly promoted (Hoff and
Christopher 2009; Martin 2008). But, little researches have
been done on the use of another products of remote sensing
like NDVI and LST and evaluated them as effective parame-
ters on PM2.5 concentration. So far, many models have devel-
oped in researches related to PM2.5 concentration, but a few
studies have used geographically weighted regression to esti-
mate or investigate the effective variables on it (Hu et al. 2013;
Lin et al. 2013; Lin et al. 2015; Luo et al. 2017). This study is
aimed to investigate the impact of meteorological and envi-
ronmental parameters on PM2.5 concentration in winter and
summer seasons using GWRmethod. For this purpose, for the
first time, satellite-derived products (NDVI and LST products
of MODIS sensor) as related parameters with air pollution and
meteorological parameters were used. To the best of our
knowledge, so far, limited attention was paid to explore the
seasonal impacts of the parameters on PM2.5 concentration,
and in this research, we have used the GWRmodel to compare
seasonal impacts of meteorological–environmental parame-
ters on PM2.5 concentration using satellite-derived products
(LST, NDVI) for the first time.

Material and methods

Study area

The present study was conducted in Tehran, the capital city of
Iran, which is located in the north of the central plateau of Iran
within the longitudes of 51° to 51° 40′ E and the latitudes of 35°
30′ to 35° 51′ N. Tehran is a mountainside city with an altitude
of 900 to 1700m above sea level. Its urban area spreads entirely
over the Iranian plateau, on the southern slopes of a very high
and dense mountain barrier, with a peak of 3933 m, which is
2200m higher than the city’s residential areas. According to the
latest Iranian Population and Housing Census in 2011 by the
Statistical Center of Iran, Tehran, with a population of 8.1
Million people, is still ranked as most populous city in Iran with
a very distinct demographic difference than other cities
(Statistical Center of Iran, 2011, https://www.amar.org.ir/
Portals/1/Iran/Atlas_Census_2011.pdf). Tehran is rated as one
of the world’s most polluted cities and suffers from severe air
pollution. Tehran is divided into 22 urban districts, and based
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on the availability of meteorological and PM2.5 concentration
stations, this study was conducted in district nos. 2, 3, 5, 6, 7, 9,
10, 11, and 12. The location of study area is shown in Fig. 1.

Data and methodology

In the present study, different environmental data from mete-
orological and air quality stations and satellite imagery were
used. The summary of these data is given as follows:

& The seasonal average of meteorological parameters (hu-
midity, pressure, precipitation, wind speed, and air tem-
perature calculated from daily data of Meteorological
Organization for both winter (2014–2015) and summer
(2015) separately.

& Ground-based PM2.5 concentration data from seasonal av-
erage of daily PM2.5 concentration data derived from the
air quality station network of environmental protection
organization and air quality control center of Tehran.

& Satellite images from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor on board the Terra
and Aqua satellites (Parkinson 2003): (a) in 36 spectral
bands ranging in wavelength from 0.4 μm to 14.4 as 16-

day normalized difference vegetation index (NDVI,
MOD13A1) to represent the vegetation coverage and (b)
land surface temperature (LST,MOD11A1) both achieved
at NASA (available at https://ladsweb.modaps.eosdis.
nasa.gov), with both being level-1A MODIS/Terra(EOS
AM-1) products with spatial resolution of 1 km. the times
coinciding the station datasets.

As mentioned above, only the groundmeasurements which
had closed times to the over pass of the MODIS/Terra satellite
were used in this study. A summary of variable used in model-
ing is given in Table 1.

Due to the low number of stations with enough information
and lack of adequate coverage by stations in the whole city,
and on the other hand because its data collection system is data
point, it is necessary to construct new data points within the
range of a discrete set of known data points. Generally, inter-
polation can be used to predict unknown values for any geo-
graphic point data, and it predicts values for cells in a raster
from a limited number of sample data points. So, the seasonal
average of ground measurements was extended to the whole
city using IDW interpolation, one of the weighted average
methods which estimates cell values by averaging the values
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Fig. 1 The location of study area
and air quality stations
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of sample data points in the neighborhood of each processing
cell and, unlike, e.g., the krigingmethod, it does not follow the
assumptions about the relationship between the spatial data. It
only relies on the assumption that the closer a point is to the
center of the cell being estimated, the more influence or
weight it has in the averaging process.

Satellite images were georeferenced and averaged for both
winter (2014–2015) and summer (2015) seasons. Spatial dis-
tributions of PM2.5 and the chosen independent variables are
shown in Figs. 2 and 3.

To assess the impact of meteorological and environ-
mental parameters on PM2.5 concentration, firstly with
the help of OLS, multivariate correlation analysis was
carried out between latent meteorological and environ-
mental parameters and PM2.5 concentrations to identify
the decisive parameters of PM2.5 concentrations before
GWR. Actually, variables that had a significant relation-
ship with the PM2.5 were defined. For this purpose, all
variables were entered into the model by using ArcGIS
10.4.1. Non-significant variables were removed step by
step. For example, in the first performance of the model
for winter season, pressure and then moisture variables
were removed from the model. So, this procedure was
continued until all remaining variables were statistically
significant. Then, using geographically weighting regres-
sion model, the relationship between meteorological and
environmental variables with particulate matter less than
2.5 μm were evaluated. Eventually, comparison was done
between seasons. The methodology is summarized in the
following flowchart (Fig. 4).

OLS model

OLS is a global regression method that it can be implemented
in ARC GIS and is described using Eq. (1):

Y ¼ β0 þ β1X 1 þ β2X 2 þ…þ βnX n þ ε ð1Þ

where Y is the dependent variable, X explanatory vari-
ables, β the coefficients of independent variables in de-
scribing the dependent variable and the random error with
expectation 0 and variance σ2 (Stone and Brooks 1990).
One of the most important parameters in this model, the
variance inflation factor value of regression variables
(VIF), should be no more than 7.5, which ensures there
is no multicollinearity and redundant independent vari-
ables in the regression model. If the VIF value is greater
than 7.5, it means that two or more variables are similar to
each other. VIF can measure how much the estimated
variance of a coefficient is increased by local collinearity
(Wheeler and Páez 2010; Wheeler and Tiefelsdorf 2005).
In addition to VIF, there are some statistical definitions in
OLS model such as multiple R-squared and adjusted R-
squared values that both are measures of model perfor-
mance. Possible values range from 0.0 to 1.0. Both the
joint F statistic and joint Wald statistic are measures of
overall model statistical significance. The Koenker (BP)
statistic (Koenker’s studentized Breusch-Pagan statistic) is
a test to determine if the explanatory variables in the
model have a consistent relationship to the dependent var-
iable (what you are trying to predict/understand) both in
geographic space and in data space. The Jarque-Bera sta-
tistic indicates whether or not the residuals (the observed/
known dependent variable values minus the predicted/
estimated values) are normally distributed.

GWR model

To constrain the spatial variability, the GWR model has been
adopted to examine the relationship between meteorological
and environmental parameters and PM2.5 concentration on the
different parts of the study area. The GWRmodel proposed by
Brunsdon et al. (1996) can be used to estimate the parameters.
The GWR is an extension of traditional standard regression
techniques such as OLS because it allows local rather than

Table 1 Summary of variables
used in modeling analysis Winter Summer

Variables Unit Min Max Average SD Min Max Average SD

Dependent variable

PM2.5 ug/m3 22.8 45.9 32.2 4.00 20.4 37.6 26.8 3.09

Independent variable

NDVI [− 1.1] 0.04 0.29 0.12 0.04 0.07 0.30 0.16 0.05

LST K 296 304 301 1.55 312 320 316 2.37

Humidity g/m3 44.0 51.5 45.8 1.23 22.27 25.5 23.4 0.64

Pressure hPa 845 882 865 8.43 850 876 861 5.66

Temperature °C 9.54 11.24 10.1 0.42 31.7 33.3 32.1 0.39

Wind speed m/s 1.12 2.89 2.05 0.40 1.69 2.83 2.07 0.28

Precipitation mm 0.49 1.40 0.67 0.14 0.13 0.28 0.18 0.02
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Fig. 2 Spatial distributions of variables in winter
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Fig. 3 Spatial distributions of variables in summer



global parameter estimates (Fotheringham et al. 2001).
Different from global models like OLS, the GWR model
stands on local statistic, and it considers the effects from spa-
tial variations of meteorological and geographical variables on
the estimation of PM2.5 concentration. This method estimates
model parameters at each geographical location by using the
weighting function of exponential distance decay. The
weighting function, called the kernel function, can be stated
using the exponential distance decay form:

wij ¼ exp
d2ij
b2

 !
ð2Þ

whereWij represents the weight of observation j for location i,
dij expresses the Euclidean distance between points i and j,

and b is the kernel bandwidth. In addition, the observations are
weighted by distance, so those closer to the studied location
have more influence on the parameter estimates. These esti-
mates are showing how a relationship varies over space. This
procedure can help to examine the spatial pattern of the local
estimates and to get some understanding of hidden possible
causes of the respective patterns (Fotheringham et al. 2003).
The basic GWR equation is:

y u; vð Þ ¼ b0 u; vð Þ þ b1 u; vð Þx1 þ e u; vð Þ ð3Þ
where y is the dependent variable with a Gaussian distribution;
x is the independent variable; u and v are the coordinates of the
data; b0 is the intercept term; b1 is the coefficient being esti-
mated; and e is the random error term (See et al. 2015). The
point is that GWR can not only test the spatial non-stationarity
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of the input variable, but it can also be used to estimate the
outcome variable (Wheeler 2014).

In GWRmodel bandwidth is the number of neighbors used
for each local estimation. Residual squares is the some of the
squared residuals in the model. Residual squares is the sum of
the squared residuals in the model (the residual being the
difference between an observed y value and its estimated val-
ue returned by the GWR model). AICc is a measure of model
performance and is helpful for comparing different regression
models. Taking into account model complexity, the model
with the lower AICc value provides a better fit to the observed
data.

Results and discussion

Results of OLS model

The first performance of the OLS model showed that some
variables do not have a significant relationship with the de-
pendent variable in less than 0.01 significance level. Non-
significant variables were removed step by step. Results of
the OLS method after removing meaningless variables are
shown in Table 2.

VIF was used to detect whether collinearity problems
existed among the variables. By checking the amount of
VIF, it was found that some variables have redundancy. Data
redundancy was deleted by removing humidity variable. This
point indicates that humidity and precipitation are very similar
to each other. Also, in summer, first pressure and then LST

were dropped from the model. Output results of VIF showed
that data redundancy is due to precipitation and humidity var-
iables. Therefore, in order to resolve data redundancy, one of
the variables was eliminated. The negative relationship be-
tween NDVI index and wind speed with the dependent vari-
able (PM2.5 concentration) indicates that these two variables
play an important role in reducing air pollution in Tehran. The
results of OLS model also confirm that NDVI and LST have
an inverse correlation with each other. This issue is more pro-
nounced in summer due to the NDVI and LST levels. Amount
of adjusted R-squared indicated that 0.41 (winter) and 0.39
(summer) of the variation in PM2.5 can be explained by mete-
orological and environmental parameters. The significant joint
F-statistic and joint Wald statistic both indicated that there is a
significant linear relationship between the dependent variable
and the independent variables. Because the Jarque-Bera sta-
tistic was not significant, the model is considered unbiased,
and all the key variables were included in the model.

Both the multiple R-squared and adjusted R-squared values
are measures of model performance. Possible values range
from 0.0 to 1.0. Both the joint F-statistic and joint Wald sta-
tistic are measures of overall model statistical significance.
The Koenker (BP) statistic (Koenker’s studentized Breusch-
Pagan statistic) is a test to determine if the explanatory vari-
ables in the model have a consistent relationship to the depen-
dent variable (what you are trying to predict/understand) both
in geographic space and in data space. The Jarque-Bera sta-
tistic indicates whether or not the residuals (the observed/
known dependent variable values minus the predicted/
estimated values) are normally distributed. The variance

Table 2 Summary of global OLS linear regression model results

Winter Summer

Variables Coefficient Std. error Probability Robust std. error VIF Coefficient Std. error Probability Robust std. error VIF

Intercept − 3.39 0.37 0.00* 0.66 … 0.53 0.76 0.00* 0.69 …

NDVI − 0.16 0.09 0.08* 0.08 1.19 0.13 0.04 0.00* 0.03 1.15

LST 0.06 0.04 0.07* 0.05 1.45 Removed

Humidity Removed 0.43 0.24 0.07* 0.21 23**

Pressure Removed Removed

Temperature 1.68 0.14 0.00* 0.13 5.13 0.73 0.13 0.00* 0.12 7.72

Wind speed − 0.80 0.09 0.00* 0.08 5.48 0.27 0.08 0.00* 0.07 7.50

Precipitation 0.57 0.06 0.00* 0.05 1.27 1.04 0.23 0.00* 0.20 24**

R2 0.43 0.40

Adjusted-R2 0.41 0.39

AICc 1234 1202

Joint F-statistic 48.3 0.0000* 44.6 0.0000*

Joint Wald statistic 326 0.0000* 336.4 0.0000*

Koenker (BP) 21.4 0.0008* 33.9 0.0001*

Jarque-Bera 4.25 0.0090 1.55 0.2684

*indicates a statistically significant p value (p < 0.01). **Indicates redundancy among explanatory variables
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inflation factor (VIF) measures redundancy among explanato-
ry variables. As a rule of thumb, explanatory variables asso-
ciated with VIF values larger than about 7.5 should be re-
moved (one by one) from the regression model.

Results of GWR model

According to the OLS model, meaningless variables were
removed and data redundancy was eliminated. Finally, LST,
NDVI, precipitation, air temperature, and wind speed vari-
ables for winter and NDVI, temperature, precipitation, and
wind speed variables for summer entered into GWR model.
A list of explanatory variables considered for inclusion in
GWR with their descriptive statistics is given in Table 3.

The GWR model is a significant improvement of the OLS
model which is more conspicuous in winter (adjusted R2 =
0.71) compared to summer (adjusted R2 = 0.41). Also, AICc
value suggests that the local model was a significant improve-
ment. In general, both the OLS and GWR methods show that
meteorological and environmental variables in winter have a
much stronger relationship with PM2.5 concentration than in
summer. The summary of GWR model output is shown in
Table 4. Also, Figs. 3 and 4 indicate the local coefficients
for each of the meteorological and environmental variables
for two hot and cold seasons in GWR model.

According to the result of various measurement campaigns
(Chen et al. 2017a; Hu et al. 2013; Jiang and Weiwei 2016),
local methods like GWR estimates PM2.5 concentration much
better and more accurate than the global methods, which is
confirmed by our results. In agreement with the result of an
investigation done in China (Chen et al. 2017b), we found that
the influence of meteorological–environmental parameters in
the cold season is much stronger than the warm season. The
results of the GWR method also show that local variations of
coefficients for all parameters and R2 are very low in summer,
which probably is due to larger spatial variations in the cold
season caused bymore stable atmospheric stratifications, low-
er mixing layer heights, and lower wind speeds prevailing in
winter.

Actually, the local coefficient indicates the degree of cor-
relation between the dependent and independent variable,
which can be positive or negative. Figures 5a and 6b show
local coefficients for air temperature in winter and summer,

respectively. By surveying this parameter, it can be concluded
that air temperature has a positive correlation with PM2.5 con-
centration in both seasons. But, the pattern of local coef-
ficient is different in two seasons. Also, in comparison
with winter, spatial variations are low and the area is
almost uniform. As it can be seen, the correlation between
PM2.5 and air temperature is much stronger in summer.
This is because air temperature can affect the formation
of particles; thus, the high air temperature can promote
the photochemical reaction between precursors (Wang
and Ogawa 2015). In big and crowded cities like
Tehran, solar radiation affect the spatial variations in air
temperature less than intra-urban human activities like in-
dustrial activities, traffic, and population density, as a re-
sult we can say although the increase in air temperature
leads to an increase in albedo, it cannot have a significant
impact on spatial air temperature variations. Actually, the
spatial distribution of air temperatures in urban areas is
quite complex, and most of the factors that modify energy
balance and air temperature conditions in cities arise out
of the highly different thermal properties of the urban
environment relative to its natural surroundings
(Dobrovolný and Krahula 2015; Haddad and Aouachria
2015).

According to Fig. 5b, LST has a positive correlation in
the western part of the region, and there is a negative
correlation with PM2.5 concentration in the east of the
region in winter. In fact, by moving from west to east,
the positive correlation becomes non-correlation and then
negative correlation. Since the air temperature has a pos-
itive effect on PM2.5 concentration and LST is influenced
by many parameters such as air temperature (Khandelwal
et al. 2017), the necessary condition for a positive

Table 3 Results of GWR model
output Winter Summer

Variables Min Max Average SD Min Max Average SD

NDVI − 0.43 0.32 0.13 0.18 0.12 0.13 0.12 0.003

LST − 0.43 0.39 0.009 0.22

Temperature 0.19 0.83 0.58 0.14 0.70 0.90 0.81 0.05

Wind speed − 0.72 0.72 0.24 0.31 0.17 0.26 0.21 0.02

Precipitation − 1.81 0.73 0.01 0.70 0.58 0.65 0.62 0.01

Table 4 Summary of
GWR model output GWR Winter Summer

Bandwidth 0.05 0.21

Residual squares 374 715

Sigma 1.11 1.49

AICc 1007 1195

R2 0.73 0.41

Adjusted R2 0.71 0.40
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relationship between LST and PM2.5 is a positive correla-
tion between LST and air temperature. But, unlike the
western part, the relation between LST and air tempera-
ture is not positive; the reason could be that the vegetation
cover is weak, so generally, for slight vegetated areas, the
day LST is higher than air temperature (Chan et al. 2017).

The vegetation coverage described as normalized differ-
ence vegetation index (NDVI) is known to have some impact
on the spatial patterns of PM2.5 (Jiang and Weiwei 2016).
Although the effect of vegetation on urban air quality is not
yet fully understood (Escobedo et al. 2011; Tiwary et al.
2009), Fig. 5c shows that in most of the study area, there is
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a negative relationship between NDVI parameter and PM2.5

concentration in winter. Only a very small part of the south-
eastern of the study area has a positive correlation. In general,
by moving away from the city center, as for the geography of
the urban heat island that generally increases from the urban
outskirts towards the city center, the relation between NDVI
and PM2.5 becomes negative. This correlation indicates that
this parameter has a controlling effect on Tehran air pollution.
Considering that the highest air pollution in Tehran is ob-
served in winter, improvement of urban vegetation can be a
viable strategy to help reduce urban air pollution. Previous
studies have shown that vegetation can mitigate particulate
air pollution through a number of mechanisms, such as
intercepting and accumulating atmospheric particles through
leaf pubescence and stomata (Chen et al. 2016; Irga et al.
2015). But, as it can be seen in Fig. 6a, NDVI and PM2.5

behave differently in summer, and they have a weak positive
correlation with low spatial variations in the whole Tehran
city. The weak positive relationship between NDVI and
PM2.5 in summer can be attributed to the inverse relationship

between NDVI and LST. Hence, LST is influenced by the air
temperature and both have higher values in summer than in
winter, so NDVI has less important role in describing PM2.5 in
summer. Actually, the impact of NDVI is overcome by the
influence of land surface temperature and air temperature. It
has shown that air temperature, precipitation, and other mete-
orological parameters can preferably explain the relationship
between concentrations of particulate matter and meteorolog-
ical parameters (Tai et al. 2010).

As seen in Fig. 5e, there is a negative correlation be-
tween the wind speed and PM2.5 concentration in the
north-eastern part of the case study, which increases up
positive correlations in the south-western part. According
to Fig. 6d, unlike winter, variations in local coefficients
are really low for wind speed in summer with slightly
decreasing but always positive local coefficients from
the west to the east. Also, the correlation is low and pos-
itive. According to the result of wind speed, various im-
pact of wind speed on PM2.5 concentration was observed
in both seasons as well. It is noticeable that wind speed
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has a negative effect on PM2.5 concentration in winter; it
means that higher wind speed is conducive to the diffu-
sion of PM2.5, which results in lower concentrations of
PM2.5 (Luo et al. 2017). The point is that the influence
of wind speed on PM2.5 concentrations in winter is more
obvious than in summer, because the correlation is posi-
tive with low spatial variation in summer. These results
may be attributed to the local pollution sources in Tehran
urban area as dominant source for PM2.5 pollution and
less external sources, as the actual pollutant concentration
is the integrated effect of external and local sources (Pu
et al. 2011). Results of GWR model output about precip-
itation and PM2.5 concentration in winter and summer are
shown in Figs. 5(c) and 6(d). Precipitation has a positive
correlation with PM2.5 concentration in most parts of the
study area. This result contradicts previous researches.
Previous studies show that precipitation can effectively
remove atmospheric particulate matter (Li et al. 2015;
Lin et al. 2015; Luo et al. 2017; Tai et al. 2010; Wang
and Ogawa 2015). Hence, further, precipitation data was
investigated to find out complementary explanation. The
relationship between PM2.5 concentration and precipita-
tion more than 2 mm is shown in Fig. 7. For further
analysis, in addition to days with precipitation more than
2 mm, 1 day before each precipitation is also considered.

It was found that the precipitation parameter has spe-
cial condition in Tehran. The number of rainy days, espe-
cially in summer, is low and most precipitations are mod-
erate. When classifying the precipitation data into several
classes with regard to the amount of the precipitation and
analyzing the impact of each class on the PM2.5 concen-
tration, it was found that the days with low precipitation
(less than 2 mm) not only affect the decrease of PM2.5

concentration, but also increase air pollution due to in-
creasing traffic, while in case of higher precipitation
(more than 2 mm), PM2.5 concentration decreases.

The local R2 from the GWR ranges between 0.05 and 0.73
for winter and between 0.37 and 0.43 for summer (Fig. 8a, b).
The highest R2 in winter can be seen in the northeast and the
lowest in the central part. In comparison with winter, we see
fewer changes in the local distribution of local R2. The stan-
dard residual values show quite the same pattern in both sea-
sons (Fig. 9). The lowest and the highest of standard residual
values are seen in the northwest, some parts of the southwest,
and northeast, respectively.

However, there exist data gaps in both PM2.5 measure-
ments and meteorological parameters that certainly make
some limitations for researches. More accurate parameters
and variables should be identified to improve new models
and methods to gain more accurate examinations and re-
sults. Also, the important point in the study of urban
problems such as air pollution, use of various data over
the years to examine changes over time, and identification
of effective and influential parameters also plays an im-
portant role.

Conclusion

In the presented study, the impact assessment of meteorolog-
ical and environmental parameters on PM2.5 concentrations in
winter and summer was studied. For this purpose, the geo-
graphically weighted regression (GWR) model was adopted
to explore the impact of environmental parameters on PM2.5

concentrations in Tehran city. In comparison with the OLS
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Fig. 7 The relationship between PM2.5 concentration and precipitation more than 2 mm (considering the data of 1 day before precipitation)



method, the GWR model showed a higher ability to analyze
the relationships between independent and dependent vari-
ables. The study indicated that meteorological and environ-
mental parameters in winter have a much higher ability than in
summer to describe PM2.5 concentration. Compared to winter
season, spatial variation of the local coefficients was lower.
Considering the negative correlation between NDVI and
PM2.5 concentration in winter, it is recommended to increase
urban vegetation in order to reduce Tehran’s air pollution and
especially PM2.5 concentration. Air temperature showed the
highest correlation with PM2.5 concentration in summer.
Positive correlation of air temperature in both seasons as well
as LST parameter in some areas shows the need for more
attention to source-related air pollution control such as reduc-
tion of emissions from traffic or air conditioning in summer.
However, there is no other way to reduce air pollution without

severe control especially at hot season since air temperature
cannot be modified. Also, there is an urgent need of an exten-
sive investigation on the emission sources and that very cer-
tainly most effective will be the replacement of fossil energy
sources by electric power from sustainable sources especially
in transportation.We would suggest some directions for future
research: (1) more air pollutants such as PM10 and ozone
should be evaluated and be applied to the potential of remote
sensing technology to get a more extensive picture of source-
receptor relationships in highly polluted areas like in and
around the City of Tehran. (2) Evaluating the capability of
different satellite imagery in association with the topics related
to air pollution and air quality. (3) Impact assessment of var-
ious meteorological and environmental parameters on primary
and secondary pollutants. It also needs a larger time span and
higher data density in the further research of the next step.
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Fig. 8 Spatial distribution of local R2

Fig. 9 Spatial distribution of standard residuals of the GWR model
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