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Abstract
Insecticide resistance is a major challenge in successful insect pest control as the insects have the ability to develop resistance to
variouswidelyused insecticides.Butene-fipronil is a novel compoundwithhigh toxicity to insects and less toxicity to thenon-target
organisms. In the present study, the effect of butene-fipronil alone and in combination with three enzyme inhibitors, piperonyl
butoxide (PBO), diethyl maleate (DEM), and triphenyl phosphate (TPP), was carried out on larvae and adults of Drosophilia
melanogaster. Our results indicated that the co-toxicity indices of butene-fipronil + PBO, butene-fipronil + TPP, and butene-
fipronil + DEM mixtures were 437.3, 335.0, and 210.3, respectively, in the second-instar larvae, while 186.6, 256.2, and 238.5,
respectively, in the adults, indicating synergistic effects. Interestingly, butene-fipronil increased the expression of CYP28A5 in the
larvae; CYP9F2, CYP304A1,CYP28A5, andCYP318A1 in the female adults; and CYP303A1 andCYP28A5 in themale adults.
Furthermore, high-level expression of Est-7 was observed in the female adults compared to larvae and male adults. Our results
suggest that there is no difference in butene-fipronil metabolism in larvae and male and female adults ofD. melanogaster.
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Introduction

The use of insecticides has become an important part of mod-
ern era agriculture to protect crops from insect pest (Cooper

and Dobson 2007). Therefore, the concerns regarding the ex-
posure of these insecticides to natural enemies and other or-
ganisms in the ecosystem have been increasing with the pas-
sage of time (Liu et al. 2001). To combat this problem,
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insecticides with novel mode of action and formulation are
designed with qualities like high toxicity to insect pests and
be less toxic to the non-target organisms (Shakeel et al.
2017a). Butene-fipronil, a novel compound, is a GABA-
gated chloride channel-blocking insecticide. It is not only ef-
fective against insect pests of Lepidoptera, Hemiptera,
Coleoptera, and Orthoptera (Liu et al. 2009; Niu et al. 2008;
Yuan et al. 2009), but also safe to non-target insects (Wang
et al. 2013b; Yu et al. 2012), and other organisms like fish as
well (Niu et al. 2008).

Insecticide resistance is also a major challenge for successful
insect pest control. Metabolic resistance is based on enzymatic
systemanddetoxification enzymes and is regarded as a common
defense mechanism (Panini et al. 2016). An increase in the de-
toxification enzyme levels and/or reduction in target site sensi-
tivity are assumed to be the base of insecticide resistance
(Ffrench-Constant 1999). These detoxification enzymes belong
to members of cytochrome P450, glutathione S-transferase
(GST), UDP-glycosyltransferases (UGT), and esterase families
and help the insect to detoxify xenobiotics into non-toxic com-
pounds (Panini et al. 2016). Detoxification can be divided into
three phases. During phase I, enzymes introduce reactive and
polar groups into their substrates through oxidation, hydrolysis,
or reduction. Following phase I, the activated metabolites are
conjugated with compounds such as glutathione, sulfate, or
glucuronate in phase II reactions. Finally, a variety of ATP-
binding cassette transporters inMalpighian tubules are involved
in the removal of the products generated in phase I and phase II
reactions (van Leeuwen and Vermeire 2007).

To control insecticide resistance, the use of metabolic in-
hibitors (synergists) is considered as an important tool (Raffa
and Priester 1985). The synergists are mixed with insecticide
to enhance the toxicity of that particular insecticide at doses
that normally are not toxic to an organism (Matsumura 2012).
Piperonyl butoxide (PBO), diethyl maleate (DEM), and
triphenyl phosphate (TPP) are the most widely used synergists
and inhibit enzymatic system of P450, GST, and esterases,
respectively (Scott 1991).

Several cases documented the metabolic resistance to
fipronil, another GABA-gated chloride channel-blocking in-
secticide. A laboratoryChilo suppressalis strain showed 45.3-
fold resistance to fipronil, and PBO, TPP, and DEF showed
7.55-, 1.93-, and 2.91-fold synergistic ratios to fipronil.
Esterase activity in the resistant strainwas1.89-foldhigher than
that in susceptible strain (Li et al. 2007). In a field Sogatella
furcifera strain 50.5-fold resistant to fipronil, TPP showed syn-
ergism on fipronil and esterase activity was greatly increased
(Tang et al. 2010). Similarly, in Apanteles plutellae, obvious
synergisms of PBO and TPP were observed on fipronil (Wu
2004). Inhibitor synergism and/or biochemical analysis in the
above three cases imply that Ests confermetabolic resistance to
fipronil.As forCyps, in thewestern corn rootworm(Diabrotica
virgifera virgifera, LeConte), fipronil is oxidatively converted

to fipronil-sulfone by CYP (Scharf et al. 2000). In the German
cockroach,Blattella germanica (L.), the prolonged exposure to
baits containing fipronil increased physiological resistance to
this compound. Fipronil exposure also increased cross-
resistance to indoxacarb (Liang et al. 2017).

In the present study, the toxicity effects of three enzyme
inhibitors (PBO, DEM, and TPP) and dietary butene-fipronil
alone and in combination were tested to evaluate the involve-
ment of these enzymes in butene-fipronil metabolism in
Drosophila melanogaster larvae and adults. Furthermore,
the expression of a set of CYP and Est genes was also mea-
sured after butene-fipronil exposure to D. melanogaster.

Materials and methods

Insect

Thewild-typeCanton-S strains of theDrosophila melanogaster
larvae and adult flies were used in the experiments. The larvae
were reared on the agar-based conventional diet having agar
(0.7%), yeast 2%, cornmeal (5%), and molasses sucrose
(10.5%) under managed temperature (25 ± 1 °C) and humidity
(about 50%) and a photoperiod (12 h light/12 h dark) as per the
method adopted byWang et al. (2012, 2013a).

Chemicals

Butene-fipronil was purchased from Shenzhen Noposion
Agrochemicals Co., Ltd. DEM, PBO, TPP, and acetone were
procured from Shanghai Chemical Reagent (Shanghai,
China), Sigma Chemical Co. (St. Louis, MO), Beijing
Chemical Reagent (Beijing, China), and Nanjing Chemical
Reagent Co., Ltd. (Nanjing, China), respectively. The purity
levels of all of these were claimed to be 99%. Pureness of
butane-fipronil was verified through injection into a Hewlett
Packard 5988A gas chromatograph with a FID fitted, a split/
splitless injector, and a fused silica capillary column (DB-
35 ms, 30 m × 0.25 mm i.d., film thickness 0.25 mm, J&W
Scientific, Folsom, CA), at a temperature of 200 °C in column
and of 250 °C in vaporizing chamber and in detector.

All the chemicals used in the experiments were of analyt-
ical grade and were kept in a refrigerator (maintained at 4 °C)
between the experimental sessions.

Bioassays

For the larvae, amethod describedpreviously (Wang et al. 2012)
was used to determine toxicities of butene-fipronil and the three
inhibitors (PBO, DEM, and TPP) individually and in binary
combinations to the larvae. The butene-fipronil, the individual
three inhibitors (DEM,TPP, andPBO), and their binarymixtures
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were dissolved and further diluted in a serializedmanner in order
to get several solutions of variable concentrations.

An aliquot of 200 μL for test solutions (treatment) was
mixed with 10 g of hot conventional artificial diet to prepare
at least four to six toxic artificial diets within a mortality range
of around 0–100% based on preliminary assays. The concen-
tration range for the butene-fipronil was maintained from
0.01–10.00 mg of a.i. per 1 g of the diet. A negative control
in the form of ddH2O or acetone was maintained during the
bioassay experiments.

A total of 30 4-day-old second-instar larvaewere put in a vial
(having length into diameter dimensions of 12 × 3 cm) having
10 g mixture of insecticide and diet or insecticide and ddH2O
controlled food, further sealed with the cotton plug. The three
replicates having 90 second-instar larvae were kept at 25 °C, till
the appearance of the adults, and the dead individuals (mortality)
were noted after the adult emergence or eclosion.

Toxicities of the butene-fipronil and the three inhibitors
(DEM, PBP, and TPP) in isolation and combination as binary
mixtures were determined as described byWang et al. (2013a).

Butene-fipronil, the three inhibitors (PBO, DEM, and
TPP), and their binary mixtures were dissolved in and serially
diluted twofold with acetone to obtain several concentrations.
The concentrations 0.07, 0.05, and 0.03 mg/g for TPP, DEM,
and PBO and 1.6000, 0.032, 0.0640, 0.0128, and 0.0025mg/g
for butene-fipronil were used in the experiments (Table 2). An
aliquot of 200 μL of test solution (treatment) was mixed with
10 g of hot conventional artificial diet to prepare at least four
toxic artificial diets within a mortality range of approximately
0–100% based on preliminary assays.

Negative control (acetone)was employed in all the bioassay
trials. Thirty emerged adults were kept in the rearing vial (hav-
ing length into diameter dimensions of 12 × 3 cm) having the
diet (standard agar-based diet consisting of cornmeal-sucrose-
yeast) for a period of 4 days. After the given period, these 90
adults were shifted into three vials, containing the uniform
amount of the toxic diet media and the control in the form of
the acetone control diet. The emerged flieswere reared on stan-
dard environmental conditions and after rearing on toxic diet,
mortalities were recorded for 24, 48, 72, and 96 h.

The mortalities of the control diet-fed larvae were less than
10%. The correction was done with the help of Abbott’s for-
mula (Abbott 1925). Probit analysis was utilized for calculat-
ing the 50% mortality (LC50), their fiducial limits, and the
slope of the line relating probit mortality to the log dose by
POLO Plus logit probit software (LeOra Software Company,
Petaluma, CA, USA).

For the synergistic effects of the inhibitors, DEM, TPP, and
PBOweredissolved in thesolvent, acetone.Due to the individual
toxic effects of the enzyme inhibitors on thebiologyof immature
andmature stages ofD. melanogaster, the combinatorial effects
could either be synergistic (greater than expected additive effect)
or antagonistic (less thanexpectedadditiveeffector summation).

The synergism/antagonism obtained from individual and
binary mixtures was evaluated using the co-toxicity index
method (Wang et al. 2015). When a summation is found in
the mixture of butene-fipronil and the enzyme inhibitor, the
lethal dose of the given mixture is as expected and co-toxicity
index equals 100.

When the synergistic effect is found in the mixture of
butene-fipronil and the enzyme inhibitor, the lethal dose is
as expected with the co-toxicity index exceeding 100.
Similarly, in the case of antagonistic effects, the toxicity of
the mixture will be higher with the co-toxicity index being
less than 100.

RNA isolation and cDNA synthesis

The immature (second-instar larvae) and the mature (adult
flies) were exposed to the butene-fipronil at the levels of
0.084 and 0.105 μg/g diet, respectively, for 2 days, which
equals the LC50 values. The samples of Drosophila
melanogaster were collected from each treatment including
control and then immediately frozen by liquid nitrogen, to
prepare for RNA extraction.

Using the homogenization of the larval stage in the
TrizolTM reagent (Invitrogen, Carlsbad, CA), the total RNA
was extracted as per the instructions provided by the manu-
facturer. This total RNA was further treated with the RNase
free DNase I (Ambion, Austin, TX) in order to eliminate trace
amounts of the chromosomal DNA present in the sample. The
amount and purity of the RNA were accessed utilizing the
Nanodrop ND-1000 spectrophotometer (Nanodrop
Technologies, Rockland, DE). First-strand cDNA of each
sample was synthesized from 1 μg of total RNA template
using Moloney Murine Leukemia Virus reverse transcriptase
(Takara, Bio Inc., Shiga, Japan) and an Oligo (dT) 18 primer.
All the experiments were replicated three times.

Quantitative real-time polymerase chain reaction

A total of 11 genes were evaluated inD. melanogaster larvae.
Among these 11 genes, 10 were CYP genes, namely CYP9F2,
CYP4D2, CYP318a1, CYP4E2, CYP28A5, CYP303A1,
CYP 4AA1, CYP305A1, CYP304A1, and CYP6W1. The
remaining one was Est-7.

qPCR was utilized to estimate the mRNA abundance of
these genes in each of the available templates, using house-
keeping genes RPL11 and RPL32 as internal control for nor-
malization (Shakeel et al. 2017b). Online tool of the primer
designing, Primer Quest of Integrated DNA technologies Co.
Ltd. (http//www.idtdna.com/Scitools/Applications/Primer
quest/; Table 1), was used.

qPCR was performed using SYBR Premix Ex TaqTM
(Perfect Real Time; Takara Co., Otsu, Japan) and ABI 7300
Real-Time PCR System (Applied Biosystems, Foster City,
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CA), according to the manufacturer’s instruction. Each 20 μL
qPCR reaction contained 10 μL of SYBR Premix Ex TaqTM
(containing TaKaRa Ex TaqTM HS, dNTP Mixture, Mg2+,
SYBR Green I), 0.4 μL of forward primer (10 μM), 0.4 μL of
reverse primer (10 μM), 0.4 μL of Rox Reference Dye (50×),
2μL of cDNA (0.9 ng), and 6.8μL of double-distilled water.

The inclusion of no template control was done to evaluate the
presence of any possible contamination. The PCR protocol in-
cludedthedenaturationat95°Cwhichcontinuedfor30s,follow-
ed by 40 cycles of 95 and 60 °C for 5 and 31 s, respectively.

Following the amplification ofDNA, heating of the sample up
to95°Cfor15swasdonetodetermine themeltingcurves, follow-
ed by cooling down to 60 °C for 15 s, and heating the samples to
95 °C for 15 s. To confirm the PCR products’ purity, the amplifi-
cation cycling parameters were set as 95 °C for 30 s, 40 cycles of
95°Cfor5s,and55°Cfor10swithadissociationcurvegenerated
from 65 to 95 °C (Shakeel et al. 2015). Gel electrophoresis was
done to confirm the production of the specific PCR products.
Primer pair efficiency was calculated by testing primer pair with
logarithmicdilutionof cDNAmixture andgenerationof the linear

standard curve (crossing point plotted vs. log of template concen-
tration).Eachsamplewastriplicated.Analysisofdatawasdoneby
utilizing2−ΔΔCtmethodasgivenbyPfaffl (2001), by theuseof the
geometric mean of two selected housekeeping genes RPL11 and
RPL32 for normalization according to the previously described
strategy (Pfaffl 2001; Vandesompele et al. 2002). The data were
expressed as means ± SE. The difference of CYP activities was
subjected to one-way ANOVA and followed by the Tukey–
Kramer test for multiple comparisons using SPSS for Windows
(SPSS, Chicago, IL). In all statistical analyses, a p value less than
0.05was considered statistically significant.

Results

Synergistic effects of butene-fipronil on larvae
of Drosophila melanogaster

D. melanogaster second-instar larvae were exposed to di-
etary butene-fipronil and the three enzyme inhibitors

Table 1 The primer sequences of selected cyps and the internal control genes in D. melanogaster used in qPCR

Gene names Flybase ID Sense primers Antisense primers

Cyp303a1 CG4163 GGGCTTCTGTTTCATGCACTTGGT TGATAGCCTCGCAATAGGGCAACT

Cyp304a1 CG7241 TCATCCAGGAGCAGTTGAACGACA TGGCCGAGAAGGGATTAAAGAGCA

Cyp305a1 CG8733 TGGCCGAGAAGGGATTAAAGAGCA TGGATGAGATTGTAGCCAGTGCGA

Cyp28A5 CG8864 TCCACGACAATGAGATCGCCAAGA TTCTCCACCCACTCGGTCAACTTT

CYP6w1 CG8345 ACATGGACGCATACATGCCGTTTG TTTGAGGCCATAACCGGGCTAGTT

Cyp9 f2 CG11466 AGCACTCTGAGTCCGGCATTTACA TCGAGGCGATCACATCATTGGTGA

CYP4aa1 CG8302 AAAGAGGTCAGGATGTGGCCATGA TTTGCGTGTGAAGTCATTGAGGCG

Cyp4d2 CG3466 GGCGTGAAACGCTGGTTAACAACT TCGTGTCATGGCCCTCGAACATAA

CYP4e2 CG2060 AGGAGCAACGCGAAGTAATGGGTA AATCGTCCAATGAAAGGCACGCTG

CYP318a1 CG1786 GGCACTCCAACCAATTTCACCCAA ACGAAATCCTCCAGCAATTTGGCG

α-est-7 CG17148 ACGACAAGGATGTGCTGGAGTTCT GGGATGGGCCAAAGGCAAACATTA

RPL-32 CG7939 AAGAAGCGCACCAAGCACTTCATC ACGCACTCTGTTGTCGATACCCTT

RPL-11 CG7726 AGGAACACATCGATCTGGGCATCA ACTTCATGGCATCCTCCTTGGTGA

Table 2 Toxicity of butene-
fipronil and three enzyme
inhibitors alone and in a binary
mixture to D. melanogaster
larvae exposed during second
instar through adult eclosion

Insecticide N Slope (± SE) LC50 (μg/g) (95%CL) Co-toxicity index

TPP 450 2.80 (± 0.01) 70.1 (51.3–92.2)

PBO 450 1.43 (± 0.12) 151.2 (41.1–550.0)

DEM 450 1.89 (± 0.05) 120.4 (52.0–290.1)

Butene-fipronil 450 1.50 (± 0.08) 0.06 (0.05–0.08)

TPP + butene-fipronil 450 1.04 (± 0.01) 1.41 (0.41–2.74) 335.0

DEM + butene-fipronil 450 1.10 (± 0.07) 2.31 (1.03–3.15) 210.3

PBO + butene-fipronil 450 1.84 (± 0.11) 1.12 (0.34–2.43) 437.3

Triphenyl phosphate (TPP), diethylmaleate (DEM), and piperonyl butoxide (PBO) at the concentration of LC50

were mixed with butene-fipronil (at the concentration of LC50) at a volume ratio of 100:1. The concentrations
0.07, 0.05, and 0.03 for TPP, DEM, and PBO and 1.6000, 0.032, 0.0640, 0.0128, and 0.0025 mg/g for butene-
fipronil were used in experiments
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(PBO, TPP, and DEM). The mortalities were recorded
after adult eclosion. When used alone, the LC50 value
for butene-fipronil was 0.06 μg/g, whereas LC50 values
for PBO, TPP, and DEM were 151.2, 70.1, and 120.4 μg/
g, respectively (Table 2). Although the toxicity of butene-
fipronil was observed to be higher than that of each of the
three enzyme inhibitors, the inhibitors also exhibited ob-
vious toxic effects to the second-instar larvae.

Furthermore, co-toxicity index was used to evaluate the
synergistic effects of the three enzyme inhibitors to bu-
tene-fipronil. LC50 values for butene-fipronil + PBO,
butene-fipronil + TPP, and butene-fipronil + DEM mix-
tures were 1.12, 1.41, and 2.31 μg/g, respectively. The co-
toxicity indices of three mixtures were 437.3, 335.0, and
210.3, respectively. All the indices were higher than 100,
indicating synergistic effects (Table 2).

Synergistic effects of butene-fipronil on the adults
of Drosophila melanogaster

The D. melanogaster adults were exposed to dietary bu-
tene-fipronil, PBO, TPP, and DEM, respectively. The
mortalities were recorded 96 h after exposure. When used
alone, the LC50 value for butene-fipronil was 1.05 μg/g,
whereas LC50 values for PBO, TPP, and DEM were
368.4, 180.2, and 138.4 μg/g, respectively (Table 3).
Although the toxicity of butene-fipronil was observed to
be higher than that of each of the three enzyme inhibitors,
the inhibitors also exhibited obvious toxic effects to the
second-instar larvae.

Furthermore, co-toxicity index was used to evaluate the
synergistic effects of the three enzyme inhibitors to bu-
tene-fipronil. LC50 values for butene-fipronil + PBO,
butene-fipronil + TPP, and butene-fipronil + DEM mix-
tures were 8.41, 5.88, and 6.17 μg/g, respectively. The co-
toxicity indices of three mixtures were 186.6, 256.2, and
238.5, respectively. All the indices were higher than 100,
indicating synergistic effects (Table 3).

Butene-fipronil-inducible Cyp genes in larvae
of D. melanogaster

A total of 10 representative CYP genes, CYP4AA1, CYP4D2,
CYP4E2, CYP6W1, and CYP9F2, CYP28A5, CYP303A1,
CYP304A1, CYP305A1, and CYP318A1, were selected
and their expression levels in control and butene-fipronil-
treated larvae were measured by qPCR (Fig. 1).

At the concentrations of 0.084 μg/g diet, butene-fipronil
increased the CYP28A5 mRNA level, with the relative ex-
pression level more than 2.0.Moreover, butene-fipronil slight-
ly enhanced (1.5–2-fold) the expression of CYP4E2,
CYP303A1, CYP304A1, CYP305A1, and CYP6W1 (Fig. 1).

Butene-fipronil-inducible Cyp genes in the adults
of D. melanogaster

The expression levels of the same 10 representativeCyp genes
including CYP4AA1, CYP4D2, CYP4E2, CYP6W1,
CYP9F2, CYP28A5, CYP303A1, CYP304A1, CYP305A1,
and CYP318A1 were measured in the male and female adults
ofD. melanogaster (Fig. 2). At the concentration of 1.03 μg/g
diet, butene-fipronil increased the expression level of
CYP18A1 up to 8-fold. Furthermore, the expression of
CYP9F2, CYP304A1, CYP28A5, and CYP318A1 was also
increased up to 2-fold by butene-fipronil (Fig. 2).

For the male adults, butene-fipronil at the concentrations of
1.03 μg/g diet increased the expression level of CYP303A1
and CYP28A5 more than 2-fold. Moreover, butene-fipronil
slightly enhanced (1.5–2-fold) the expression of CYP4D2,
CYP9F2, CYP304A1, and CYP6W1 (Fig. 3).

Butene-fipronil induced Est-7 expression

The expression level of the representative esterase gene Est-7
was estimated by qPCR in the second-instar larvae and male
and female adults of D. melanogaster (Fig. 4). The results
indicated that butene-fipronil slightly increased (1.3-fold) the
expression level of Est-7 at the concentration of 0.084 μg/g in

Table 3 Toxicity of butene-
fipronil and three enzyme
inhibitors alone and in a binary
mixture toD.melanogaster adults

Insecticide N Slope (± SE) LC50 (μg/g) (95%CL) Co-toxicity index

TPP 450 1.41 (± 0.12) 180.2 (42.3–450.1)

PBO 450 2.88 (± 0.09) 368.4 (77.4–387.6)

DEM 450 2.01 (± 0.15) 138.4 (50.1–371.4)

Butene-fipronil 450 1.50 (± 0.01) 1.05 (0.45–2.58)

TPP + butene-fipronil 450 2.13 (± 0.21) 5.88 (2.47–9.13) 256.2

DEM + butene-fipronil 450 1.10 (± 0.01) 6.17 (2.84–9.77) 238.5

PBO + butene-fipronil 450 1.84 (± 0.01) 8.41(3.53–12.58) 186.6

Triphenyl phosphate (TPP), diethylmaleate (DEM), and piperonyl butoxide (PBO) at the concentration of LC50

were mixed with butene-fipronil (at the concentration of LC50) at a volume ratio of 100:1
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the second-instar larvae. Whereas, the expression of Est-7was
enhanced up to 2.2-fold at the concentrations of 1.03 μg/g in
the male adults and up to 4.8-fold in the female adults (Fig. 4).

Discussion

In our previous studies, we found that butene-fipronil was
more toxic to larvae than to the adults, with the ratios of

Fig. 2 The relative expression levels of representative Cyp genes induced
by butene-fipronil in the female adults of D. melanogaster. For each
sample, three independent pools of 5–30 individuals were measured in
technical triplicate using qPCR. The relative copy numbers of Cyps were
calculated according to the 2−ΔΔCt method, using the geometric mean of
the internal control genes for normalization. The relative expression
levels were the ratios of relative copy numbers in individuals of butene-
fipronil treated to that in control. The columns represent averages with
vertical lines indicating SE (*sig at p = 0.05)

Fig. 1 The relative expression levels of representative Cyp genes induced
by butene-fipronil in the second-instar larvae of D. melanogaster. For
each sample, three independent pools of 5–30 individuals were
measured in technical triplicate using qPCR. The relative copy numbers
of Cyps were calculated according to the 2−ΔΔCt method, using the
geometric mean of the internal control genes for normalization. The
relative expression levels were the ratios of relative copy numbers in
individuals of butene-fipronil treated to that in control. The columns
represent averages with vertical lines indicating SE (*sig at p = 0.05)

Fig. 3 The relative expression levels of representative Cyp genes induced
by butene-fipronil in the male adults of D. melanogaster. For each
sample, three independent pools of 5–30 individuals were measured in
technical triplicate using qPCR. The relative copy numbers of Cyps were
calculated according to the 2−ΔΔCt method, using the geometric mean of
the internal control genes for normalization. The relative expression
levels were the ratios of relative copy numbers in individuals of butene-
fipronil treated to that in control. The columns represent averages with
vertical lines indicating SE (*sig at p = 0.05)

Fig. 4 The relative expression level of Est-7 induced by butene-fipronil
in the larvae and male and female adults of D. melanogaster. For each
sample, three independent pools of 5–30 individuals were measured in
technical triplicate using qPCR. The relative copy numbers of Est-7 were
calculated according to the 2−ΔΔCt method, using the geometric mean of
the internal control genes for normalization. The relative expression
levels were the ratios of relative copy numbers in individuals of butene-
fipronil treated to that in control. The columns represent averages with
vertical lines indicating SE (*sig at p = 0.05)
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LC50 values for adults to corresponding LC50 values for larvae
being 16 and 45, respectively (Arain et al. 2014). Both larvae
and adults can detoxify butene-fipronil by several types of
enzymes. Among these enzymes are GSTs, esterases, and cy-
tochrome P450 monooxygenases. Therefore, we hypothe-
sized that there may be a difference in detoxification abilities
of larvae and the adults.

In the present study, three enzyme inhibitors were selected to
test synergistic effects on butene-fipronil. Among them,
diethylmeleate (DEM)and triphenylphosphate (TPP)are specif-
ic inhibitors of GST and esterases, respectively, whereas
piperonylbutoxide (PBO) has the ability to inhibit both cyto-
chrome P450 monooxygenases and esterases (Moores et al.
2009). Our results showed that LC50 values for PBO, TPP, and
DEMwere 151.2, 70.1, and120.4μg/, respectively, to the larvae
and368.4, 180.2, and138.4μg/g, respectively, to the adults.Our
results are consistent with those of our previous study that re-
vealed that the LC50 values for PBO, TPP, and DEMwere 0.15,
0.05, and0.16mg/g toD.melanogaster larvae (Wangetal.2012)
and 0.370, 0.179, and 0.140 mg/g to D. melanogaster adults
when exposed to methanol (Wang et al. 2013a). These results
indicate that the three inhibitors exhibited obvious toxic effects
to larvae and the adults ofD. melanogaster.

Thus, the co-toxicity index was used to evaluate the syner-
gistic effects of the three enzyme inhibitors to butene-fipronil.
The co-toxicity indices of butene-fipronil + PBO, butene-
fipronil + TPP, and butene-fipronil + DEM mixtures were
437.3, 335.0, and 210.3, respectively, in the second-instar lar-
vae, and 186.6, 256.2, and 238.5, respectively, in the adults.
All the indices were higher than 100, indicating synergistic
effects. These data indicated that cytochrome P450
monooxygenases, esterases, and GST may be involved in
the detoxification of butene-fipronil and may be a potential
mechanism of resistance to butene-fipronil.

In D. melanogaster, 90 CYPs were identified (Feyereisen
2011). These CYPs fall into CYP2, CYP3, andCYP4 andmito-
chondrial clades and are known to redundantly catalyze an ex-
tremely diverse range of chemical reactions important in foreign
compounddetoxification (Feyereisen2005).CytochromeP450s
form a diverse and vital gene superfamily present in almost all
organisms. In both plants andmammals, some P450s are known
to carry out reactions essential for processes such as hormone
synthesis,while others are involved in the detoxification of envi-
ronmentalcompounds.Moreover, inD.melanogaster,P450sare
involved inbehavioral phenotypes andCPY6A20are associated
with aggressive behavior in males (Dierick and Greenspan
2006).Comparedtotheplantsandmammals,muchless isknown
about the functions of the different insect P450 enzymes. One
exception is the involvement of P450s in the biosynthesis of the
major insect hormone 20-hydroxyecdysone (20H) from plant
sterols, where in Drosophila melanogaster at least six P450s
are involved (Gilbert 2004). Characterizing the Drosophila
melanogaster P450 expression patterns in embryos and two

stagesof third-instar larvaeadditionallyalso identifiednumerous
P450s expressed in the fat body,Malpighian (renal) tubules, and
in distinct regions of the midgut, consistent with hypothesized
roles in detoxification processes, and other P450s expressed in
organs such as the gonads, corpora allata, oenocytes, hindgut,
and brain (Chung et al. 2009). In the present study, a subset of
10 CYP genes was selected to examine their inducibility by bu-
tene-fipronil. Our results showed that several CYP genes were
upregulated after ingestion of butene-fipronil by the larvae and
the adults. In the larvae, butene-fipronil increased CYP28A5
expression level. In the females, butene-fipronil enhanced the
expression of CYP9F2, CYP304A1, CYP28A5, and
CYP318A1. In the male adults, butene-fipronil increased
CYP303A1 and CYP28A5 expression levels. Interestingly,
CYP28A5 was the common gene showing upregulated expres-
sion in the larvae and themale and female adults.CYP28A5was
induced by phenobarbital in both sexes and by atrazine in males
ofD.melanogaster (LeGoff et al. 2006;Willoughbyet al. 2006).
However,whetherCYP28A5 is involved in thedetoxification of
butene-fipronil needs further experimental evidence to confirm.

In D. melanogaster, α-EST7 is one of the evolutionary an-
cient members, which predicts important physiological function.
α-EST7 structural mutation leads to the increased hydrolase ac-
tivity to organophosphate pesticides and causes the insecticide
resistances in several higher dipteran species including the house-
fly Musca domestica (Claudianos et al. 1999), the blowfly
Lucilia cuprina (Newcomb et al. 1997), and D. melanogaster
strains (Wilson 2001). Our results indicated that the expression
ofEst-7was slightly increased in the second-instar larvae, where-
as it was increased up to 2-fold in the male adults, and up to 4-
fold in the female adults. Our results suggest that Est-7 is a
candidate esterase to detoxify butene-fipronil inD.melanogaster.

In conclusion, our results suggest that the detoxificationme-
tabolism to butene-fipronil was not much stronger in the adults
than that in the larvae. Thus, detoxification by GST, esterases,
UDP-glycosyltransferases (UGT), and cytochrome P450
monooxygenaseswas not responsible for the difference in tox-
icity between the larvae and the adults ofD. melanogaster.
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