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Abstract Effect of mechanical scouring driven by granular
activated carbon (GAC) fluidization on membrane fouling
was investigated using a laboratory-scaled, fluidized mem-
brane reactor filtering the effluent from anaerobic fluidized
bed bioreactor (AFBR) in domestic wastewater treatment.
The GAC particles were fluidized by recirculating a bulk
solution only through the membrane reactor to control
membrane fouling. The membrane fouling was compared
with two different feed solutions, effluent taken from a
pilot-scaled, AFBR treating domestic wastewater and its
filtrate through 0.1-μm membrane pore size. The GAC
fluidization driven by bulk recirculation through the mem-
brane reactor was very effective to reduce membrane foul-
ing. Membrane scouring under GAC fluidization decreased
reversible fouling resistance effectively. Fouling mitigation
was more pronounced with bigger GAC particles than
smaller ones as fluidized media. Regardless of the fluid-
ized GAC sizes, however, there was limited effect on con-
trolling irreversible fouling caused by colloidal materials
which is smaller than 0.1 μm. In addition, the deposit of
GAC particles that ranged from 180 to 500 μm in size on
membrane surface was very significant and accelerated
fouling rate. Biopolymers rejected by the membranes were

thought to play a role as binding these small GAC particles
on membrane surface strongly.
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Introduction

Anaerobic membrane bioreactor (AnMBR) is aMBR technol-
ogy being found immense potential for various industrial
wastewater treatment applications due to its distinct advan-
tages over conventional aerobic MBR technologies (Liao
et al. 2006; Lin et al. 2012). The AnMBRs have been tested
specifically with synthetic, food processing, chemical, pulp
and paper, textile, pharmaceutical, petroleum, and wastewa-
ters with high solid contents at laboratory-, pilot-, and full-
scaled operation of them (Liao et al. 2006; Lin et al. 2012).
Recently, the applications of AnMBRs have been extended for
domestic wastewater treatment, mainly owing to energy re-
covery in the form ofmethane and less production of biosolids
(Ghauri et al. 2011; Ozgun et al. 2013; Smith et al. 2012).
With the AnMBR treating domestic wastewater, membrane
can retain biomass completely, producing high effluent
(permeate) quality at long solid retention time (SRT) under
relatively short hydraulic retention time (HRT) (Charfi et al.
2012; Meng et al. 2017; Skouteris et al. 2012; Stuckey 2012).
However, membrane fouling caused by deposition of foulant
materials present in the wastewater on membrane surface and/
or within membrane pore matrix should be still main hurdle to
be resolved (Ahmad et al. 2016; Aslam et al. 2015; Díaz et al.
2016; Hu et al., 2012; Yu et al. 2017).
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Biogas sparging along membrane surface has been widely
applied to reduce membrane fouling within the AnMBR sys-
tem (Aslan et al. 2014). However, biogas sparging to reduce
concentration polarization layer or cake layer from the mem-
brane requires much energy consumption ranging from 0.7 to
3.4 kWh/m3 (Aslam et al. 2017a; Le-Clech et al. 2006; Meng
et al. 2009; Wang et al. 2014), which is even higher than the
energy required by aerobic MBR system (0.5–1.0 kWh/m3)
(Krzeminski et al. 2012; Martin et al. 2011). Recently, gas
sparging is often combined with suspended carriers to reduce
energy cost in fouling control (Alresheedi and Basu 2014; Ng
et al. 2013; Huang et al. 2008; Jin et al. 2013; Nguyen et al.
2016; Pradhan et al. 2012). Movement of suspended carriers
under the biogas sparging can reduce fouling at relatively
lower gas flow rate than one at gas sparging only (Kim et al.
2014; Lee et al. 2006; Meier 2010; Rosenberger et al. 2011;
Shim et al. 2015; Yang et al. 2006; Krause et al. 2010).
Nevertheless, the biogas sparging still accounts for up to about
70% of total energy in AnMBR operation (Aslam et al. 2017b;
Kurita et al. 2015;Martin et al. 2011; Seib et al. 2016; Verrecht
et al. 2010).

Kim et al. (2011) developed new approach to control foul-
ing with anaerobic fluidized bed membrane bioreactor
(AFMBR). The AFMBR is to combine anaerobic fluidized
bioreactor (AFBR) with submerged membrane filtration.
Herein, granular activated carbon (GAC) particles are fluid-
ized along membrane surface by recirculating a bulk suspen-
sion only through membrane reactor (Aslam et al. 2014; Shin
et al. 2014; Wang et al. 2016; Ye et al. 2016). The GAC
particles can provide high surface area for biofilm formation
and scouring effect to reduce membrane fouling. Without bio-
gas sparging, energy consumption required to fluidize GAC
particles can be reduced significantly (less than 0.1 kWh/m3)
(Kim et al. 2011; Chaiprapat et al. 2016). Aslam et al. (2014)
found that GAC fluidization reduced membrane fouling by
adsorption of foulants and by the scouring action of GACs
on membrane. However, after sorption capacity was dimin-
ished, then membrane scouring dominated (Aslam et al.
2017c; Lee et al. 2014; Remy et al. 2010; Wu et al. 2014).

While GAC fluidization is proven as an energy-
efficient fouling mitigation way, the extent to which mem-
brane fouling is understood can vary greatly depending
upon the nature of the foulants and sizes of GAC parti-
cles. The objective of this study was to investigate mem-
brane fouling with a laboratory-scale, fluidized membrane
reactor to simulate AFMBR system with respect to the
GAC sizes and feed solution which is effluent produced
by AFBR. In spite of many advantages in fouling control,
individual and collective behavior as membrane foulant
and GAC fluidization is not well known through mem-
brane scrubbing action. A better understanding of these
effects will lead to improvements in the design and oper-
ation of the fluidized bed membrane bioreactor.

Materials and methods

Reactor configuration and operation

Figure 1 is a schematic of the experimental setup of a fluidized
membrane reactor developed to observe fouling behavior un-
der GAC fluidization. The fluidized membrane reactor was
fabricated by using transparent acrylic column with 50 cm
long by 2.5 cm diameter (effective volume 0.245 L). Two
settlers were installed at top of the reactor to catch carryover
the GAC particles as fluidized media. Each of the two joined
settlers at the top of the reactor consisted of 10-cm-long × 7.5-
cm-d iame te r tube (e f f ec t ive vo lume 0 .442 L) .
Polyvinylidenefluoride (PVDF) hollow-fiber membranes with
nominal pore size of 0.03 μmwere submerged in the fluidized
membrane reactor. Each fiber had 2.1 mm in outside diameter
and 0.41 m long, resulting in an effective total membrane
surface area of 0.0054 m2. Prior to using the membranes, they
were first soaked into 1000 ppm sodium hypochlorite solution
for 12 h at room temperature followed by washing it with
deionized water. The fibers were then soaked again into
2000 ppm citric acid solution for another 12 h to remove
glycerol coatingmaterials and maintainmembrane wettability.
The bulk suspension in the membrane reactor was recirculated
by using a magnetic pump (Pan World magnetic pump, NH-
100PX-Z, Korea) and a flow rate controller (Blue-White,
F-450) to fluidize the GAC particles to cover the whole length
of the hollow-fiber membranes. The membrane reactor was
fed continuously by the effluent obtained from the pilot-scale,
AFBR operated at domestic sewage plant. Filtrate of the ef-
fluent through 0.1-μm pore size of membrane was also tested
as feed solution. The AFBR effluent was collected every week
and stored in a refrigerator at 4 °C. All experimental works
were performed at room temperature. General characteristics
of AFBR effluent tested for feed solution in this study are
shown in Table 1.

The feed solution was flowed into the membrane reactor by
using a peristaltic pump (Masterflex, model no. 7520-57,
USA) at a flow rate that was automatically controlled to main-
tain a constant water level. Open top sections of the hollow-
fiber membranes submerged into the membrane reactor were
connected to the peristaltic pump (Cole-Parmer, model no.
7553-85) at constant flux mode. The suction pressure required
to maintain a given constant permeate flow rate was moni-
tored with time by a vacuum pressure sensor (Cole-Parmer,
model no. EW-68604-00) connected to the permeate line to
monitor trans-membrane pressure (TMP) with filtration time
as a fouling indicator.

Fluidized media and particle size fractionation

In this study, GAC particles (MRX-M, Calgon Carbon Coro.,
Pittsburgh, USA) were used as fluidized media to control
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membrane fouling. To exclude adsorption effect caused by
GAC particles, their adsorption capacity was saturated fully
by performing the adsorption column test using the same feed
solution prior to fouling experiments. For this, the GAC par-
ticles were filled into the adsorption column reactor having
30-mm diameter and 470-mm height. The feed solution was
passed through the adsorption column continuously, and the
effluent from the column was analyzed by CODmeasurement
with time until the effluent concentration equaled the influent
concentration.

In order to investigate the effect of GAC size as fluidized
media on membrane fouling, GAC particles were fractionated
by sieves consisting of 6 × 10 and 35 × 80 meshes to classify
2000–3000 and 180–500 μm in GAC size, respectively. In
this study, a GAC packing ratio was fixed at a 50% based
upon total height of membrane reactor. The 50% of GAC
packing ratio corresponded to 70, 67, and 73 g as GAC mass

for the mixed, 180–500 and 2000–3000 μm in distribution of
GAC size, respectively. The upflow velocity required to flu-
idize each size range of GAC particle to cover the whole
length of fibers was 0.031, 0.014, and 0.041 m/s, respectively.

Analysis of membrane fouling resistance in-series

In this study, the fouling resistance was estimated by Darcy’s
law described below.

J ¼ ΔP
μRt

ð1Þ

Rt ¼ Rm þ Rr þ Rir ð2Þ
where J is the membrane permeate flux (m3/m2 s), ΔP is the
TMP (Pa), μ is the permeate viscosity (Pa s), Rt is the total
fouling resistance (m−1), Rm is the bare membrane resistance
(m−1), Rr is the reversible fouling resistance (m−1), and Rir is
the irreversible fouling resistance (m−1). The TMP values col-
lected over filtration time were used to calculate the total foul-
ing resistance, Rt. The value of Rm was measured by filtering
deionized water. After cleaning the membrane surface using a
sponge to wipe off the fouling layer from membrane, the
membrane permeability was then measured by deionized wa-
ter to estimate Rir + Rm value. As a result, the Rir could be
given by the difference between Rm and Rir + Rm and the Rr
was calculated by subtracting Rir and Rm from Rt value
subsequently.

Table 1 Mean concentrations of the AFBR effluent

Parameter Unit Mean concentration

Total organic carbon (TOC) mg/L 63 ± 4.5

Total chemical oxygen demand (TCOD) mg/L 174 ± 14

Soluble chemical oxygen demand (SCOD) mg/L 88 ± 10

Total suspended solids (TSS) mg/L 57 ± 7

Volatile suspended solids (VSS) mg/L 48 ± 7

pH – 6.92 ± 0.3

Values are given as ±standard deviation
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Fig. 1 Schematic diagram of fluidized membrane bioreactor treating effluent of pilot-scale anaerobic fluidized bed bioreactor for domestic wastewater
treatment



Fouling rate was estimated by the difference between the
initial and final fouling resistances divided by the duration of
filtration as proposed (Fan and Zhou 2007).

F ¼ Rt2−Rt1

t2−t1
ð3Þ

where Rt1 and Rt2 are the fouling resistance at filtration time of
20 min (t1) and the time required to reach 0.3 bar of TMP (t2),
respectively. The initial fouling resistance was defined here as
the fouling resistance after 20 min of filtration time to accom-
modate the effects of lag period required for the permeate pump
to establish a stable vacuum through the system. The percent-
age of fouling contribution resulting from the fraction of each
size range as fluidized media was then calculated as below:

F<0:1 μm% ¼ Ffiltrate 0:1 μmð Þ
FAFBReffluent

� 100 ð4Þ

F>0:1 μm% ¼ FAFBReffluent−Ffiltrate 0:1 μmð Þ
FAFBReffluent

� 100 ð5Þ

where FAFBR effluent and Ffiltrate(0.1 μm) are the fouling rate
caused by the AFBR effluent and by the effluent filtered
through 0.1-μm membrane, respectively. Thus, F>0.1 μm rep-
resents the contribution of the particle sizes which are larger
than 0.1 μm to membrane fouling.

Three-dimensional EEM fluorescence spectroscopy
analysis

Three dimensional excitation-emission matrix (EEM) fluores-
cence spectra were measured to characterize the foulants ex-
tracted from the fouled membranes at the end of membrane
operation. Fluorescence was measured in a 1-cm cuvette using
a fluorescence spectrophotometer (F-4500, Hitachi, Japan)
equipped with a 150-W xenon lamp at ambient temperatures
(22 ± 1 °C). The fluorescence spectrum of Milli-Q water was
subtracted from the spectra of each sample to eliminate the
inner-filtering and metal binding effects. A fluorescence spec-
trum was obtained by collecting the wavelength of both excita-
tions over a range of 230–450 nm and emission of 280–550 nm.

Liquid chromatography-organic carbon detection

Size exclusion liquid chromatography-organic carbon detec-
tion (LC-OCD; DOC-Labor Karlsruhe, Germany) analysis
was performed to characterize the molecular weight of the
soluble compounds and relative organic carbon in the AFBR
effluent, the AFBR effluent filtered through 0.1-μm mem-
brane, and the membrane permeate at the end of system oper-
ation. The LC-OCD analyzer contains a separating column in
which compounds with large molecular weight elute before
the smaller ones. The separated compounds are detected by

UV adsorption at 254 nm followed by organic carbon detec-
tion. The first peak of LC-OCD analysis at the organic carbon
detector is a biopolymer peak representing proteins, polysac-
charides, and organic colloids followed by humic substances,
building blocks, organic acids, amphiphilic, and neutral sub-
stances. The UV chromatograms show similar distribution
except for that polysaccharides are not detectable by UV light
due to the absence of the double bonds which can adsorb the
UV light (Siembida et al. 2010).

Results and discussion

GAC fluidization and membrane fouling

The TMP monitored with filtration time from the fluidized
membrane reactor developed are compared for the AFBR ef-
fluent and its filtrate through 0.1-μm membrane. Results are
shown in Fig. 2.Without GAC fluidization, the TMP value for
the AFBR effluent as feed suspension approached to 0.3 bar
within 1-day membrane operation. Prefiltration of the AFBR
effluent through 0.1-μmmembrane lowered fouling rate at the
same permeate flux of 15 L/m2 h. However, the time required
to observe a 0.3 bar as TMP value could not be extended
significantly (from 1 to 2 day of membrane operation), al-
though the filtrate of AFBR effluent was applied as feed so-
lution. This indicates that the contribution of the fine materials
smaller than 0.1 μm to membrane fouling should not be
overlooked.

The GAC fluidization along membrane surface was very
effective to reduce membrane fouling with both unfiltered and
filteredAFBR effluent as feed suspensions to themembrane. As
also shown in Fig. 2, the time scale to observe the same TMP
value of 0.3 bar was extended nearly by 11 and 3 times for the
unfiltered and filtered feed solution, respectively. After 6.5 days
of membrane operation, the TMP value for the raw (or unfil-
tered) feed solution jumped to 0.3 bar followed by gradual
increase of it. Similar behavior in TMP increase was observed
for the filtered sample by showing that TMP was jumped to
0.3 bar at 8.5-day operation. By using Eqs. 3–5, fouling contri-
butions were estimated without and with GAC fluidization. As
shown in Fig. 3, under the bulk recirculation only without
GAC particles, it was found that about 20% in membrane
fouling were contributed by the foulants smaller than
0.1 μm. However, this portion increased to about 80% under
GAC fluidization, suggesting that the GAC scouring be less
effective to remove small colloids away from the membrane.

At the end ofmembrane operation, fouling resistances were
estimated by applying the resistance in-series models of Eqs.
(1) and (2). Results are shown in Fig. 4. The reversible fouling
resistance refers herein to the fouling resistance which can be
removed by surface cleaning with a sponge and DI water as
mentioned above. The irreversible fouling resistance is
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defined here as the fouling resistance which can be eliminated
only through the membrane cleaningwith NaOH solution. For
the unfiltered feed solution, about 82% of the total fouling
resistance was reversible without GAC fluidization.
However, this reversible fouling resistance was greatly re-
duced by GAC fluidization. For the feed solution prefiltered
through 0.1-μm membrane, about 86% of total fouling resis-
tance were caused by irreversible fouling. These results indi-
cate strongly that the GAC fluidization on membrane surface
should reduce reversible fouling more effectively than irre-
versible fouling (Charfi et al. 2017). The rejection of the par-
ticulate and/or colloidal materials larger than the membrane
pore size (0.03 μm) can induce build up of the cake layer on
membrane. However, the GAC fluidization should delay cake
formation due to its scouring action on membrane (Johir et al.
2013). Recently, Wu et al. (2017) reported that presence of
GAC as scouring media reduced the cake resistance signifi-
cantly but increased the irreversible fouling resistance. In an-
other study, Kurita et al. (2014) applied polyethylene glycol
granules as scouring media under gas sparging. They found
that reversible fouling was entirely controlled by mechanical

cleaning with scouring agent, but irreversible fouling was in-
creased by cake layer elimination.

Characterizations of membrane fouling

In order to investigate dominant foulant materials on mem-
brane surface after GAC fluidization, the fluorescent
excitation-emission matrix (FEEM) analysis was performed
using the foulant materials extracted from the usedmembrane.
The foulants were extracted by soaking the fouled membranes
into a NaOH solution for 1 day at the ambient temperature
followed by ultra-sonification during 10min. Results are dem-
onstrated in Fig. 5. For the membranes taken from the mem-
brane reactor without GAC fluidization, four distinct peaks
were observed with both unfiltered and filtered feed solutions
to membrane. In Fig. 5, first large peak detected at the
excitation/emission (Ex/Em) wavelength of 200–250/280–
330 nm represents to the simple aromatic proteins such as
tyrosine, which is indicated as A. The second and third peaks
at the 250–340/280–380 nm (B) and 250–350/410–435 nm (C)
are associated with the tryptophan proteins and natural dis-
solved organic matter described as the fluorescence of visible
humic acid-like substances, respectively. The fourth peak locat-
ed around the Ex/Em of 240–260/390–470 nm (D) indicates
fulvic-like substances (Chen et al. 2003). For the membranes
exposed to the GAC particles, two additional peaks E and F
were identified at 290/360 and 290/420 nm, corresponding to
the peptides and tryptophan proteins and humic-like sub-
stances, respectively (Chen et al. 2003). The location of peak
E (peptides and tryptophan-like) and peak F (humic-like) under
GAC fluidization demonstrated a shift of fluorescence wave-
length compared to that without GAC. This result indicates that
large organic molecules should be broken into small fragments
(Swietlik et al. 2004). The relative fluorescence intensities of
the protein-like substances including tyrosine-like and trypto-
phan-like, humic and fulvic-like substances as foulant attrib-
uted to 57–70, 18–32, and 11–15%, respectively. The FEEM
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Fig. 4 Contributions of reversible and irreversible filtration resistances of
the fouled membranes (set-point permeate flux 15 L/m2h, spent mixed
GAC packing ratio 50%, recirculation flow rate w/o GAC 3 L/min and
with GAC 0.9 L/min)

Fig. 2 TMP profiles for AFBR effluent and filtrate solution of 0.1-μm
membrane (set-point permeate flux 15 L/m2h, spent mixed GAC packing
ratio 50%, recirculation flow rate w/o GAC 3 L/min and with GAC 0.9 L/
min)

Fig. 3 Contributions of foulant particle size on membrane fouling with
and without GAC fluidization (set-point permeate flux 15 L/m2h, spent
mixed GAC packing ratio 50%, recirculation flow rate w/o GAC 3 L/min
and with GAC 0.9 L/min)



spectrum analysis suggests that the protein-like substances are
most dominant foulant material for both unfiltered and filtered
AFBR effluents as feed solution to membrane. As also ob-
served in Fig. 5, a protein fraction is found to be more signif-
icant than the humic-like fraction for both feed suspensions.

The results of the LC-OCD analyses for the unfiltered,
filtered feed solution, and the membrane permeate produced
are shown in Fig. 6. For the unfiltered AFBR effluent and its
filtrate through 0.1-μm membrane, large DOC peaks were
found at the molecular weight (MW) bigger than 10,000 Da,
supporting the biopolymers; a small UV peak corresponds to
this. Since the UV peak is small, relative to DOC peaks, the
eluted organic fraction comprises non-humic and low-
aromatic structure such as protein and polysaccharides, which
is evidenced also by FEEM results (Huber et al. 2011).
Permeate through 0.03-μm membrane used for the fluidized
bed membrane reactor had much smaller DOC peak at the
same MW range than feed solutions. There is a much differ-
ence in the biopolymer DOC accumulation between the fil-
tered sample as feed solution to the membrane and permeate
through the 0.03-μmmembrane pore used in this study. These
results suggest that the accumulation of DOC that ranged from
0.03 to 0.1 μm in size should be biopolymers consisting of
proteins and polysaccharides, but the FEEM analysis indicates
that proteins be prevalent components in membrane foulants.
Difference in the LC-OCD peaks representing to the humic-
like substances and the low molecular organic acids was al-
most negligible. Explanation is that these small organic frac-
tions can be passed through the membrane pores (0.03 μm)
rather than being rejected by them. The proteins are generally

more hydrophobic and sticky in nature than other biofoulants
(Li et al. 2012). The hydrophobic interactions between hydro-
phobic PVDF membrane used and biopolymers with strong
stickiness properties should accelerate formation of mem-
brane fouling (Lin et al. 2014). Nevertheless, the adhesion of
biopolymers on membrane could also be explained by the
intrinsic nature of this deposit. Hong et al. (2014) and Zhang
et al. (2013) found that biopolymers in MBR should form a
gel layer deposit on membrane and it could develop osmotic
pressure during cake filtration. This gel layer can be formed
with a thin layer resulted from the gelation of colloidal and
dissolved matters/biofoulants (Chen et al. 2016), and the
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Fig. 5 EEM fluorescence spectra
of the extracted membrane
foulants. a AFBR effluent w/o
GAC fluidization. b AFBR
effluent with GAC fluidization. c
Filtrate solution w/o GAC
fluidization. d Filtrate solution
with GAC fluidization

Fig. 6 LC-OCD analysis of AFBR effluent, filtrate of 0.1 μm, and
fluidization-membrane reactor permeate



osmotic pressure through this layer provides main contributor
to filtration resistance (Zhang et al. 2013). Although the gel
layer can have high porosity and thin thickness, it can exhibit
very high filtration resistance against hydraulic flows through
membrane. The negatively charged functional groups carried
by proteins which may be prevalent in the gel layer should be
equivalent counter-ions present in the mixture of the layer. As
a result, the chemical potential of permeate should be higher
than that of water in the gel layer, providing osmotic pressure-
induced resistance (Chen et al. 2016; Hong et al. 2014; Wang
et al. 2008).

Effect of GAC size as fluidized media on membrane
fouling

In Fig. 7a, biggest GAC sizes ranged from 2000 to 3000 μm
tested results in greatest fouling control, showing no TMP
jump during the whole filtration time. However, fluidization
with smallest GAC particles tested in this study was not very

effective to reduce membrane fouling. As also shown in Fig.
7a, the TMP jump was started at 2 h of membrane filtration.
Interestingly, fouling rate under the fluidization of these
smallest GAC particles (180–500 μm) was even more severe
than that observed under bulk recirculation only through the
reactor without any GAC addition. This phenomenon was not
observed in the same fluidized membrane reactor as the DI
water was used as feed solution to membrane (Fig. S1).
Formation of the fouling layer consisting of small carbon par-
ticles was clearly seen by SEM observations with fouled
membranes after filtering sodium alginate (300 mg/L) and
small GAC particles (180–500 μm) together (Fig. S2).

In this study, only mechanical cleaning action to control
membrane fouling was considered because the GAC particles
were adsorbed fully with test solution prior to their use. Large
GAC particles in the range of 2000–3000 μm provided better
scouring efficiency due to transferring higher momentum cre-
ated in the vicinity of the membrane to the foulants (Charfi
et al. 2017; Johir et al. 2013). Higher momentum can be
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Fig. 8 Membrane fouling mechanism under fluidization of large (2000–3000 μm) and small (180–500 μm) GAC particles as scouring media

Fig. 7 TMP profiles with time
using different GAC sizes and
particle size fractions. a AFBR
effluent as feed suspension. b
Filtrate solution as feed
suspension (set-point permeate
flux 20 L/m2h, spent GAC
packing ratio 50%, recirculation
flow rate w/o GAC 3 L/min and
with GAC size 2000–3000 μm
1.2 L/min and GAC size 180–
500 μm 0.4 L/min)



produced by larger fluidized media generating higher shear
rate along membrane surface (Charfi et al. 2017). Smaller
GAC particles (180–500 μm) tested in this study were less
effective in fouling control than larger ones. In addition, de-
posit of the small GAC particles on membrane was severe
providing surface fouling resistance. This deposit was facili-
tated by presence of organic materials of biopolymers on
membrane (Fig. 8). Since floc size in the FMBR was larger
than 1 μm (Fig. S3), a pore blockage due to the size may not
contribute membrane fouling significantly. However, the pres-
ence of biopolymers should result in high filtration resistance

due to facilitating attractive interactions causing high adhesion
ability of small flocs/colloids to membrane (Shen et al. 2015).

Effect of set-point flux on membrane fouling is compared
in Fig. 9. With the mixed GAC particles as fluidized media,
higher set-point flux resulted in higher fouling rate as expect-
ed. However, the largest GAC with 2000–3000 μm in size
range reduces membrane fouling effectively at higher set-
point flux than that observed under the fluidization of the
mixed GAC particles as fluidized media (15 vs. 20 L/m2 h).
Same results were also observed for both feed solutions of
AFBR effluent and its filtrate through 0.1-μm membrane.
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Fig. 10 SEM images of the
membrane surface and cross
section a, b for virgin membrane
and c, d for used FMBR
membrane after fluidization with
large GAC size 2000–3000 μm
(after chemical cleaning)

Fig. 9 TMP variation with time
using different GAC sizes and
particle size fractions at different
set-point fluxes. a AFBR effluent
as feed suspension. b Filtrate
solution as feed suspension (spent
GAC packing ratio 50%,
recirculation flow rate w/o GAC
3 L/min and with GAC size
2000–3000 μm 1.2 L/min and
mixed GAC size 0.9 L/min)



For the filtrate solution, however, the scouring efficiency to
reduce membrane fouling under the fluidization of the 2000–
3000-μm-sized GAC particles was relatively limited. This
phenomena became more apparent when the permeate flux
increased to 20 L/m2 h.

As permeate flux increases, the foulants smaller than
0.1 μm contributes membrane fouling considerably. This in-
dicates that the presence of larger particles existing in the bulk
solution on membrane can provide synergistic effect on foul-
ing mitigation under GAC fluidization. Kurita et al. (2014)
observed beneficial effect of large particulate materials present
in bulk solution to the membrane on reducing irreversible
fouling resistance under the fluidization of polyethylene gly-
col media. Geng et al. (2009) also reported that the presence of
relatively large particulate in the bulk solution acted like mov-
ing barriers, and this can intercept fine colloids toward
membrane.

Concern is that GAC fluidization may release micro- and
nano-scaled carbon particles due to collisions between the
particles. Change into smaller carbon particles as fluidized
media may reduce scouring efficiency due to lowering mo-
mentum induced along membrane surface. In order to know
whether GAC fluidization changes carbon particle sizes, they
were fluidized at 0.9 L/min of recirculation flow rate for
10 days along the membrane surface using deionized water.
At the end of fluidization, the GAC particles were taken from
the reactor for measuring their particle size distribution. For
this test, deionized water was used to improve more direct
contact between the GAC particles. Deposit of the foulants
on GAC particles may influence their net abrasive actions
(Wu et al. 2016). There was no change in the particle size
distribution of the GACs before and after experiments.
Figure S4 indicates that the bulk recirculation through the
laboratory-scaled, fluidized membrane reactor does not re-
lease any small carbon particles during the operational period
in this study.

GAC fluidization and membrane integrity

There is a potential risk that the direct contact of fluidized
GAC with especially large particle sizes with membrane sur-
face removes cake layer and causes membrane damage due to
their scouring actions. SEM observations through membrane
surface and cross section of the virgin membrane and used
membrane after chemical cleaning operated under the fluidi-
zation of large GAC size (2–3 mm) were compared (Fig. 10).
The cross-sectional SEM image of the used membrane re-
vealed that appearance of membrane skin layer was close to
that of the virgin membrane even after GAC abrasion.
Morphological observations of membrane surface and pore
structure are close to the virgin membrane. Figure 11 shows
the comparison of clean water permeability and rejection with
sodium alginate between used membrane after recovery
cleaning and virgin membrane. Average permeability with
used membrane was 720 ± 45 L/m2 h bar, which is close to
the range employed by the virgin membrane of 700–800 L/
m2 h bar provided by the membranemanufacturer. In addition,
there is no difference in membrane rejection of sodium algi-
nate between the used and virgin membrane. In spite of excel-
lent tool with GAC fluidization in fouling control, further
works are still needed to know the influence of media shape
and their usage time on membrane integrity (Di Natale and
Nigro 2016).

Conclusions

Mechanical cleaning efficiency by GAC fluidization is depen-
dent strongly upon GAC size and the particle size as target
foulant into fluidized bed membrane reactor. Fouling control
was more pronounced with bigger GAC particles as fluidized
media, but the effectiveness was less pronounced smaller
foulants than 0.1 μm in size due to irreversible fouling resis-
tance. Biopolymers such as proteins were rejected by mem-
branes, causing significant membrane fouling in comparison
to other organic fractions such as humic-like substances and
low-molecular weight organic acids. The use of smaller GAC
particles as fluidized media provided somewhat limited effect
on fouling reduction. In addition, severe deposit of small GAC
particles on membrane was driven by biopolymers rejected by
the membranes, facilitating fouling rate.
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Fig. 11 Membrane permeability and sodium alginate rejection for virgin
membrane and used FMBR membrane after fluidization with large GAC
size 2000–3000 μm (after chemical cleaning and filtration time 30 min)
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