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Abstract The trihalomethanes (TTHMs) and others disinfec-
tion by-products (DBPs) are formed in drinking water by the
reaction of chlorine with organic precursors contained in the
source water, in two consecutive and linked stages, that starts
at the treatment plant and continues in second stage along the
distribution system (DS) by reaction of residual chlorine with
organic precursors not removed. Following this approach, this
study aimed at developing a two-stage empirical model for
predicting the formation of TTHMs in the water treatment
plant and subsequently their evolution along the water distri-
bution system (WDS). The aim of the two-stage model was to
improve the predictive capability for a wide range of scenarios
of water treatments and distribution systems. The two-stage
model was developed using multiple regression analysis from
a database (January 2007 to July 2012) using three different
treatment processes (conventional and advanced) in the water
supply system of Aljaraque area (southwest of Spain). Then,

the new model was validated using a recent database from the
same water supply system (January 2011 to May 2015). The
validation results indicated no significant difference in the
predictive and observed values of TTHM (R2 0.874, analytical
variance <17%). The newmodel was applied to three different
supply systems with different treatment processes and differ-
ent characteristics. Acceptable predictions were obtained in
the three distribution systems studied, proving the adaptability
of the new model to the boundary conditions. Finally the
predictive capability of the new model was compared with
17 other models selected from the literature, showing satisfac-
tory results prediction and excellent adaptability to treatment
processes.
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Introduction

In the last four decades, the chemical disinfection of drinking
water has reduced significantly the incidence of infectious
waterborne disease, but reactions of disinfectants such as chlo-
rine with natural organic matter contained in source waters
produce chemical mixtures of different undesirable com-
pounds considered as disinfection byproducts (DBPs). Until
now, more than 600 DBPs have been identified in drinking
water (Richardson et al. 2007) and this number continues
growing. Most drinking water treatment plants use chlorine
for disinfection and therefore several types of chlorine con-
taining DBPs are generated. Among them, trihalomethanes
(TTHMs) and haloacetic acids (HAAs) are found at the
highest concentrations in treated drinking water (Hamidin
et al. 2008; Richardson 2003).
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DBPs can enter the human body by multiple pathways,
such as water ingestion, oral intake, inhalation through breath-
ing, and dermal contact through skin during regular indoor
activities (showering, bathing, and cooking). This chronic ex-
posure to DBPs may pose risks to human health (Siddique
et al. 2015), although inconsistent results have been reported
across different epidemiological studies. In the case of
TTHMs, the highest risk of total cancer in both males and
females is associated to chloroform occurrence, mainly by
inhalation (80–90% of the total risk), followed by oral expo-
sure and dermal contact (Basu et al. 2011; Mishra et al. 2014).
Several studies have reported associations between DBP ex-
posure and increased risk of adverse developmental outcomes
including low birth weight or small for gestational age births
(Hoffman et al. 2008; Kumar et al. 2014), congenital anoma-
lies, and birth defects such as cardiovascular and neural disor-
ders (Grazuleviciene et al. 2013; Levallois et al. 2012;
Nieuwenhuijsen et al. 2008). Others studies have found ele-
vated rates of bladder, colon, rectum and brain cancers (Cantor
et al. 2010;Melnick et al. 1994; Salas et al. 2013). For all these
reasons, the different countries have regulated the permitted
levels for the most prevalent DBPs in drinking water; in this
way, the US Environmental Protection Agency established the
limit of total concentration of four TTHMs to 80 μg L−1 and
five HAAs to 60 μg L−1 (USEPA 2001) and the European
Union has regulated the limit of total concentration of
TTHMs to 100 μg L−1 from 2008 (98/83/EC 1998).

Since Johannes Rook (1974) discovered that TTHMs are
formed by the reaction of chlorine with natural organic matter
(NOM) in drinking water, hundreds of studies have been de-
veloped to determine the effects of TTHMs on health and its
mechanisms of formation within the treatment plant and its
evolution along the distribution systems. The earliest models
for predicting TTHMs and chloroform formation in drinking
water were reported in 1983 (Engerholm and Amy 1983). To
date, more than 150 models have been developed through
field and laboratory scaled to predict DBP formation in drink-
ing water (Brown et al. 2011; Chowdhury et al. 2009).

These models have investigated the effects of different
quality and operational parameters in controlling DBPs for-
mation under a variety of environmental conditions, but mech-
anistic DBPs models are exceedingly difficult to derive due to
seasonal, locational, and temporal variations in water quality,
as well as the complexity of aquatic chemistry in terms of both
disinfection kinetics and interactions in natural water matrices
arising from heterogeneous natural organic matter (NOM)
(Kulkarni and Chellam 2010).

Thus, most of these empirical models are site specific, and
consequently, their predictive capabilities in different water
conditions remain inappropriate (Elshorbagy 2000). The de-
velopment of a mathematical model that predicts the forma-
tion of disinfection DBPs under different water qualities and
treatment conditions is of great interest and usefulness in the

drinking water field (Lu et al. 2011). The great number of
models proposed shows the challenge to get a universally
applicable model (Golfinopoulos and Arhonditsis 2002).

In a recently study (Mayer et al. 2015), a large number of
existing models were evaluated and overall poor perfor-
mances were found. According to this study, most of the
models are based on specific boundaries related to source
water, water quality parameters, and treatment conditions
using untreated, coagulated, or finished conventionally treated
water. In this way, satisfactory model performance may be
limited to a narrow range of treatment scenarios.
Accordingly, the overall poor performance of the models test-
ed may be a function of applying them to data sets that did not
satisfy all boundary conditions. Among the characteristics of
distribution systems, piping materials (especially iron or cop-
per) can affect the formation of DBPs. A recent study showed
that reactions between of certain organic precursors with zero-
valen t i ron may cont r ibute to the format ion of
dichloroacetamide (DCAcAm) in distribution networks which
contain cast iron pipes unlined, even in the absence of chlori-
nated disinfectants (Chu et al. 2016a). Metallic Cu alone did
not affect HAcAm concentrations, but cooper increases reduc-
tive dehalogenation of haloacetamides by zero-valent iron in
drinking water, reducing the integrated toxic risk (Chu et al.
2016b). A few studies focused on the consequences of suit-
able water treatment processes (Badawy et al. 2012; Mouly
et al. 2010) concluding that DBP formation and its spatial/
seasonal variations depends largely on the efficient removal
of NOM.

A previous paper demonstrates that most of TTHMs occur
during the treatment process by reaction of chlorine with or-
ganic precursor compounds not removed during the preceding
stages to the addition of the disinfectant. Trihalomethane for-
mation continues throughout the distribution system by
reacting with the residual organic matter with the free residual
chlorine and the chlorine applied in successive re-chlorination
stages. This reaction is affected by environmental conditions
as well as operational and morphological characteristics of the
distribution system. The range of seasonal and spatial varia-
tion of trihalomethanes depends on the effectiveness of the
removal of the organic matter during the treatment process
(Domínguez-Tello et al. 2015), which is in good agreement
with other authors in works related to bench scale (Badawy
et al. 2012), real scale (Summerhayes et al. 2011), and labo-
ratory scale (Sadrnourmohamadi and Gorczyca 2015), consid-
ering the evaluation of ozonation effect on the total trihalo-
methane formation potential (THMFP) in river water samples.

The aim of this work is the development of a predictive
model of formation of trihalomethanes with predictive capa-
bility in different scenarios of treatment and different distribu-
tion systems. To this end, the model was developed in two
stages (treatment process and distribution system) using a
wide range database. For this purpose, a historical database
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was used with water samples treated in Aljaraque WTP, with
three different treatment processes. The model was developed
using multiple regression analysis and validated using a recent
database from the same distribution system. Subsequently, the
model was tested on three water supply systems located in the
surroundings of Huelva city (Southwest Spain), comparing
the predicted and measured TTHM values. The model fits
well to different treatment scenarios with low prediction er-
rors. The results showed good predictive capability, good
adaptability to boundary conditions, and low prediction errors.
On the other hand, in this work, 17 models published were
evaluated, analyzing comparatively the predictive capability
of TTHM concentration of each of them, by variation the
treatment process applied in the plant.

Materials and methods

Study sites

Water samples were collected from January 2011 toMay 2015
through four water distribution systems (WDSs) located at the
province of Huelva (southwest Spain): Aljaraque (Alj WDS),
Lepe (Lep WDS), Riotinto (Rti WDS), and La Palma (Lpa
WDS) (Fig. 1). All the systems worked with surface water
source and used chorine in the form of sodium hypochlorite.
Alj and Lep WDS supply water to a population of 60,000 and
150,000 inhabitants, respectively. Both plants operated with
two conventional treatment processes in a seasonal scheme:
(a) from October to May including pre-oxidation with potas-
sium permanganate (pre-KMnO4) coagulation–flocculation–
sedimentation (CFS), rapid sand filtration (SF), second step
filtration/adsorption with granular activate carbon (GAC), and
disinfection and (b) from May and September with the same
treatment process but substituting the pre-oxidation by an ad-
vanced treatment with ozone (pre-O3). The other two WDSs:
Lpa supplies water to a population of 70,000 inhabitants using
advanced treatment (pre-O3, CFS, SF, GAC) and disinfection
and Rti for a population of 20,000 inhabitants using a conven-
tional treatment process (pre-KMnO4, CFS, SF, GAC) prior to
the disinfection. All the WDSs studied are affected by signif-
icant climatic and population variations, mainly the influence
of seasonal coastal tourism. Table 1 summarizes the general
characteristics of the water distribution systems studied.

Sampling strategy

An intensive monthly sampling campaign was performed in
each supply system from January 2011 to May 2015.
Sampling points were located at the water treatment plants
(raw water and finished water) and two additional sample
points in the reservoirs along of the distribution system.
Thus, 720 samples were taken, 180 in each WDS under study

(45 raw water, 45 finished water and 90 from distribution
system). Samples were taken at the same day of the week
and the first week of each month, using the same sampling
route and the same sampling point in each selected location,
ensuring the stability of hydraulic conditions and the represen-
tativeness of the samples in the studied system.

Samples were taken at the tap of each sampling point. In
order to guarantee the representativeness of the sample, it is
necessary to renew the water contained in the section of pipe-
line between the sampling point and the reservoir or supply
network to be sampled, for which the water was allowed to
flow for at least 5 min before filling the sample bottles. To
analyze TTHMs, duplicate samples were collected in 125 mL
amber glass bottles with Teflon-lined screw caps, completely
filling the bottle avoiding any headspace. Avolume of 1.5 mL
of 0.1 M sodium thiosulfate aqueous solution was added to
eliminate any remaining residual chlorine quenching the sam-
ple to further THM formation. Temperature, pH, turbidity,
conductivity, and residual chlorine were in situ measured
while dissolved organic carbon, UV254, bromide, calcium,
and trihalomethanes species were determined in the laborato-
ry. The samples were stored at 4 °C and analyzedwithin 2 days
after collection. During each campaign, the operational pa-
rameters of the treatment plant and distribution system were
collected to calculate the operational variables (chlorine dose
in WTP and rechlorination, treatment flow, flow rate, water
consumption, and water level in the storage tanks).

Throughout the study, several actions have been imple-
mented to reduce the effect of the uncertainties on the quality
of the developed model: The coagulation/flocculation/sedi-
mentation and oxidation processes were controlled and adjust-
ed on the basis of jar test. The sedimentation process was
controlled to prevent floc leakage. Through the sampling pe-
riod, the quality of finished water was maintained at values of
Fe, Mn, and turbidity lower than 50 μg L−1, 10 μg L−1, and
0.7 NTU, respectively. Stable process conditions were main-
tained, avoiding sampling during occasional process fluctua-
tions. Sodium hypochlorite was used in the disinfection pro-
cess; the concentration of chlorine in the solution (150–
123 g L−1) was used for calculating the accumulated dose of
chlorine and chlorine dose. The contact time of water in res-
ervoirs was calculated daily considering the flow of water
supplied to each population nucleus by assuming complete
mixing inside the reservoirs. The contact time considered for
model development was the weekly average in stable
conditions.

Analytical methods

Water samples were analyzed for the regulated TTHMs using
headspace-solid-phase microextraction (HS-SPME) coupled
to gas chromatography-mass spectrometry (GC-MS), using a
Varian CP-3800 gas chromatograph coupled to an ion trap
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Fig. 1 Study zone
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mass spectrometer Varian Saturn 2000 MS (Varian, Sunnyvale,
CA, USA). The analytical method has been published else-
where (Domínguez-Tello et al. 2015). Briefly a DB-5 ms
30 m × 0.25 mm × 0.25 μm capillary column (Agilent
Technologies) was used for the chromatographic separation of
TTHMs, using the following temperature program: 40 °C for
4 min, ramped to 120 °C at 10 °C min−1 and hold for 1.5 min,
and finally ramped to 250 °C at 25 °Cmin−1 for 5 min (total run
time 23.7 min). Injections were made in split mode (1:10) for
3 min at 220 °C. Helium was used as carrier gas at a constant
pressure of 29 kPa and a constant flow rate of 1 mL min−1.

The HS-SPME extractionmethod has also been described in
the previous publication (Domínguez-Tello et al. 2015). Briefly,
the fiber used was made of carboxen/polydimethylsiloxane
(CAR/PDMS 85 μm) purchased from Sigma-Aldrich. Before
use each fiber was conditioned at 250 °C for 30 min. For HS-
SPME extraction, 2 mL of sample was transferred to a 4-mL
sample vial together with a magnetic bar, 250 μL of saturated
sodium chloride solution, and 2μL of 5mg L−1 of internal stan-
dard solution (1,2-dibromopropane). The samples were sealed
using screw cap, containing a PTFE-faced rubber septum. The
analyteswere extracted at 40 °C for 30minwith stirring speed of
250 rpm. Then, the fiber was introduced into the GC injection
port at 270 °C during 4min for desorption.

Electron ionization mass spectra were recorded in scan
mode using the m/z 29–300 at 3.5 scans per second. Each
compound was quantified by comparing the relative area of
the internal standard to the target analyte. The limits of detec-
tion (LOD) and quantification (LOQ) were 1.3, 0.8, 1.1, and
0.9 μg/L and 4.2, 2.5, 3.6, and 3.0 μg/L for CHCl3, CHCl2Br,
CHClBr2, and CHBr3, respectively. The features of the meth-
od and validation dates were listed in Table S1 of
Supplementary information. Milli-Q water was used through
and was purified in a Gradient system (Millipore, Watford,
UK). All the standards were of analytical grade and purchased
from Sigma-Aldrich (Madrid Spain). Solvents were of HPLC
grade and obtained from Sigma-Aldrich.

Sampling campaigns were monthly performed and quality
control of the analytical method evaluated using four external
standards with different concentrations of TTHMs, which con-
firm result reliability. Not less than 25% replicate samples were
analyzed for THM to evaluate themethod precision. Blankswere
also used for background correction and error source detection.

Conventional parameters for water quality control were ana-
lyzed using the following approaches: free residual chlorine was
measured using a Hanna photometer HI-93711 following color-
imetric method DPD according to StandardMethod 4500-Cl-G.
Turbidity was measured using a HACH 2100P turbidimeter.
Bromide was analyzed using an ion-chromatograph
(METROHM 861 Advanced compact IC) with chemical sup-
pression and conductivity detector. A Metrohm 744 pH-meter
equipped with a gel-filled electrode Water pH was used for
measuring pH. Conductivity was measured with Crison CM35
conductivity meter. Samples were filtered using a 0.45-μm ny-
lon membrane filter prior to the measurement of UVabsorbance
and DOC. UV254 absorbance spectra were measured using a
PerkinElmer Lambda 18 spectrophotometer with 5 cm quartz
cell, and latterly spectra were normalized to a 1-cm cell length.
DOC concentrations were obtained using a TOC-5000
Shimadzu analyzer, according to EPA Standard Method
5310C. Specific ultraviolet absorbance (SUVA) was calculated
by normalizing UV254 values with respect to DOC.

Modeling and validation

In this study, the predictive model of TTHMs was developed
in two stages: (1) the treatment process and (2) the distribution
system, since as explained before, the THM formation occur
during the treatment process (first stages) starting with the
addition of chlorine by its reaction with organic precursor
compounds not removed during the earlier stages of treatment.
As above commented, the TTHM variation in the water dis-
tribution system is influenced by trihalomethanes concentra-
tion and organic precursors in finished water, pH water and

Table 1 Description of water distribution systems

Water utility Water (m3/day) Raw water source Treatment processes Distribution system

Alj WTP 47,500 Surface
Chanza Reservoir

Pre-KMnO4, CFS, SF, GAC, NaClO
Jun 15-Sep 15: Pre-O3, CFS, SF, CAG, NaClO

San Bartolomé
DS1

D: 3.8 mg L−1 Cl
tDS: 20.4 h

Lep WTP 86,400 Surface
Chanza Reservoir

Pre-KMnO4, CFS, SF, GAC, NaClO
Jun 15-Sep 15: Pre-O3, CFS, SF, CAG, NaClO

Ayamonte
DS2

D: 5.1 mg L−1 Cl
tDS: 36.97 h

Rti WTP 8640 Surface
Jarrama Reservoir

Pre-KMnO4, CFS, SF, GAC, NaClO Fuente Corcha
DS3

D: 2.9 mg L−1 Cl
tDS: 38.7 h

Lpa WTP 17,280 Surface
Corumbel Reservoir

Pre-O3, CFS, SF, GAC, NaClO Niebla
DS4

D: 4.7 mg L−1 Cl
tDS: 62.9 h

Pre-KMnO4 pre-oxidation with potassium permanganate; Pre-O3 pre-oxidation with ozone; CFS coagulation + flocculation + sedimentation; SF sand
filters; GAC filtration with granular activate carbon; NaClO disinfection with sodium hypochlorite; DS1, DS2, DS3 and DS4 sample points of San
Bartolome, Ayamonte, Fuente Corcha and Niebla reservoirs; D accumulate dose of chlorine (chlorine dose in WTP + chlorine dose in rechlorinations);
tDS contact time from finished water to sample point of the distribution system
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environmental variables, and operational and morphological
characteristics of the distribution system (Fig. 2).

Modeling

The approach tries to predict the formation of trihalomethanes in
the water treatment process and subsequently their variation
throughout the distribution system. The model was developed
using a database (Domínguez-Tello et al. 2015) which considers
198 samples taken in a monthly sampling campaign conducted
between January 2007 and July 2012 in Alj WTP, three reser-
voirs and networks of its distribution system. During the sam-
pling campaign, the plant worked with four treatment processes
from which only three were selected for the study. The database
used provides a wide range of values of trihalomethanes (22.6–
123.9 μg L−1) which provides a high statistical potential and
high range of application of the model. Subsequently the model
was validated using the results from recent sampling campaign
between February 2011 and July 2015, in Alj WDS.

A recent review from Ged et al. discusses the predictive
capability and application of 87 DBP models published over
the last 30 years focused on chlorine disinfection. The results
showed that multivariable power law models had the highest
predictive capability for TTHM. Additionally, the best models
for predicting TTHM were those including at least five of the
seven explanatory variables (DOC, UV254, Br

−, pH, chlorine
dose, reaction time, and temperature) (Ged et al. 2015). In
accordance with this study, the direct explanatory variables
initially considered in the predictive model were DOC,
SUVA, UV254, ion bromide (Br−), pH, chlorine dose (d), ac-
cumulated chlorine dose (D), reaction time (t), temperature
(T), and three composite explanatory variables associatedwith
the disinfection reaction: REF, RDS and δ, where REF is the
product of the following variables: chlorine dose in WTP
(d), reaction time (t), temperature (T) and UV254 absorbance
in finished water. Similarly, the composite variable RDS is the
product of variables involved in the formation of TTHMalong
the distribution system (stage 2), including TTHM calculated
in finished water (TTHMEf), which can be potentially pro-
duced by reaction of precursor unoxidized organic matter

(UV254), accumulated dose of chlorine (D), contact time
(tDS) and water temperature (TDS) in the point selected of
distribution system. Finally, δ is an explanatory variable
expressed as the difference between the dose of chlorine
added in the treatment process and the value of free residual
chlorine in the water finished, in relation to the contact time
between the two points (Mouly et al. 2010). The detailed
description of explanatory variables used in the two stages
of the predictive model is shown in Fig. 2.

After verifying the statistical significance using the Pearson
correlation matrix at 95% significance level—p < 0.05—the
explanatory variables were selected. For that, the combina-
tions of explicit variables were tested and were selected those
in which the best statistical results and reproducibility of the
model were obtained following criterion of maximum R2,
minimum standard error s, and Cp Mallows.

For development of the model, multiple regression analysis
of data was carried out. Polynomial: Y = K + X1 b1 + X2 b2 +
…Xp bp and logarithmic: Y = K (X1)

b
1 (X2)

b
2…(Xp)

b
p forms

were tested, where Y is the variable to be modeled (TTHM),
Xi, i = 1 to p are the explanatory variables, bi = 1 to p represent
the statistical coefficients to be estimated, and K is a constant
term. The model was developed according to the best combi-
nation of variables obtained in the statistical analysis.

Comparative statistical analyses of measured and predicted
data from the model options started with F test, Student’s T test,
linear correlation coefficient (R2), and analytical variance (AV):
percentage of the absolute difference between the measured and
predicted values and standard error (SE) or root mean square
error. F test analysis determined the variance similarity between
observed values and predicted values. If the F test value was
>0.5, the Student’s T test with equal variance was conducted,
and otherwise if F test <0.5, Student’s T test with unequal vari-
ance was conducted. If the Student’s T test result was <0.5, the
two data sets had no statistical similarity, and they were not
equivalent. Instead if the Student’s T test result was >0.5, the
two data sets had no significant statistical differences, that is, they
were equivalent and then uncertainty analyses were calculated:
SE, AV, and linear correlation coefficient (R2) (Chen and
Westerhoff 2010). Both AV and SE reflected the deviation or

Fig. 2 Model scheme
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uncertainty of predicted data relative to measured data, and R2

indicated the correlation between predicted data and experimen-
tal data. According to the statistical analysis, the model with
higher value Student’s T test, higher R2, and lower AV and SE
was selected.Moreover, the statistical significance of the selected
model was checked by the F value and Durbin–Watson estimate
(1.5–2.5).

Validation and application

The purpose of validation is to measure the goodness of fit of
the values predicted by the model in comparison with the
experimental data measured. In order to validate the new
two-step model developed, the TTHMEf and TTHMDS values
were calculated using the model equations for an independent
set of additional database obtained from Aljaraque WDS be-
tween January 2011 to May 2015 (35 samples).

To evaluate the adaptability of the new model to different
treatment processes and different conditions of the distribution
system, the new model was applied to three different WDS
(Lepe, La Palma, and Rio Tinto).

The predicted values were compared with measured values
calculating the difference between them, using AV, SE, and
R2. A T test was done on the predicted models and to deter-
mine the biasness by calculating the tvalue for models com-
pared to the tcritical value (If tvalue < tcritical, the biasness is
considered to be not significant).

Results and discussion

Occurrence of TTHMs: seasonal and spatial variations

Seasonal variations of the temperature and raw water quality
cause variations of DBPs concentrations in the water supply.
Additionally, seasonal changes in water consumption habits,
human activities, and environmental changes favor such var-
iations (Fokmare and Musaddiq 2001; Karapinar et al. 2014).
Therefore, to maintain suitable water quality according to the
established regulations, it is necessary to combine the water
treatment processes with seasonal raw water conditions and
the characteristics of the supply system. Considerable season-
al variations of drinking water quality have been reported in
many drinking water systems including small water distribu-
tion system (Scheili et al. 2015).

In this work, both the seasonal (from winter to summer) and
spatial (from the water treatment plant to the end points of the
distribution system) variations of TTHM were evaluated in the
four WDS located at important areas of the southwest Spain
(Aljaraque, Lepe, Riotinto, and La Palma) during the period in
which it was developed and validated the model. The seasonal
and spatial variations of TTHMs are shown in Table 2.

TTHM levels were higher in summer followed by spring
and lower in autumn and winter. The average levels of
TTHMs measured in summer at the water treatment plant of
Alj, Lep, Rti, and Lpa were 1.41, 1.34, 1.41, and 1.15 times
higher than the average levels in winter, respectively. The lower
range of seasonal variation occurs in LpaWTPwhere advanced
treatment process with ozonation and GAC were used. The
ranges of spatial variation in Alj, Lep, Rti, and Lpa water dis-
tribution systems were 1.1, 1.26, 1.34, and 1.13 times the con-
centration of TTHM in treated water, respectively.

Influence of the oxidation process: ozonation test

The natural organic matter present in the source of water is the
major precursor to the formation of DBPs. Water utilities need
to apply treatment technology and optimize the treatment pro-
cesses to remove organic precursors to effectively reduce the
formation of DBPs (Hua et al. 2015).

To evaluate the influence of the treatment process and es-
pecially the oxidation process on the formation of TTHMs in
distribution system, a real scale test was carried out in the Lep
WTP varying the ozone dose. A sampling campaign for
2 months with daily sampling of raw water, treated water,
and three sampling points of the distribution system (R1,
R2, and R3) was performed. The results are shown in Fig. 3.

In agreement with other authors (Bond et al. 2014; Galapate
et al. 2001; Sadrnourmohamadi and Gorczyca 2015), trihalo-
methane formation depends on both oxidation kinetic and halo-
genation steps. The transformation of dissolved organic carbon
during ozonation results in a higher reduction inTTHM(by con-
version of hydrophobic fractions—main contributors to the for-
mation of TTHM to hydrophilic fractions).

As a result, it was found that increasing ozone dosage (1, 2,
and 3 mg L−1) reduce the content of DOC (31.2, 32.8, and
38.3%, respectively) and trihalomethanes (14, 34 and 48%,
respectively) in the distribution system. Furthermore, as
shown in Fig. 3, a higher oxidation treatment contributes to
reduce the variability of TTHM throughout the distribution
system, suggesting less seasonal and spatial variation, achiev-
ing greater stability of supply water quality. The results sug-
gest the importance of considers the effect of the treatment
process in the development of DBPs predictive models.

Effect of natural organic matter

The natural organic matter present in the source water serves
as the major precursor to the formation of DBPs. Aquatic
NOM is a complex mixture of heterogeneous organic com-
pounds varying in structure and functionality from source to
source. Therefore, surrogate parameters are used to predict its
removal through treatment, estimating its reactivity toward
DBP formation, such as total organic carbon (TOC), dissolved
organic carbon (COD), ultraviolet (UV) absorbance, and
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SUVA (Hua et al. 2015; Matilainen et al. 2011; Reckhow et al.
1990). SUVA is a good indicator of the formation of unknown
DBPs, but generally, the correlation between SUVA and
TTHMs is poor, because TTHMs are produced from diverse
types of precursors including UV and non-UV absorbing or-
ganic compounds. NOM with high SUVA values is rich in
humic substances, hydrophobic compounds, and high molec-
ular weight organic matter (Ates et al. 2007; Kitis et al. 2002).
The SUVA values of the raw waters from the four reservoirs
used for this study were lower than 2 L mg−1 m−1, suggesting
the presence of low molecular weight compounds from NOM
and low humic acids content.

In our study, data from DOC, SUVA, and UV254 were tested
using the Pearson correlation test (Table 3). The highest correla-
tion was found with the UV254 variable. Therefore, UV254 mea-
surement was adopted as a critical variable of the model, which
can be easilymeasured. In the individual study of each treatment
process, positive correlations between the variable UV254 in
treated water and the formation of TTHM were obtained (r
−0.696,−0.365,and−0.704 inTP1,TP2,andTP3, respectively);
however, a non-significant correlation (r0.140)was found in the
pooled data from the three process schemes. The reason of this
effect could be the different removal efficiency of NOMof each
treatment scheme (Badawy et al. 2012).

The UV254 varies according to the treatment applied in the
WTP and is a good indicator of the potential formation of
TTHMs. High UV254 values in the finished water indicates
poor oxidation and a high potential for formation of TTHMs
throughout the distribution system. Thus, the variable UV254

was applied in both stages of the model as significant indicator
of trihalomethane reaction formation.

Effect of pH

The concentration of TTHMs increases at high pH as a result
of numerous hydrolysis reactions occurring in these com-
pounds, and the increasing formation of hypochlorite ions at
these pH, which reduce the effectiveness of chlorine disinfec-
tion. As a consequence, at higher pH values, more TTHM are
formed (Hong et al. 2007; Zimoch et al. 2015). In this study, a
positive Pearson correlation was obtained between water pH
and TTHM concentration (Table 3), both in global data (r
0.562) and those from data groups of each treatment process
(0.561, 0.874, and 0.877 in TP1, TP2, and TP3, respectively).
Good correlation between water pH and the TTHM formation
in distribution system (stage 2) was also found (r 0.687).

Effect of water temperature

In the area under study, a clear relationship of water temperature
with the formation of trihalomethaneswas found (Table 3), whichFig. 3 Effect of ozonation

Table 2 Occurrence TTHM formation

Alj WDS Lep WDS Rti WDS Lpa WDS

Alj WTP DS1 LepWTP DS2 Rti WTP DS3 Lpa WTP DS4

N 52 45 45 45 40 33 47 40

Total 34.6(12.0) 38.2(7.5) 35.1(8.4) 44.1(11.6) 34.0(12.9) 45.6(16.4) 35.3(11.5) 39.9(13.8)

Aut/Win 28.2(7.7) 34.1(4.9) 29.8(5.4) 42.6(9.1) 28.4(6.4) 39.0(19.4) 33.3(9.9) 36.5(14.1)

Spring 36.3(5.7) 39.2(2.7) 36.3(5.9) 43.9(12.6) 32.4(9.1) 46.5(15.7) 35.2(12.4) 39.4(13.6)

Summer 39.9(14.4) 41.8(9.3) 39.9(9.9) 46.3(14.9) 39.9(9.9) 50.3(14.3) 38.0(13.1) 44.2(13.4)

Seasonal variation. Average concentration of TTHM (μg L−1 ). Standard deviation in parentheses

DS1 San Bartolomé Reservoir, DS2 Ayamonte Reservoir, DS3 Fuente la Corcha Reservoir, DS4 Niebla Reservoir
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canbeexplainedby theeffect the temperature in theorganicmatter
removal effectiveness during the treatment process, which was
confirmed by the results obtained in the conventional treatment
processes, used in this study, TP1 and TP3 (r 0.944 and 0.918,
respectively). However, a positive, but less marked correlation,
was observed in the advanced process TP2 (r 0.220), which
matcheswith lowUV254 values in finishedwater due to the strong
oxidationoforganicmatterbyozone.Despite theclear importance
of temperature in the reaction of formation of TTHM, no direct
correlationwasfoundwhenPearsontestwasappliedtoglobaldata.

Effect of chlorine dose

Using the Pearson correlation method, a strong relationship (r
0.748) was obtained between THM formation and chlorine
dose used in the treatment processes (TTHMEf). Also, a strong
relationship (r 0.881) was obtained between TTHM formation
in distribution system (TTHMDS) with the accumulated dose
of chlorine (Table 3).

Effect of contact time

In this study, the contact time (tEf) for the reaction of chlorinewith
organicmatterwasmeasured fromthechlorinedosingpoint to the
finishedwaterintheWTP.Wealsomeasuredthecontact timefrom
the point of finished water to different sampling points in the dis-
tribution system (tDS). The contact time in the studiedwater treat-
ment plants (tEf)werebetween0.10 and3.25h and in the distribu-
tion systems (tDS) between 19.7 and 30.0 h.

In both cases, a strong relationship was obtained between
the contact time tEf (r 0.951) and tDS (r 0.965) with the
TTHMEf and TTHMDS, respectively.

Effect of bromide

In thechlorinationprocess,DBPconcentration increaseswith the
levelofbromide.This isbecause thebromide ioncanbeoxidized
byfreechlorine toproducehypobromousacid (HBrO) that reacts
with NOMwith more substitution ability than HClO.When the
level of bromide increases, more bromide could be incorporated
into DBPs, and consequently, the formation of chlorine-
containing species decreases. Moreover, the weight of bromine
atom is higher than chlorine, so DBP formation increases more
significantlywith the increase of bromide (Bougeard et al. 2010;
Hong et al. 2013;Watson et al. 2015).

In the present study, a good relationship (r 0.657) between the
bromides in finished water with TTHMEf was obtained.
However, peak values of bromide in the rawwaterwere observed
that not always are neutralized during the treatment process,
which can cause elevations of TTHM in the distribution system.
Therefore, the bromide variable was included in the model, de-
spite its low background in the water supply systems studied.

Reaction variables

TTHM formation behaves as a first order reaction with respect to
chlorine dose and humic acid precursors. Therefore, TTHM for-
mation can be formulate as a function of the concentration of
THMFP (humic acid precursor), residual chlorine, reaction time,
and reaction temperature (Li and Zhao 2006). Following this

Table 3 Pearson correlation matrix

Stage 1 TTHMEf TTHMEf Stage 2 TTHMDS TTHMDS

T r 0.162 SUVA r 0.094 TTHMEf r 0.987 RDS r 0.749

p 0.520 p 0.711 p 0.000 p 0.000

pHEf r 0.562 d / COD r 0.414 TDS r 0.097

p 0.015 p 0.050 p 0.701

COD r 0.102 δ r −0.861 pHDS r 0.687

p 0.687 p 0.000 p 0.002

UV254 r 0.140 δ × TEf r −0.713 tDS r 0.020

p 0.576 p 0.001 p 0.965

tEf r 0.951 d − Cl2 r 0.748 D r 0.881

p 0.000 p 0.000 p 0.000

d r 0.748 UV254 × δ × TEf r −0.611
p 0.000 p 0.007

Br− r 0.757 REf r 0.965

p 0.000 p 0.004

(d − Cl2)tT/UV254 r 0.925

p 0.000

Explanatory variables
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criterion, the variable reaction (REf) was established as an indirect
indicator of the reactivity of organic matter with chlorine in treat-
ed water in the plant. REf represents the product of the dose of
chlorine, contact time, water temperature, and UV254 absorbance
measured in finished water. Using the Pearson method (Table 3),
a strong relationship (r 0.965) was obtained between REf and
TTHMEf. Similarly RDS represents the product of the dose of
chlorine, contact time, water temperature, and UV254 absorbance
measured in finished water (RDS = D × tDS × TDS × UV254). A
strong relationship (r 0.749) was obtained between RDS and
TTHMDS.

The TTHM in distribution systemwas inversely proportional
to the variable δ. Good relationship was obtained between δ × T
and UV254 × δ × T with TTHMEf (−0.861, −0.713 and −0.611
respectively). However, these variables were not selected in the
model proposed since the correlation obtained between predict-
ed and calculated values was lower (R2 0.789–0.878) and stan-
dard error higher (19.7–14.9) in respect to the variable R.

Modeling developed

After verifying the effect of different variables on the formation of
trihalomethanes in the two stages, the statistical significance and
theirPearsoncorrelations, theexplanatoryvariableswereselected.
Among the possible combinations of explicit variables (pHEf, d,
tEf, TEf, Br

−UV254,REf, δ, δT), pHEf, Br
−, andREf, were selected,

because these variables obtained the best statistical results repro-
ducibilitymodel:R20.948,SE8.67,andCpMallows4.0(Table4).

Different options of models (linear and polynomial) were
evaluated according to the best combinations of variables obtain-
ed in the statistical analysis and the accuracy of the predictions
regarding themeasured values. Based on the results obtained, the
lineal model was selected. The summary of TTHM models is
shown in Table 5. The results of Student’s T test that were >0.5
(0.99 and 0.90 for stages 1 and 2, respectively) showed no sig-
nificant statistical difference between measured and predicted
values. The analytical variance (AV), standard error (SE), and
linear correlation coefficient (R2) were as follows: 13.6, 8.67, and
0.948 and 9.9, 6.08, and 0.9 for stage 1 and 2 models, respec-
tively. The newmodel is statistically significant, and the value of
the Durbin–Watson statistic was found to be 1.74 and 1.62 for
stages 1 and 2, respectively. The value of Durbin–Watson is
preferred to be between 1.5 and 2.5 for statistically best model
(Kumari and Gupta 2015; Uyak et al. 2007). According to the
comparative results, the lineal model was selected:

TTHMEf ¼ 165–21:3 pHEf þ 0:232 Br− þ 5:84 REf

TTHMDS ¼ 14:9þ 1:01 THMEf þ 0:20 pHDS−0:104 RDS

where REf ¼ d � tEf � T � UV254;RDS

¼ D� tDS � TDS � UV254:

Table 4 Model options

Var R2 R2adj Cp Mallows SE pHEf d tEf TEf Br− UV254 REf δ δ T

A 2 0.935 0.927 5.3 8.70 x x

B 3 0.948 0.936 4.0 8.67 x x x

C 5 0.962 0.945 5.2 9.10 x x x x x

D 6 0.962 0.942 7 9.43 x x x x x x

E 3 0.878 0.852 4.0 14.9 x x x

G 3 0.789 0.744 4.0 19.7 x x x

R2 , R2 adj correlation coefficient model and adjusted; SE standard error; tEf contact time; TEf temperature; d chlorine dose; REf = d × tEf × TEf × UV254;
δ = (d − Cl2) / tEf

Table 5 Statistical evaluation of TTHM models

N F test T test R2 R2adj SE AV F value Durbin–Watson

Stage 1. Predictive model of TTHM formation in WTP

TTHMEf = 98.5–10.3 pHEf + 6.90 REf 33 0.89 0.98 0.935 0.927 8.70 13.9

TTHMEf = 1230.26 (pHEf)
−1.84 (REf)

0.470 33 0.62 0.88 0.894 0.880 9.48 15.5

TTHMEf = 165–21.3 pHEf + 0.232 Br− + 5.84 REf 33 0.91 0.99 0.948 0.936 8.67 13.6 126.9 1.74

TTHMEf = 12,022.64 (pHEf)
−3.6 (Br−)0.299 (REf)

0.389 33 0.67 0.89 0.914 0.896 9.08 14.3

Stage 2. Predictive model of TTHM formation in DS

TTHMDS = 14.9 + 1.01 THMEf + 0.20 pHDS − 0.104 RDS 33 0.87 0,90 0.976 0.971 6.08 9.9 122.7 1.62

TTHMDS = 4.1115 (THMEf)
0.914 (pHDS)

−0.13 (RDS)
−0.147 33 0.86 0.87 0.948 0.936 6.47 10.6

REF = (d × t × T × UV254); RDS = (D × TDS × tDS × UV254)
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The analysis of variance (Garcia-Villanova et al. 2010)
showed that the model was statistically significant (p < 0.05).
The examination of statistical residuals of model showed a
normal distribution of data evently distribuited above and be-
low the zero baselines and no visible trends. The range of ap-
plication of the developed model is restricted by range of qual-
ity and operational variables taken as the basis of design and
validation: TTHMEf (22.6–125.5 μg L−1), COD (1.40–
5.09 μg L−1), UV254 (0.017–0.076 cm−1), pHEf (6.50–7.80),
T (10.6–26.6 °C), t (0.10–3.25 h), Br− (20.0–176 μg L−1), d
(0.70–5.80 mg L−1), TTHMDS (27.3–130.1 μg L

−1), tDS (19.7–
30.0 h), D (2.97–6.31 mg L−1), and pHDS (6.73–7.75).

In developing the model, some effects that could be limit-
ing and affect the quality of the predicted results can be ob-
served. Therefore, the data were selected and those corre-
sponding to unstable or anomalous behavior were removed.
Thus, data which trihalomethanes in distribution system were
lower than in finished water were discarded. This effect was
observed in some reservoirs far away from the WTP, where
the inlet water was cascading, affected probably by air-

stripping. Furthermore, it is observed that quality measuring
of certain operational variables such as contact time and cu-
mulative dose of chlorine could be sources of uncertainties in
the predictive model. However, it should be pointed out that
the source water used in the development, validation, and
application of the model contains low levels of bromide and
it would be advisable to check the effectiveness of the model
with high levels of this ion.

Model validation

The new predictive model was validated in the same WDS in
which was developed (Aljaraque WDS) during period January
2011 to May 2015 (35 samples). During the validation period,
Aljaraque WTP operated with conventional treatment process
fromOctober toMay (pre-KMnO4, CFS, SF, GAC and disinfec-
tion) and advanced treatment betweenMay and September (pre-
O3,CFS,SF,CAG,anddisinfection).The resultsof thevalidation
analysis are shown inTable 6.AT testwas applied to determinate
the biasness of the model. The tvalue for the two stages (AljWTP

Table 6 Model validation and application

Number R2 R2adj SE AV AVmax tvalue tcritical

Two-stage model validation

Alj WTP 35 0.912 0.91 2.57 7.38 17.0 0.72 2.032

Alj DS 35 0.874 0.87 3.00 7.22 12.1 0.48 2.032

Two-stage model application

Lep WTP 27 0.965 0.963 2.98 7.68 15.8 0.53 2.056

Lep DS 27 0.884 0.879 3.67 7.05 14.0 0.65 2.056

Rti WTP 28 0.964 0.963 3.17 6.67 18.3 0.78 2.052

Rti DS 28 0.954 0.952 4.02 7.27 16.0 0.57 2.052

Lpa WTP 38 0.918 0.916 3.76 8.91 26.6 0.49 2.021

Lpa DS 38 0.825 0.820 4.94 9.80 26.6 0.90 2.042

Global WTP 128 0.940 0.939 3.19 7.79 26.6 0.49 1.980

Global DS 123 0.874 0.873 4.05 8.30 26.6 0.56 1.980
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andAljDS)were less than the tcritical value andpvalueswere also
greater than0.05,whichindicatesthat themodelbiasnesswerenot
significant. The uncertainty analysis shows a low deviation of
predicted data relative to measured data. The standard errors
(SE) of the two stages (Alj WTP and Alj DS) measured as root
mean standard errors were 2.57 and 3.00, respectively. The AV
measured as average percentage of the absolute difference be-
tween measured and calculated by the model was 7.38 and
7.22%, respectively. The maximum differences between

measured and calculated TTHM in the two stages of the model
were 17 and 12%, slightly lower in the DS indicating some ad-
justment in thesecondstagemodel.Theanalysisofvarianceof the
first stage (WTP) obtained prediction errors (AV) greater
than 10% in the values range studied (TTHM 28.3–
56.5 μg L−1). Likewise in the second stage model (DS),
23% of the predictions obtained a variance >10%. The
two-stage model validation indicates very satisfactory predic-
tions with R2 of 0.91 and 0.87. The Fig. 4 shows measured
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vs. predicted TTHM values in water treatment plant (stage
1) and distribution system (stage 2).

Model application to different water supply systems

In order to check the suitability of the new two-stage model
and its adaptability to different boundary conditions, the mod-
el developed was applied in three different water supply sys-
tems: Lepe, Riotinto, and La Palma water distribution systems
with substantial differences in treatment processes, water
source, and distribution system characteristics. The quality
characteristics of raw water, treated water and water distribu-
tion system of Aljaraque, Lepe, Riotinto, and La Palma are
shown in Tables S2, S3, and S4 of supplementary information.

The numeric results of the application are shown in Table 6.
Graphically, the measured and calculated values for the differ-
ent distribution systems studied are represented in the Fig. 5.
To analyze the results of applying of the model, similar statis-
tical procedure to validation was followed. A T test was used
to determine the possible bias data. The predicted values mea-
sured values were compared with calculating the differences
between them, using AV, SE, and R2.

The uncertainty analysis shows low deviations of predicted
data relative tomeasured data in the threeWDS studied with SE
andAVbetween2.98–4.94%and6.67–9.80%, respectively.The
maximumdifferences betweenmeasured and calculated TTHM
in the threeWDSwerebetweenAVs14.0and26.6%.The largest
variance was obtained in LpaWDS, coinciding with the widest
range of values TTHMs (14.8–64.8 μg L−1). The R2 obtained
were between 0.82 and 0.96. The newmodelwas tested globally
by adding all the data used from validation and application
(Fig. 6) obtaining very good predictive capability of TTHM in
the water treatment plant (R2 0.940, SE 3.18, AV 7.79%) and
distribution system (R2 0.87, SE 4.05, AV 8.30%).

The results obtained shows good adaptability of the two-
stage developed model to the boundary conditions of the three
supply systems studied, despite their differences in source

water, treatment processes, and the characteristics of the dis-
tribution systems.

Comparison predictive capability of different models
according to the treatment processes

Most empirical DPB model proposed in the literature are
based on databases from specific treatment conditions, water
quality, and distribution system. As a consequence, this intro-
duces specific value ranges related to boundary conditions and
cannot be applied to any real situation (Amy et al. 1987). In
the development of predictive models, the treatment process is
a critical factor to be taken into account by using databases
from different treatment scenarios. To demonstrate the influ-
ence of the treatment process on the accuracy and applicability
of predictive models of TTHMs, a comparative study of the
predictive efficiency of 17 models was performed.

Mathematical expressions of the models were applied by
replacing the explicit variables in the database Alj WDS, with
groups according to the treatment process (TP1, TP2, and
TP3). TP1: pre-chlorination with conventional treatment pro-
cess; TP2: advanced treatment process with pre-ozonation,
inter-chlorination, filtration, and GAC; and TP3: conventional
process using potassium permanganate pre-oxidation and
chlorination. The prediction results from the different models
TTHM were compared with measured values. The compara-
tive statistical analysis was performed using SE, AV, and R2.
The predictive models evaluated are shown in Table 7, and the
comparative results obtained in Table 8.

Of 17 predictive models evaluated, seven models obtained
good prediction capability of TTHM with only one treatment
process, specially the conventional process with pre-
chlorination (TP1); however, higherrorswereobtainedwithoth-
er treatment processes. Among them the models M11,M7,M3,
M2, andM13obtained small prediction errors, andM14andM4
obtained moderate errors. Also, other predictive models, devel-
oped in WDS with conventional treatment processes, high

Fig. 6 Global predictive model. TTHM
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concentrations of organicmatter in water source, and significant
seasonal variations (Kumari andGupta 2015), showedgoodpre-
dictive capacity for the conventional process TP1.

Seven models (M5, M15, M16, M8, M10, M6, and M9)
satisfy the boundary conditions with two treatment processes
simultaneously, obtaining acceptable predictions for TTHM
with the advanced treatment process TP2 and the conventional
TP1. The M10 model obtained the best result with the con-
ventional pre-chlorination process and acceptable values with
the conventional process with permanganate. The M12 model
obtained low predictive capacity with the three treatment pro-
cesses studied.

Of the 17 models studied, only two (M1 and M17) provid-
ed acceptable results in TTHM prediction levels for any treat-
ment process. The M17 obtained the best overall results of
predictive capacity in the three treatment models studied (SE
18.66, AV 27.36, and R2 0.86). The prediction results withM1
model are also good but with relatively high errors.

The new model developed in this work provides clearly the
best results, with good individual predictive capability in each
treatment process (SE 7.97, 6.37, and 11.51%; AV 4.99, 12.13,
and25.06%inTP1,TP2,andTP3,respectively)andoverallgood
predictive capability (SE 8.88, AV 16.63%, and R2 0.94).

According to the results obtained, it was verified that most
of the models are specific in their application and no satisfy
the boundary conditions of all the treatment processes.
Therefore, most of these models cannot be applied globally.
The results suggest the need to develop predictive models of
DBPs from databases that include different treatment scenar-
ios, obtaining a wide range of application.

Conclusions

In this paper, a predictivemodel of trihalomethanes formation in
two stages (WTP andDS) was developed, which gets good pre-
dictive capability for a wide range of scenarios of water treat-
ments and distribution systems. The two-stagemodel developed
predicts with low error, the formation of TTHM in treatment
process, and water distribution system from quality and opera-
tional variables. Themodel developed links for the first time the
formation of trihalomethanes in the distribution systemwith the
effectiveness of the treatment process applied in the plant. Thus,
the model can be used as a useful preventive tool for process
treatment control, alerting about setting requirements that pre-
vent high levels TTHM in drinking water.

The new predictive model includes two direct explanatory
variables: pH and ion bromide (Br−) and two composite var-
iables REF and RDS associated with the disinfection reaction in
WTP and DS, respectively. Both composite variables were
calculated as the product of other direct variables: organic
matter (UV254), contact time (tEf and tDS), chorine dose (d
and D), and temperature (T and TDS).

In this work, it has been verified that the treatment process-
es applied in the WTP have a high influence on the predictive
capability of TTHM in the distribution system. It was shown
that an efficient oxidation treatment in the WTP contributes to
reduce the range of TTHM values in the distribution system,
thus reducing the effect of seasonal and spatial variation,
achieving a higher stability of supply water quality. This result
underscores the importance of considering the effect of the
treatment process on the development of predictive models
of DBPs, using databases that include different treatment
scenarios.

The strategy of development of two-stage DBP predictive
models using data from different treatment processes can con-
tribute to improving the adaptability of future developments of
models to different boundary conditions and to increase its
range of application.
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