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Abstract The pure cultures of microalgae Chlorella vulgaris
ATCC 13482 and Scenedesmus obliquus FACHB 417 were
grown in municipal wastewater in 7-L airlift bubble column
photobioreactor supplied with 5% CO2/air (v/v). Batch exper-
iments were conducted at 25 °C with 14-h light/10-h dark
cycle for a period of 10 days. The CO2 capture efficiencies
for both the microalgae were monitored in terms of their re-
spective biomass productivities, carbon contents, and CO2

consumption rates. In the present study, the initial concentra-
tion of ammonia (43.7 mg L−1) was decreased to 2.9 and
3.7 mg L−1 by C. vulgaris and S. obliquus, respectively. And,
the initial concentration of phosphate (18.5 mg L−1) was de-
creased to 1.1 and 1.6 mg L−1 by C. vulgaris and S. obliquus,
respectively. CO2 biofixation rates by C. vulgaris and
S. obliquus, cultivated in municipal wastewater, were

calculated to be 140.91 and 129.82 mg L−1 day−1, respectively.
The findings from the present study highlight the use of
microalgae for wastewater treatment along with CO2 uptake
and biomass utilization for pilot scale production of biodiesel,
biogas, feed supplements for animals, etc., thus minimizing the
production costs.
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Introduction

Energy dependence on fossil fuels and global climate change
are the two pertinent issues posing serious environmental
threats to the modern society. Hence, there is an alarming call
to cut down global emissions of anthropogenic CO2. Until
now, major contribution for the electricity generation and
transportation has been shared by coal and petroleum, respec-
tively. According to an estimate by Boden et al. (2015), annual
global carbon emissions from the use of fossil fuels crossed ~9
billion tons (or 33 Gt CO2) in 2011. CO2 alone contributes to
more than two-thirds of total greenhouse gas emissions from
human undertakings (Ho et al. 2011). CO2 discharge from the
fossil fuel burning in 2014 was 60% above the emissions in
1990 being the reference year for the Kyoto Protocol (Global
Carbon Emissions 2016). Atmospheric CO2 concentration
even crossed an appalling figure of 407.9 ppm in May 2016
(Scripps Institution of Oceanography 2016) from the pre-
industrial level of 280 ppm (Allas et al. 2007).

Researchers have tried with physical and chemical methods
of CO2 capture and storage into deep oceans, mineral forma-
tions, or enhanced oil recovery (Metz et al. 2005, Leung et al.
2014, Rao and Rubin 2002). But these technologies have in-
herent shortcomings and trigger further environmental risks

Responsible editor: Elena Maestri

Electronic supplementary material The online version of this article
(doi:10.1007/s11356-017-9575-3) contains supplementary material,
which is available to authorized users.

* Ramjee Chaudhary
ramjeechaudhary@iitb.ac.in; rc08eureka@gmail.com

1 Centre for Environmental Science and Engineering, Indian Institute
of Technology Bombay, Mumbai 400076, India

2 Department of Chemical and Biomolecular Engineering, National
University of Singapore, Singapore 117576, Singapore

3 School of Business, Environment and Society, Mälardalen
University, Vasteras, Sweden

4 Urban Environmental Management, School of Environment,
Resources and Development, Asian Institute of Technology,
Pathumthani 12120, Thailand

5 Environmental Research Institute, National University of Singapore,
Singapore, Singapore

Environ Sci Pollut Res (2018) 25:20399–20406
DOI 10.1007/s11356-017-9575-3

http://dx.doi.org/10.1007/s11356-017-9575-3
mailto:rc08eureka@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-017-9575-3&domain=pdf


too. On the other hand, it has been suggested that biological
method of CO2 sequestration causes an overall negative
greenhouse gas emissions and thus might prove to be a viable
carbon sink. For the sustainable bioenergy options from algae,
wastes are converted into methane (Hernandez et al. 2014;
Ward et al. 2014), hydrogen (Ullah et al. 2014), biodiesel
(Kligerman and Bouwer 2015; Galadima and Muraza 2014),
and electricity (Gajda et al. 2015). In yet another novel ap-
proach, researchers are harnessing the potential of CO2 se-
questration by photosynthetically growing algae or
cyanobacteria. Algae-mediated utilization of CO2 is consid-
ered as one of the most promising negative emission technol-
ogies. Additionally, algae use the wastewater for nutrient sup-
plementation and eventually cause bioremediation of the
wastewater. Energy (biodiesel or methane) obtained from the
harvested microalgae is comprehensibly carbon-neutral and
such projects earn carbon credits too.

Although CO2 emissions from petroleum and biodiesel are
nearly equal, the foremost difference lies in carbon consump-
tion during initial stages of the life cycle of these fuels. Edible
vegetable oil fuels are more expensive than petroleum and
have also continuously raised concern over Bfood versus fuel^
debate. It has also been reported that traditional terrestrial
plants (sugarcane and maize for ethanol; palm, groundnut,
rapeseed, and sunflower for oil) have slower growth rates;
they are seasonal and can contribute to only 3–6% reduction
in global CO2 emissions. In order to put forth a remedial
measure, Chisti (2007, 2008) supported bioethanol and bio-
diesel from microalgae over oil crops as a renewable fuel
having tremendous potential to replace the current conven-
tional petroleum-based transport fuels. Many experimental
findings suggest that there are numerous benefits in using
microalgae-based systems for management of wastewater.
Microalgae are 10–50 times more efficient in CO2 sequestra-
tion than those by conventional terrestrial plants (Costa et al.
2000; Wang et al. 2008). Some microalgae like Chlorella can
even consume combustion products such as NOx or SO2 from
flue gas (Costa et al. 2000; Cuellar-Bermudez et al. 2015).
Algae require comparatively less water than the agricultural
crops and they are also cultivated in saline/brackish water on
non-arable lands as the case may be.

Several studies (de Morais and Costa 2007; Sydney et al.
2010) reiterate the possibility of microalgae-mediated capture
of CO2 from the simulated flue gases composition with CO2

fixation efficacy within 28–53%. Microalgae exhibit faster
growth rates than that of the terrestrial green plants, and there-
fore, they have better rates of CO2 sequestration (Fulke et al.
2010). Chlorella and Scenedesmus species are widely accept-
ed for the very promising potential of carbon sequestration
(Fulke et al. 2010; Ho et al. 2010; Tang et al. 2011; Toledo-
Cervantes et al. 2013). CO2 is utilized as the carbon source by
microalgae for their cellular growth, and hence, they act as
micro-biofactories consuming greenhouse gas (CO2). Other

than feed supplements for animals, growing microalgae may
also yield commercial products of high value like
neutraceuticals, cosmetics, and pharmaceuticals (Cardozo
et al. 2006; Gong et al. 2011) which can compensate for the
capital investment and the operational costs. Therefore, cou-
pling the commercial benefits of microalgae with CO2 fixation
and/or recycling process for wastewater treatment or biodiesel
production/methane generation will help minimize environ-
mental impacts of energy consumption during biodiesel pro-
duction, and net energy gain (NEG) will surely be positive.

The objectives of the present work were to cultivate the
microalgae, Chlorella vulgaris ATCC 13482 and
Scenedesmus obliquus FACHB 417, in municipal wastewater,
and to quantify their efficiencies for uptake of inorganic car-
bon CO2. The wastewater was collected from the primary
sedimentation tank of water reclamation plant (Ulu Pandan,
Singapore). CO2/air supply was maintained at 5% v/v during
the light hours and only air was supplied during the dark
hours. The final characteristics of the municipal wastewater
treated simultaneously were also determined. Dry algal bio-
mass and its elemental carbon contents during the experimen-
tal period were calculated to evaluate CO2 uptake efficiencies
of the two microalgae.

Materials and methods

Microalgae culture

The stock cultures of Chlorella vulgaris ATCC 13482 and
Scenedesmus obliquus FACHB 417 were maintained in
Bold’s basal (BB) medium as recommended for freshwater
algae (https://www.ccap.ac.uk/media/documents/BB.pdf) in
the Corning cell culture flasks (surface area, 100 cm2)
maintained at 25 °C with fluorescent illumination of 90 ±
5 μmol m−2 s−1 operated in 14-h light/10-h dark cycle. The
BB medium (per liter of DI water) contained the following
macro-nutrients: 0.25 g NaNO3, 0.075 g MgSO4

.7H2O, 0.
025 g NaCl, 0.075 g K2HPO4, 0.175 g KH2PO4, 0.025 g
CaCl2

.2H2O, and 1-mL trace elements solution. The trace el-
ements solution was autoclaved to be dissolved and contained
the following (per liter of DI water): 8.82 g ZnSO4

.7H2O, 1.
44 g MnCl2

.4H2O, 0.71 g MoO3, 1.57 g CuSO4
.5H2O, 0.49 g

Co(NO3)2
.6H2O, 11.42 g H3BO3, 50 g EDTA, 31 g KOH, 4.

98 g FeSO4
.7H2O, and 1mLH2SO4 (conc.). All the chemicals

used for preparing the culture medium were of analytical
grade (Sigma-Aldrich, Singapore).

Characterization of wastewater parameters

The municipal wastewater (MW) was collected from the pri-
mary sedimentation tank of the Water Reclamation Plant at
Ulu Pandan (Singapore) and stored at 4 °C until further
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characterization. The wastewater sample was filtered through
0.45-μm filter to remove the suspended particles before the
estimation of its quality indicators (given in Table 1) as per
Standard Methods for the Examination of Water and
Wastewater (APHA 2005). The chemical kits and DR900 col-
orimeter (Hach, USA) were used to estimate chemical oxygen
demand (COD), total nitrogen (TN), ammonia, nitrate, total
phosphorus (TP), and orthophosphate (PO4

3−). pH of waste-
water sample was measured using multi-parameter analyzer
(3200M Agilent Technologies, USA).

Microalgae cultivation and acclimatization

Ready to use inoculum of the two algae strains were cultivated
in 2-L cylindrical glass bottles maintained at 25 °C in BB
medium. Sterile air passing through 0.2-μm PTFE filter was
fed at 0.2 vvm, i.e., 0.2 L min−1 of gas per liter of culture. The
microalgae culture was maintained at pH 7.0 using 1-M
NaOH solution. C. vulgaris and S. obliquus were cultured
for 10 days in BBmedium and then acclimatized to municipal
wastewater in conical flasks of 3 L working volume (Fig. 1)
uniformly mixed at 100 rpm on a magnetic stirrer. The
inoculum:wastewater ratio was 1:20, i.e., 5% v/v for starting

the experiment of algal CO2 utilization in 7-L airlift bubble
column photobioreactors (PBRs).

Photobioreactor setup

The airlift bubble column PBR (Fig. 2) was used for this
experiment. The PBRs (diameter 0.1 m, height 1 m, working
volume 7 L) were fed with undiluted municipal wastewater
and the algae inoculum. An artificial set of cool white fluores-
cent light (3 tubes ×24W) was used to maintain 14-h light/10-
h dark cycle. The reactors were supplied with gas (air +5%
CO2 v/v) at flow rate of 1.4 L min−1 (superficial gas velocity
0.0013 m/s) equal to 0.2 vvm (gas volume per liquid volume
per min) through the bottom of the reactor. The input of gas
(air + CO2) at flow rate <0.2 vvm is insufficient to provide
enough mixing, and sedimentation of the algae was the recur-
rent problem. Though the gas flow rates >1 vvm have better
mixing and mass transfer effects to support higher biomass
concentration, they have negative impacts considering greater
power consumption and the resultant high shear stress on the
algal cells. For adequate mixing of nutrients in the medium
thereby disrupting diffusion barriers at the algal cell surfaces,
gas flow rate in range 0.2–0.4 vvm has been reported in liter-
ature (Guo et al. 2015; Kargupta et al. 2015). Furthermore,
proper mixing helps in uniform distribution of light to algae
cells averting the dark zones, prevents buildup of the oxygen
produced during photosynthesis, and subsequently, checks the
potential oxidative stress. All the facilities were set up in
temperature-stabilized laboratory at 25 °C throughout the
experiment.

Analytical estimation

Dry algae weight

The biomass concentration of algae was calculated as its dry
weight (g L−1) as per the method described by Guo et al.
(2015). The harvested algal biomass was centrifuged
(Eppendorf, Germany) at 5600 rpm for 10 min. After

Table 1 Water quality indicators of the municipal wastewater

Parameters Value
(mean ± SD)

pH 6.6 ± 0.03

Chemical oxygen demand, COD (mg L−1) 293 ± 3.3

Total nitrogen, TN (mg L−1) 46.67 ± 0.27

Ammonia (mg L−1) 43.67 ± 0.72

Nitrate, NO3
− (mg L−1) 1.64 ± 0.18

Total phosphorus, TP (mg L−1) 19.5 ± 0.24

Orthophosphate, PO4
3− (mg L−1) 18.53 ± 0.05

C/N 6.7

N/P 2.3

n.d. not detectable, C/N COD/ammonia, N/P ammonia/orthophosphate

Fig. 1 Conical flasks with
municipal wastewater (a) and
algae inoculum cultivated in
municipal wastewater (b)
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discarding the supernatant, the cell pellets were washed thrice
with DI water and dried in an oven at 105 °C for 24 h, and the
weight was estimated by gravimetric method. The biomass
productivity (g L−1 day−1) denoted by Pbiomass is given by
Eq. (1):

Pbiomass ¼ Wt−Wo

t
; ð1Þ

whereWt andW0, respectively, represent the dry algae mass
and the initial biomass concentration; and t represents the
cultivation period.

Elemental analysis of algae biomass

The dried algal biomass was pulverized into fine powder
using a mortar and pestle and then analyzed for their elemental
carbon contents (Ccarbon, wt.%) using Elementar Vario Micro
Cube (GmbH, Germany) at the Department of Chemistry,
National University of Singapore.

CO2 utilization and conversion into biomass

According to the method described by de Morais and Costa
(2007), the CO2 biofixation rate (mg CO2/L·day) denoted by
FCO2 is given by Eq. (2):

FCO2 ¼ CcarbonPbiomass
MCO2

MC

� �
; ð2Þ

where MC was the molecular weight of carbon, MCO2 was
the molecular weight of CO2, and Ccarbon was the carbon con-
tent (wt.%) in the algal biomass.

The percentage efficiency (ECO2) of conversion of CO2

into algae biomass is given by Eq. (3):

ECO2 ¼
FCO2Vcolumnt
ρCO2

VCO2

� 100; ð3Þ

where Vcolumn, VCO2, and ρCO2 represent the working vol-
ume of the PBR, total CO2 consumed (vol.) during the exper-
imental period, and the density of CO2, respectively.

Results and discussion

Microalgae growth measurement

Municipal wastewater (7 L) was inoculated with the above
cultured C. vulgaris and S. obliquus into PBRs (triplicates
for each algae species). The initial inoculum density of the
microalgae was adjusted to be at 0.1 g L−1 for each reactor.
The cell growths of the two microalgae grown in municipal
wastewater with normal air (0.03% v/v CO2) and 5% v/v CO2

were estimated by cell density measurement using UV/Vis
spectrophotometer (Shimadzu, Japan). The relationship be-
tween optical density (OD680) and the dry cell weights of
C. vulgaris ATCC 13482 and S. obliquus FACHB 417 was
established by linear regressions given in the Supplementary
Material (Figs. S1 and S2). Biomass productivities and spe-
cific growth rates calculated for C. vulgaris and S. obliquus
are given in Table 3.

Fig. 2 Airlift bubble column 7-L PBR

Table 2 Comparison of total CO2 consumption in microalgae cultivations previously reported in the literature with our present study

Microalgae species CO2 (vol%) Culture medium Cultivation
time (day)

PBR working
volume (L)

CO2 consumption
(L/day)

Reference

C. vulgaris 5 Wastewater with high ammonia 20 1.5 10.8 He et al. (2013)

C. vulgaris 15 Wastewater with high nitrate 10 1 43.2 Jin et al. (2006)

Chlorella sp. 20 Modified f/2 medium 7 50 240–1440 Kao et al. (2012)

C. vulgaris 4 BG-11 medium 10 1 8.64 Mujtaba et al.(2012)

C. vulgaris 2 BB (3N+V) medium 7 7.5 34.04 Guo et al. (2015)

C. vulgaris and S. obliquus 5 Municipal wastewater 10 7 58.8 This study

Total CO2 consumption = CO2 (vol%) × vvm × PBR working volume × cultivation time

20402 Environ Sci Pollut Res (2018) 25:20399–20406



Estimation of CO2 biofixation rate

C. vulgaris and S. obliquus were grown in undiluted MW
(filtered and autoclaved MW). Initial inoculum of the algae
was obtained from the acclimatization study for 10 days.
Suspended solids (78 mg L−1) was determined after filtering
MW through 50-μm stainless steel filter mesh sieve (GmbH,
Germany), and its value was subtracted from the dried algal
biomass to get the net algae dry weight. The amount of CO2

consumed (L/day) during the cultivation period in our study
has been compared with similar observations from previously
reported studies (Table 2).

The estimation of CO2 biofixation rates for C. vulgaris and
S. obliquus was done using Eq. (2). The stepwise calculation
of CO2 sequestration (denoted as SCO2) using Eq. (4) is given
in the Supplementary Material (Appendix A).

SCO2≈
FCO2

NetCO2supplied
ð4Þ

The results from the elemental analysis showed that the
carbon contents (Ccarbon, wt.%) of C. vulgaris and S. obliquus
were marginally higher when 5% CO2 was supplied during
aeration than that of bubbling only air (Table 3). In our work,
CO2 biofixation rates for C. vulgaris and S. obliquus were
found to be 140.91 and 129.82 mg L−1 day−1, respectively.
The efficiencies of CO2 conversion into biomass (ECO2) were
calculated to be 14.9% byC. vulgaris and 13.8% by S. obliquus
given in the Supplementary Material (Appendix A).

It is very well documented in literature that dissolution of
gaseous CO2 into water induces principally three carbon spe-
cies: CO2, HCO3

−, and CO3
2−, which are inorganic carbon

sources for microalgae. Owing to the low solubility of inor-
ganic carbon species in water, CO2 availability is limiting
factor for the microalgal photosynthesis, and hence,
microalgae have evolved carbon concentrating mechanisms
(CCMs) that augment CO2 concentration by the enzyme
RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase)
(Trimborn et al. 2009). However, microalgae vary widely in
their preferences to the utilization of carbon sources
(Trimborn et al. 2009). For some species, major flux of dis-
solved inorganic carbon into microalgal cells is the direct CO2

uptake across the plasma membrane (Spalding 2008).
The CO2 input conditions in the present study were manu-

ally adjusted as per the light and dark conditions. Instant on-
line control of CO2 input is henceforth necessary based on the
feedback from CO2 and light sensors. Moreover, a feedback
sensor connected with pH variations of the microalgal culture
is needed to regulate on/off for CO2 inlet. When pH exceeds
9.0, there will be inlet of CO2 into the algal culture whereas
when pH drops below 6.0, CO2 supply will be cut off. This
feedback regulated operation will also save the unnecessary
loss of CO2.

The importance of the present study is also relevant for the
production of fatty acid methyl esters (FAME) which are
starting materials for biodiesel. A study on CO2 input condi-
tions by Guo et al. (2015) has brought forward the point that

Table 3 Mean values for biomass productivity, CO2 biofixation rate, and CO2 sequestration rate of C. vulgaris and S. obliquus grown in PBR for
10 day

Growth conditions Algae biomass
(mg L−1)

Specific growth rate
μ (day−1)

Biomass Productivity
(mg L−1 day−1)

Carbon content
(wt.%)

CO2 biofixation rate
(mg L−1 day−1)

CO2 sequestration rate
(mg CO2/L CO2)

Cv + air 178.95 0.06 17.9 49.96 + +

Cv + 5% CO2 941.48 0.22 94.1 50.4 140.91 16.78

So + air 166.67 0.05 16.7 50.1 + +

So + 5% CO2 865.44 0.21 86.5 50.67 129.82 15.45

+not applicable
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augmented CO2 concentration with air supply into microalgal
culture increases polyunsaturated fatty acids (PUFA). Tang
et al. (2011) also highlighted that CO2 concentration higher
than the ambient air was favorable for the accumulation of
PUFAs in microalgal cells.

Quality indicators of treated wastewater

The removal percentages of ammonia and phosphate were
measured over the experimental period of 10 days (Figs. 3
and 4). In the present study, ammonia was decreased by 93.4
and 91.5% and phosphate was decreased by 94.1 and 91.3%
by C. vulgaris and S. obliquus, respectively. Lau et al. (1996)
reported the removal of 86% inorganic nitrogen and 70% in-
organic phosphorus using Chlorella sp. The removal of nitro-
gen and phosphorus by both the microalgae bubbled with 5%
v/v CO2 in our work is comparable with similar studies by
Feng et al. (2011), Sydney et al. (2011), McGinn et al.
(2012), Ji et al. (2013), and Discart et al. (2014).

The increase in pH with growth of algal biomass induces
precipitation of phosphorus as calcium phosphates
(Hammouda et al. 1994). Microalgal photosynthesis is asso-
ciatedwith increase in pH of the culture mediumwhich further
enhances NH3 stripping or P precipitation thereby causing
nutrient removal (Nunez et al. 2001; Nurdogan and Oswald
1995; Oswald 2003). Alkaline condition (pH >8) also inhibits
coliform bacteria (Lefyedi and Taylor 2006; Nilsson et al.
2013). Alkaline pH is also suitable for the growth of green
microalgae (Olaizola et al. 2004; Suryata et al. 2010) allowing
better capture of inorganic CO2 (dissolved in liquid) and up-
take by algae (Suryata et al. 2010). Alkaline pH (range 8–9)
was observed over the experimental duration (data not shown)
which meets the effluent discharge standards set by the
Environment (Protection) Rules, India (CPCB 1986). Final
characteristics of the wastewater treated by the microalgae in
our study (Table 4) follow the range for trade effluents
discharged into watercourse/controlled watercourse set by
Public Utilities Board of Singapore (National Environment
Agency 2016).

Conclusion

In the present study, the two species of green microalgae
C. vulgaris ATCC 13482 and S. obliquus FACHB 417 were
grown in the municipal wastewater. Both of the species effec-
tively treated undiluted municipal wastewater. C. vulgaris
proved to be better than S. obliquus in terms of wastewater
treatment efficiency, biomass generated, and CO2 fixation rate
over the test period. As comparedwith PUB effluent discharge
standards, final wastewater after algal treatment in the present
study had significantly lower ammonia and phosphate. The
results in our work demonstrated that C. vulgaris ATCC
13482 and S. obliquus FACHB 417 can be potential
microalgae species to integrate the approach of wastewater
treatment with CO2 fixation thereby scoring positive points
over conventional chemical methods of CO2 capture.
Harvested algae biomass after treatment could be used for
biomethane production under anaerobic digestion and/or be
harnessed for lipid/biodiesel extraction. The study presented
in our work is environmentally more sustainable as it does not
use synthetic culture medium to cultivate microalgae and also
takes into account the wastewater treatment.
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