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The generation of biogenic manganese oxides and its application
in the removal of As(III) in groundwater
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Abstract The generation of biogenic manganese oxides
(BMnOx) byMicrobacterium sp. CSA40, and As(III) remov-
al efficiency and mechanism by BMnOx were investigated in
this study. The propagation and growth ofMicrobacterium sp.
CSA40 was conducted in half-strength Luria Broth with
10 mg/L Mn(II), then high concentration of Microbacterium
sp. CSA40 was added to PYG medium making its
OD600 = 0.9 ± 0.05 for BMnOx generation. The initial
Mn(II) concentrations, excessively oligotrophic condition,
and pH had great influence on generation of BMnOx by
Microbacterium sp. CSA40. An appropriate Mn(II) concen-
tration (50 mg/L) was obtained for generation of BMnOx, and
higher or lower Mn(II) concentration would interfere Mn(II)
oxidization performance. Mn(II) oxidation ability performed
best in weak alkaline conditions and would be restricted in an
excessively oligotrophic condition. As(III) oxidization and
As(V) adsorption proceed simultaneously by BMnOx, what
is more, more than 90% of total As was removed by 0.5 g/L
BMnOx. During the application process, no Mn(II) was

released in the solution, that is, BMnOx retained its ability
for Mn(II) oxidization caused by activity of Microbacterium
sp. CSA40. Therefore, BMnOx would be a pollution-free,
cost-effective, and high-efficiency material for As(III) treat-
ment in groundwater.
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conditions .Arsenic .Oxidationandadsorption .Groundwater

Introduction

Groundwater contamination by arsenic, which is known as a
human carcinogen, is a serious problem worldwide (Guo et al.
2017; Paul et al. 2015; Wang et al. 2017). Among the four
oxidation states of arsenic species, As(III) and As(V) are the
predominant forms in aqueous environments. However,
As(III) is more harmful than As(V) due to its higher toxicity,
solubility, and mobility (Shih et al. 2015; Tian et al. 2015;
Wang et al. 2015; Yang et al. 2014a). The oxidizing form of
As(III) to As(V) is an essential pretreatment to reduce toxicity
and to enhance the removal efficiency for most arsenic remov-
al technologies (Mohora et al. 2014; Wang et al. 2014).

Numerous methods have been developed to oxidize As(III)
to As(V) in aquatic system, such as chemical oxidation
(Sorlini and Gialdini 2010; Zaw and Emett 2002),
photocatalysis (Dutta et al. 2005; Xu et al. 2007), and biolog-
ical techniques (Silver and Phung 2005; Weeger et al. 1999;
Yang et al. 2014b). Some of the methods are effective on the
oxidation of As(III); however, these technologies typically
suffer from high costs and undesirable byproduct generation
(Qi et al. 2015; Shrestha et al. 2008; Wang et al. 2014). What
is more, subsequent steps are required to remove As(V) which
is transformed from As(III), leading to extra operation costs
and complexity for additional processing. Hence, As(III)
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oxidization and As(V) adsorption proceeding simultaneously
would be an optimal way to treat arsenic-contaminated
groundwater.

Manganese oxides have a wide distribution in the nat-
ural environment (Abu Hasan et al. 2012; Zhou et al.
2015), including water, soil, and sediment. Most of Mn
oxides in natural environment are believed to be biogen-
ic, because microbes can accelerate the oxidation of
Mn(II) by several orders of magnitude through enzymatic
catalytic reaction (Li et al. 2016; Mayanna et al. 2015;
Tu et al. 2014a). In addition, biogenic manganese oxides
(BMnOx) can oxidize various substances (e.g., steroid
hormones, biocides, ciprofloxacin, U(IV), and Ce(III))
due to its high redox potential (Furgal et al. 2015;
Tang et al. 2014; Tu et al. 2014b; Wang et al. 2013),
and many heavy metal ions, such as Pb(II), Cd(II),
Zn(II), and Hg(II), could be adsorbed by BMnOx
(Boonfueng et al. 2009; Iyer et al. 2012; Rashidi
Nodeh et al. 2016; Tani et al. 2004; Toner et al. 2006;
Villalobos et al. 2004). Thus, As(III) could be oxidized
and subsequent As(V) could be adsorbed by BMnOx,
which might be a perfect material for As(III) remediation
in groundwater.

Although BMnOx has attracted a great attention in
the recent years because of its high oxidation ability
and adsorption capacity, there are still some challenges
that need to be faced. For instance, in growth medium,
Mn(II)-oxidizing organisms are easily contaminated by
other bacterium, and in generation medium, several days
will be taken for an adaptation and growth process be-
fore oxidizing Mn(II) (Tu et al. 2014b; Watanabe et al.
2013). However, few researches have focused on these
issues. In this work, a Mn(II)-oxidizing bacteria named
Microbacterium sp. CSA40, isolated from waste water,
was used for generation of BMnOx. For reducing con-
tamination by other bacterium, half-strength Luria Broth
containing Mn(II) was applied as the growth medium.
In addition, for shortening adaptation and growth pro-
cess, high concentration of Microbacterium sp. CSA40
was added to BMnOx generation medium (PYG medi-
um (OD600 = 0.9 ± 0.05)). Furthermore, BMnOx oc-
curs as a complex of manganese oxide particles embed-
ded in microbial biomass (Sasaki et al. 2014); different
organisms and culture conditions potentially affect the
composition and construction of BMnOx. Hence, a va-
riety of different parameters including Mn(II) concentra-
tion, nutrition condition, and pH were performed to ex-
plore generation mechanism of BMnOx. On the other
hand, BMnOx was conducted to treat a simulated
As(III)-contaminated underground water. The removal
efficiency and mechanism of As(III) by BMnOx have
been investigated through the detection of arsenic spe-
cies transformation and total As sequestration.

Materials and methods

Mn(II)-oxidizing bacterial strain

A Mn(II)-oxidizing bacteria was isolated from waste water
containing large amounts of Mn(II), located in Beijing,
China. According to the physicochemical and 16S rRNA
characterizations, the bacteria was identified and named as
Microbacterium sp. CSA40 (GenBank accession number,
KX289438.1). CSA40 is a Gram-positive, rod-shaped
bacteria.

Growth of bacteria and generation of biogenic manganese
oxides (BMnOx)

A nutrient medium (half-strength Luria Broth, that is 5.00 g/L
peptone, 2.50 g/Lyeast extract, and 5.00 g/L NaCl) containing
10 mg/L Mn(II) was used for cell propagation and growth.
And, a peptone yeast extract glucose (PYG)mediumwas used
for BMnOx generation. The composition of PYG was 0.25 g/
L peptone, 0.25 g/L yeast extract, 0.25 g/L glucose, 0.50 g/L
MgSO4·7H2O, 0.06 g/L CaCl2·2H2O, and 2.38 g/L N-2-
hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES)
buffer. Half-strength Luria Broth and PYG were autoclaved
at 120 °C for 15 min before use.

For propagation and growth, Microbacterium sp. CSA40
was transferred to a 250-mL Erlenmeyer flask containing
100 mL of half-strength Luria Broth with 10 mg/L
Mn(II)(aq). After incubation for 16 h (exponential period,
Fig. S1) at 28 °C and 160 rpm, harvested Microbacterium
sp. CSA40 was washed twice by sterile water and centrifuged
under freezing condition in a sterile environment, then a cer-
tain amount ofMicrobacterium sp. CSA40 was transferred to
100 mL PYG medium which was performed in a 250-mL
Erlenmeyer flask, making the OD600 value 0.90 ± 0.05. The
pH of PYGmediumwas adjusted with NaOH and HNO3, and
HEPES was used as buffer. The initial Mn(II) concentration in
PYG was in the range of 5–100 mg/L. Mn(II) stock solution
was prepared with MnCl2. The mixture was incubated at
28 °C and 160 r/min for generation of BMnOx. The pH, gen-
erated BMnOx concentration, density of the bacteria, and con-
centration of Mn(II) of the mixture were analyzed at
predetermined reaction times.

Effect of different parameters on BMnOx generation

The effect of initial Mn(II) concentration, pH, and an exces-
sively oligotrophic condition were investigated in order to
achieve the optimal conditions of BMnOx generation and ex-
plore its generation mechanism. For initial Mn(II) concentra-
tion assays, initial Mn(II) concentrations were set as 5, 10, 20,
30, 40, 50, and 100 mg/L to evaluate Mn(II) oxidation perfor-
mance at different Mn(II) concentrations. An excessively
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oligotrophic condition was obtained by PYG diluted 20 times
to explore the influence of Mn(II) oxidation ability by nutri-
tion condition. The pH values were adjusted to 5.0, 6.0, 7.0,
7.5, and 8.0, then 2.38 g/L HEPES was supplemented as
buffer.

Characterization of BMnOx

After acclimation for 15 days, the flasks were stood for 30min
to make BMnOx particles subsided. Then, the mixture was
centrifuged (5000×g) to obtain the particles. The obtained
particles were resuspended and washed three times with sterile
deionized distilled (DD) water to remove the organic matters
and salts. The obtained particles were freeze-dried and stored
at 4 °C before further characterization. Scanning electron mi-
croscope (SEM) coupled with dispersive X-ray analysis
(EDX) were used to investigate size, morphology, and ele-
ment distribution of BMnOx with a SEM/EDX analyzer
(Hitachi SU-8020, JAPAN). The elemental valence state of
BMnOxwas obtained by anX-ray photoelectron spectrometer
(ULVAC-PHI, JAPAN), using a Mg Ka X-ray source
(1253 eV) and a base pressure of 3 × 10−9 Torr in the analyt-
ical chamber. The powder X-ray diffraction (XRD) patterns
were recorded on a Bruker D8 Advance (Bruker AXS,
Karlsruhe, Germany).

As(III) oxidation and absorption experiments

The As(III) oxidation and absorption activities of the BMnOx
were tested at ambient temperature. The simulated As(III)
wastewater was prepared by dissolving NaAsO2 into DD wa-
ter at As(III) concentration of 1000 μg/L. BMnOx particles
were harvested after 15 days and washed three times with
sterile DD water. Then, different dosages (0.125, 0.250, and
0.500 g/L) of BMnOx particles were dispersed into simulated
As(III) wastewaters and the pH was adjusted to 7 ± 0.05 with
0.1 M NaOH or 0.1 M HCl. And, the mixture solutions were
mechanically stirred at an agitation speed of 100 rpm. At
predetermined time, the samples were taken and filtered
through a 0.22-μm poly-(vinylidene fluoride) membrane for
analysis.

Analytical methods

The amount of BMnOx was confirmed using leucoberbelin
blue (LBB) (Krumbein and Altmann 1973), which forms a
blue color that absorbs at 620 nm after interaction with
Mn(III)/Mn(IV). The microbial biomass was measured by a
UV spectrophotometer (U-3010, Hitachi, Japan) at 600 nm,
and 200 μM ascorbate was added to dissolve the generated
BMnOx particles, so the potential possible interference of
BMnOx was removed. And, pH was measured with a pH
meter (PHS-3C, Shanghai INESA Scientific Instrument Co.,

Ltd., China). Mn(II) and total arsenic in the solutions were
measured using inductively coupled plasma optical emission
spectrometry (ICP-OES 710, Agilent, USA). The concentra-
tions of As(III) and As(V) in the supernatant were analyzed by
HPLC-atomic fluorescence spectrometry (HPLC-AFS, PSA,
USA), and total As sorption was calculated from the differ-
ence between the concentration of dissolved As(III) and
As(V) before and after the experiment. The surface excess
(q) of total As on BMnOx was calculated using the following
equation (Eq.1):

qt TAsð Þ ¼
c0−ctð Þv
m

ð1Þ

where qt(TAs)(μg/g) is the surface excess of total As on
BMnOx at time t; c0 and ct (μg/L) are the total As concentra-
tions, a sum of As(III) and As(V), at the initial time and at time
t in the solution, respectively; v is the volume (L) of solution;
and m is the mass (g) of BMnOx. Samples were diluted with
DD water when it was necessary to achieve a measureable
concentration range.

Results and discussion

Growth of bacteria and BMnOx generation

During the growth stage of Microbacterium sp. CSA40, a
nutrition medium was helpful for propagation and growth
of bacterium; thereby, half-strength Luria Broth was ap-
plied as growth medium. Furthermore, the previous re-
search had reported that the concentration of Mn(II) above
10 μM was toxic to majority of bacterium and then could
inhibit their growth (Chapnick et al. 1982), so a medium
containing high Mn(II) concentration was commonly used
as a method to isolate Mn(II)-oxidizing bacteria (Cerrato
et al. 2010; LY et al. 2001; Nealson 2006). To obtain pure
bacterial strain of Microbacterium sp. CSA40, Mn(II) was
added into the medium to reduce contamination by the oth-
er bacterium. In this study, different concentrations of
Mn(II) (0, 10, and 100 mg/L) in half-strength Luria Broth
were carried out to explore the effect of CSA 40 growth
(Fig. S1), indicating that half-strength Luria Broth medium
with 10 mg/L Mn(II) was the optimal medium to enlarge
culture of CSA40 because there was no apparent influence
on its growth at 10 mg/L Mn(II). Moreover, in the growth
process, the Mn(II) in half-strength Luria Broth medium
could not be oxidized by CSA40 because bacterial Mn(II)-
oxidizing ability was restricted under such a eutrophic con-
dition (Akob et al. 2014; Fuller and Bargar 2014).

In the generation stage of BMnOx, a lag-phase and reaction
period were required after being inoculated for BMnOx for-
mation (Meng et al. 2009; Pei et al. 2013), and a positive

Environ Sci Pollut Res (2017) 24:17935–17944 17937



correlation was proved betweenMn(II) oxidation rates and the
spore concentrations (Toyoda and Tebo 2016). Therefore, in
our study, high concentration of Microbacterium sp. CSA40
was added to the PYG medium (OD600 = 0.90 ± 0.05), and
oxidation of Mn(II) could be observed on the first day (Figs. 1
and 2), which is earlier than in the other researches. The for-
mation of BMnOx was observed after 42 h by Acremonium
sp. strain KR21-2 (Tanaka et al. 2010) and 48 h by Shewanella
putrefaciens CN-32 and Shewanella loihica PV-4 (Wright
et al. 2016). Nevertheless, after 15 days, a maximum amount
of BMnOx was obtained in the PYG medium (Fig. S2).

Effect of initial Mn(II) concentrations, excessively
oligotrophic condition, and pH on BMnOx generation

Effect of initial Mn(II) concentrations

Figure 2 illustrated the time-course curves of microbial bio-
mass, pH, Mn(II) concentration, and generated BMnOx under
different initial Mn(II) concentrations within 15 days. The pH
of the medium was kept at 6.8–8.0 in the entire process. In the
pH scope, the autocatalytic abiotic Mn(II) oxidation by oxy-
gen in the air and alkaline changes is kinetically inhibited (Aly
1983; Larsen et al. 1999; Rosson and Nealson 1982).
Meanwhile, OD600 value reduced as time passed; the higher
the concentration of Mn(II) was, the greater the OD600 value
declined, indicating microbial biomass decreased gradually
during generation of BMnOx. As BMnOx maintained the cell
morphology inside with Mn oxides adhering tightly outside
the bacterial capsular (Sasaki et al. 2014), the generation of
BMnOx has been accompanied inevitably by the decrease of
biomass ofMicrobacterium sp. CSA 40. When the maximum
amount of BMnOx was obtained, the OD600 should be the
lowest value. The difference variation trend of OD600 was
observed between nutrient-rich medium (such as half-
strength Luria Broth, in Fig. S1) and nutrient-less medium

(such as PYG, in Fig. 2). Two reasons led to the decline of
OD600 value in the PYG: the bacterium precipitated by man-
ganese oxide accumulation on their surface; in the less rich
medium, there are fewer organic compounds to chelate the
Mn(II), so it might be more toxic to bacterium in the
nutrient-less medium than in the nutrient-rich medium under
the same Mn(II) concentration (Nealson 2006). Hence, the
different results between Figs. S1 and 2 were caused by the
difference of the two media.

The final concentrations of the generated BMnOxwere 1.7,
3.7, 6.9, 15.1, 30.6, and 11.8 mg/L when the initial Mn(II)
concentrations were 5, 10, 20, 40, 50, and 100 mg/L, respec-
tively. A proportional increase of BMnOx concentration was
observed with initial Mn(II) concentration increased from 5 to
50 mg/L; however, when the initial Mn(II) concentration was
up to 100 mg/L, the concentration of manganese oxide re-
duced obviously. Consequently, 50 mg/L Mn(II) as an appro-
priate concentration was obtained for Microbacterium sp.
CSA40 to generate BMnOx, and a lower Mn(II) concentration
could not provide sufficient manganese source, while a higher
Mn(II) concentration could be toxic to the bacteria.

Effect of excessively oligotrophic condition

An excessively oligotrophic condition was obtained by PYG
diluted 20 times. The effect of excessively oligotrophic con-
dition on generation of BMnOx is shown in Fig. 3. The var-
iation tendency of pH and OD600 value were almost the same
as in the PYG medium. The range of pH was between 6.8 and
8.0, and OD600 value decreased gradually.

The capacity of Mn(II) adsorbed on the BMnOx and cell
surfaces are shown in Fig. S3. The quantity of Mn(II)
adsorbed on the BMnOx and cell surfaces was very little, so
the removal of Mn(II) could primarily depend on the BMnOx
generation. However, over 90% of Mn(II) remained in the
medium and the concentration of BMnOx was 3.1 mg/L after

Fig. 1 Schematic generation
route of BMnOx and its
application in As(III) removal
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15 days, which is far less than that in the PYG medium. The
tremendous differences in BMnOx concentration showed that
an excessively oligotrophic condition restricted the Mn(II)
oxidation ability of Microbacterium sp. CSA40. Tebo et al.
found that Mn(II) oxidation bacterium grew well in the nutri-
tious medium, but their Mn(II) oxidation ability was restricted
completely (Tebo et al. 2004); nevertheless, the excessively
oligotrophic medium also depresses the Mn(II) oxidation abil-
ity significantly.

Effect of pH on BMnOx generation

The effect of pH on Mn(II) oxidation was examined in PYG
medium at 50 mg/L initial Mn(II) concentration and displayed
in Fig. 4. The concentration of BMnOx increased with pH
value increased from 5.0 to 7.5 and then decreased at

pH = 8.0 (Fig. 4a). The generated BMnOx was 5.3 and
14.2 mg/L when pH was 5.0 and 6.0, respectively. And at
pH = 7.5, BMnOx generation amount was 60.6 mg/L, which
is twice the amount at pH = 8.0. As could be seen in Fig. 4b,
under the condition of pH = 5.0 and 6.0, the residuals of
Mn(II) were 89 and 68%, and at the optimum pH = 7.5, more
than 90% of Mn(II) was removed after 15 days. These results
indicate that the Mn(II)-oxidizing activity of Microbacterium
sp. CSA40 was strongly influenced by pH value, and slight
alkaline conditions were favorable for Mn(II) oxidation. The
similar result was reported by Su et al., that high Mn(II) oxi-
dase activity was obtained in the pH range of 7.2 to 8.0, and
activity was low at pH values below 7.0 (Su et al. 2014). The
pH effect of biological Mn(II) oxidation rate should be attrib-
uted to the activity of enzymes affected by pH change (Adams
and Ghiorse 1987; Cerrato et al. 2010).

Fig. 2 Effect of initial Mn2+

concentrations on generation of
BMnOx
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Characterization of BMnOx

SEM images of BMnOx after lyophilization are shown in
Fig. 5a. BMnOx exhibited as a fibrous precipitate and man-
ganese oxides particles accumulated on the bacterium cell
surface and had micrometer-scale sizes, which was a typical
morphology for biogenic manganese oxide. Biogenic manga-
nese oxides still maintained their cell morphology with Mn
oxides adhering tightly to the bacterial capsular (Fig. 5b). EDS
analysis (Fig. 5c) showed BMnOx contained C, O, and Mn as
its main components; it indicated that BMnOx occurs as a
complex of manganese oxide nanoparticles embedded in mi-
crobial biomass rather than Mn oxides only. As shown in
Fig. S4, the XRD spectrum indicated that the BMnOx existed
in an amorphous form.

As seen in survey XPS spectrum (Fig. 6a), four main peaks
corresponding to Mn 2p1/2 (654.0 eV), Mn 2p3/2 (642.3 eV),
O 1s (530.0 eV), and C 1s (285 eV.0) were observed on the
surface of BMnOx (Islam et al. 1996; Raj et al. 2010). TheMn
2p region consisted of a spin-orbit doublet with Mn 2p1/2 and
Mn 2p3/2. Figure 6b showed the region and curve-fitted XPS

spectra of Mn 2p. To obtain further insight into the chemical
bonds on the surface of BMnOx, curve-fitting of Mn 2p3/2
peak was performed using XPS Peak 4.1 software. The peak
at 642.3 eVwas decomposed into two peaks (Beyreuther et al.
2006; Nesbitt and Banerjee 1998): a peak at 642.2 eV corre-
sponding to Mn(IV) (84.14%) and a peak at 641.7 eV due to
Mn(III) (15.86%), respectively. The result concluded that
BMnOx contained C, O, and Mn, which was accordant to
the result of EDX. Mn was composed of Mn (IV) and Mn
(III), the two valence states existing in the ratio of 5.31:1,
and the average oxidation valence of the Mn was 3.84.

As(III) oxidation and absorption by BMnOx particles

In order to evaluate the As(III) removal performance and
mechanism by BMnOx particles, the initial concentration of
As(III) was fixed at 1000 μg/L whereas the amounts of the
BMnOx were 0.125, 0.250, and 0.500 g/L. Figure 7 showed
the As(III) and As(V) concentrations in the solution. As could
be seen, the oxidation of As(III) took place at all concentration
gradients of BMnOx because of high Mn average oxidation
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valence (3.84), proving that the removal of As(III) was not
only by the decrease of As(III) in the solution but also by the
subsequent detection of As(V) throughout time of reaction.
The residual As(III) concentrations in liquid phase after reac-
tion for 18 h were 496.2 ± 14.9, 216.2 ± 14.6, and
46.2 ± 3.4 μg/L, when BMnOx dosages were 0.125, 0.250,
and 0.500 g/L. In addition, the subsequent As(V)

concentrations in solutions after 18 h were 90.7 ± 8.2,
110.7 ± 9.6, and 50.7 ± 3.4 μg/L. In total, more than 90% of
total As was removed from the simulated wastewater by
0.500 g/L BMnOx. As BMnOx dosages were 0.125, 0.250,
and 0.500 g/L, the saturated adsorption amounts of total As
were 3304.8 ± 90.3, 2692.4 ± 166.1, and 1806.2 ± 169.2 μg/g
(Fig. 8). In the reaction, BMnOx was the electron acceptor for
As(III) oxidation, resulting in the reduction of Mn(III/IV) to
Mn(II) (Eq. 2). However, no released Mn(II) was detected in
the solution (data not shown), indicating BMnOx remains
active for Mn(II) oxidization during the application process,
and released Mn(II) could be oxidized to Mn(III/IV).
Therefore, BMnOx was a pollution-free, cost-effective, and
high-efficiency material for As(III) treatment:

MnO2 þ H3AsO3 þ 2Hþ ¼ H3AsO4 þ H2OþMn IIð Þ ð2Þ

Based on our results, a hypothesized mechanism was ob-
tained for the removal of As(III) by BMnOx: at the beginning,
some of the free As(III) species were adsorbed on the surface

Fig. 5 SEM micrographs and energy-dispersive spectroscopy of
BMnOx
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of BMnOx, and the BMnOx itself has a strong oxidation abil-
ity; hence, most of the As(III) species were oxidized to As(V)
at the same time on the surface, resulting in the reduction of
Mn(III/IV) to Mn(II), and released Mn(II) was oxidized to
Mn(III/IV) because of the remaining activity for Mn(II)
oxidization in BMnOx. As a result, As(V) was adsorbed by
BMnOx or released into the water system. In one word, sub-
sequent removal of total arsenic can be attributed to the sorp-
tion of As(V) onto BMnOx.

Conclusion

Th i s s t u dy u s e d a Mn ( I I ) - o x i d a t i o n b a c t e r i a
(Microbacterium sp. CSA40) isolated from metal-
contaminated water. The generation of biogenic manga-
nese oxides by Microbacterium sp. CSA40 and its appli-
cation in the removal of As(III) in groundwater were in-
vestigated. There were several primary outcomes from this
study: (1) 10 mg/L Mn(II) in half-strength Luria Broth
reduced contamination by other bacteria, and a high initial
bacteria concentration shortened adaptation and growth
process for BMnOx generation process. (2) Initial Mn(II)
concentrations, nutritional condition, and pH of the PYG
had great influence on the generation of BMnOx by
Microbacterium sp. CSA40. An appropriate Mn(II) con-
centration (50 mg/L) was obtained for generation of
BMnOx, and higher or lower Mn(II) concentration would
interfere Mn(II)oxidization performance. The rate of
Mn(II) oxidation was very slow at pH values less than
6.00; slight alkaline conditions were favorable for Mn(II)
oxidizing. Mn(II)-oxidation ability would be restricted in
an excessively oligotrophic condition. (3) As(III)
oxidization and As(V) adsorption proceed simultaneously
by BMnOx without Mn(II) being released. The removal of
arsenic in the groundwater by BMnOx would be a pollu-
tion-free, cost-effective, and high-efficiency treatment.
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Fig. 7 As(III) oxidation and
adsorption by different initial
BMnOx concentration. a 0.125
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