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Abstract The distribution, sources, and ecological risk of
polycyclic aromatic hydrocarbons (PAHs) were investigated
in surface sediments from the Haihe River. Total PAH con-
centrations varied from 171.4 to 9511.2 ng g−1 with an aver-
age of 2125.4 ng g−1, suggesting serious pollution of the
Haihe River in comparison with other reported rivers world-
wide. PAH contaminants differed significantly among 17 sam-
pling locations with high values occurring in industrial areas
and densely populated areas. The composition of PAHs was
characterized by high abundance of 4-ring and 5-ring PAHs,
and benzo[a]anthracene, chrysene, and benzo[a]pyrene were
the predominant components. Molecular diagnostic ratios
have confirmed that PAHs in Haihe River sediments resulted
from mixed sources, primarily including various combustion
processes. Ecological risk assessment using the Sediments
Quality Guidelines indicated that PAHs in sediments could
cause certain negative effects on aquatic organisms in most
survey regions.

Keywords Polycyclic aromatic hydrocarbons . Sediments .

Urban river . Source identification .Ecological riskassessment

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are aromatic hy-
drocarbons composed of two or more fused benzene rings.
As one of the most important classes of persistent organic
pollutants, PAH compounds are ubiquitous in the environment
and originate from both natural processes and anthropogenic
activities (Elie et al. 2013). Due to their carcinogenic, terato-
genic, mutagenic, and other properties such as bioaccumula-
tion and biomagnification (Xu et al. 2013; Lau et al. 2014; Liu
et al. 2015a), 16 of them have been listed as priority pollutants
by United States Environmental Protection Agency (US EPA)
(Gu et al. 2016). PAHs can be generated continuously during
the processes of utilizing carbonaceous materials such as coal,
petroleum, and wood (Zhang and Tao 2008; Dong et al. 2013).
Hundreds of thousands of tons of PAHs are released into the
environment worldwide each year and difficult to be eliminat-
ed completely (Zhang and Tao 2009). Consequently, PAHs
are still of significant concern with high detection rates at
present.

Urban river system, a special ecosystem around cities, has
important landscape values and ecological functions and is
deeply impacted by human activities. With increasing urban-
ization and industrialization, the environmental quality in cit-
ies has been deteriorating seriously (Guo et al. 2011). Large
amounts of contaminants such as nutrients, heavy metals, an-
tibiotics, surfactants, and toxic organic compounds are
discharged into urban rivers, resulting in serious ecological
hazards (Bao et al. 2010; Li et al. 2011; Islam et al. 2015;
Xu et al. 2016). PAHs in urban areas are mainly from anthro-
pogenic activities such as domestic heating, industrial emis-
sion, traffic-related fuel combustion, electrical power genera-
tion, and waste incineration (Ma et al. 2010; Liu et al. 2012).
Then they can be emitted into urban rivers through multiple
ways of wastewater discharge, atmospheric deposition, oil
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spillage, and stormwater runoff. When entering into urban
river environment, due to the high hydrophobicity (log Kow

from 3.37 to 6.75), PAHs are easily adsorbed on particulate
matters and finally deposited into the sediments (Neff and
Burns 1996; Hussain et al. 2015; Wang et al. 2016). Under
proper conditions, sedimentary PAHs will remobilize into the
overlying water and further threaten urban river ecosystem
and even human health through food chains (An et al.
2016). That is, sediments can act as both a sink and a source
of PAHs in urban rivers.

Tianjin is situated on the north of China. It is one
most economically advanced city in China with an area
about 11,946 km2 and a population of 15 million. Its
urban areas have been heavily polluted by the develop-
ment of industry and the expansion of urban scale.
Industry, traffic, and residents living are the primary
pollution reasons. However in the suburban areas, agri-
culture is the major land-use type and causes pollution
(Gong et al. 2004). The Haihe River flows through the
Tianjin District, gathers several branch streams, and fi-
nally empties into the Bohai Bay. It receives domestic,
industrial, and agricultural pollutants not only from
Tianjin but also the surrounding Beijing and Hebei
Province. As a result, the Haihe River has become a
seriously polluted river with high loads of environmen-
tal pollutants (Cao et al. 2005). Levels of pollutants in
surface sediments can reflect the current pollution status.
Many studies have been focused on the occurrence and
environmental fate of PAHs in surface sediments from
various aquatic environments, such as lakes (Yuan et al.
2016), rivers (Deng et al. 2014), reservoirs (An et al.
2016), and coastal bays (Gu et al. 2016). Among these
matrices, PAHs in urban river sediments are much more signif-
icant as urban river pollution can do harm to human health
directly or indirectly. A previous study on the Haihe River has
reported the distribution and sources of PAHs in surface sedi-
ments, but further toxicity and ecological risk were not assessed
(Jiang et al. 2007). The reported data probably have turned
inapplicable with time and new investigations on urban river
sediments should be performed.

The objectives of this study were to (1) clarify the spatial
distribution and composition characteristics of PAHs in urban
river sediments via a scientific survey of the Haihe River, (2)
identify the possible PAH sources using molecular diagnostic
ratios, and (3) assess the potential toxicological and ecological
effects related to PAHs. To achieve these goals, 16 priority PAHs,
including naphthalene (Nap), acenaphthylene (Acy),
acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe), anthra-
cene (Ant), fluoranthene (Fla), pyrene (Pyr), benzo[a]anthracene
(BaA), chrysene (Chr), benzo[b]fluoranthene (BbF),
benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP),
dibenzo[a,h]anthracene (DahA), benzo[g,h,i]perylene (BghiP),
and indeno[1,2,3-cd]pyrene (IcdP) were selected and analyzed.

This work will provide valuable information for PAHs
pollution management to improve the environmental qual-
ity of the Haihe River.

Materials and methods

Study area and sediments sampling

As the largest water system in North China, the Haihe River is
the most important freshwater reservoir to Tianjin and plays a
vital role in maintaining the rapid urban development (Jiang
et al. 2007). The mainstream is 73 km, the watershed area is
2066 km2 and the annual average runoff is 26.4 billion cubic
meters. Haihe River Basin has a typical mainland monsoon
climate with distinct four seasons, sufficient sunshine, and
moderate rainfall (Cao et al. 2005). The annual average tem-
perature is 13.1 °C and the annual mean rainfall is 539 mm.
The rainy, ordinary, and dry seasons are from June to August,
September to November, and December to May, respectively.

Surface sediment samples were successively collected
along Haihe River mainstream using a stainless steel grab
sampler in June 2011. A sampling strategy was designed to
cover the whole river from the headwater to the estuary. To
explore the effects of urban structure on river sedimental
PAHs distribution, 17 sampling sites were finally set up and
divided into three categories, including two sampling sites
(H1–H2) in Tianjin central urban area (TC), ten sampling sites
(H3–H12) in Tianjin suburban area (TS), and five sampling
sites (H13–H17) in Binhai New Area (BN). The detailed sam-
pling locations are shown in Fig. 1 and synchronized latitude
and longitude pairs of all sites were recorded by a global
positioning system (Table S1). Once grabbed, approximately
the top 5 cm of sediments were removed carefully with a
stainless steel spoon, mixed well, and put in pre-cleaned alu-
minum containers. All sediment samples were transported im-
mediately to the laboratory in a cooler box with ice packs and
then kept at −20 °C until further extraction. The grain size of
river sediments was determined by a Laser Particle Size
Analyzer, and the particle was divided into three size frac-
tions: clay (<63 μm), silt (63–2000 μm), and sand
(>2000 μm) (Evans et al. 1990).

Sample extraction and cleanup

All sediment samples were freeze-dried using a vacuum
freeze-drier (FD-1A, China). After removing stones and resid-
ual roots, the samples were ground into fine powders with a
porcelain mortar and fully homogenized. Then the powders
were sieved through a 100-mesh stainless steel sieve
(<150 μm). Extraction and cleanup of PAHs were performed
by the method published previously (Qiao et al. 2006).
Dichloromethane, acetone, and hexane used in the analysis
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were of HPLC grade and obtained from Fisher Science
Company. Unless otherwise indicated, the other chemicals used
were of analytical grade. Briefly, 20 g of river sediment was
spiked with five recovery surrogates (naphthalene-d8,
acenaphthene-d10, phenanthrene-d10, chrysene-d12, and
perylene-d12, 300 ng, purchased from J&K Chemical, Beijing,
China) and Soxhlet extracted with 200 mL dichloromethane/
acetone (1:1, v/v) for 72 h. Elemental sulfur was removed by
the addition of 2 g activated copper. After extraction, the sample
extract was concentrated by a rotary evaporator, solvent ex-
changed to hexane, and further reduced to approximately
2 mL. An alumina/silica gel glass column containing 1 cm an-
hydrous sodium sulfate on the top was used to clean up the
hexane extract. And the fraction containing PAHs was collected
by eluting with 70 mL dichloromethane/hexane (3:7, v/v). Then
the eluting solution was evaporated again to 5 mL, dried under
a gentle stream of nitrogen and finally dissolved in 1 mL hex-
ane. A known quantity of hexamethylbenzene (200 mg L−1,
5 μL) was added to the sample as the internal standard prior
to instrumental analysis.

Instrumental analysis

The concentrations of 16 PAHs were measured by gas chro-
matography (Agilent 6890 GC) in conjunction with mass
spectrometry (Agilent 5973 MS). An HP-5MS capillary col-
umn (30 m × 0.25 mm diameter, 0.25 μm film thickness) was
used. The GC carrier gas was high purity helium at a constant
flow rate of 1.0 mL min−1. A 1.0-μL sample was injected in
the splitless mode. The chromatographic conditions were

programmed as follows: initial temperature at 60 °C for
2 min, increased to 120 °C with a rate of 10 °C min−1, and
held 5 min, then increased to 290 °C with a rate of 4 °C min−1

and held 10 min finally. The injector and detector tempera-
tures were 270 and 280 °C, respectively. The MS was operat-
ed in electron impact ionization mode at 70 eVand the scan to
determine appropriate masses for selected ion monitoring
ranged from 45 to 400 amu. Identification of individual PAH
compounds was based on the selected ions and the compari-
son of relative retention times between sample and the stan-
dard solution.

Quality assurance (QA) and quality control (QC)

All analytical data were subjected to strict quality assurance
and control. Method blanks (solvent), spiked blanks (stan-
dards spiked into solvent), sample duplicates, and a National
Institute of Standards and Technology (NIST) standard refer-
ence material (SRM 1941b) were processed in the same pro-
cedures used for field samples in this study. Naphthalene-d8,
acenaphthene-d10, phenanthrene-d10, chrysene-d12, and
perylene-d12 were added to the samples to correct procedural
performance and matrix effects. The mean recoveries were
88.2 ± 7.8% for naphthalene-d8, 79.4 ± 6.2% for
acenaphthene-d10, 81.9 ± 9.0% for phenanthrene-d10,
103.6 ± 9.5% for chrysene-d12, and 90.6 ± 7.6% for
perylene-d12, respectively (Table S2). Quantification of indi-
vidual PAHs was conducted by the internal calibrationmethod
based on five-point calibration curves. The relative standard
deviations in sample duplicates were <15%. The recoveries of

Fig. 1 Sketch map of the Haihe River showing the sampling sites of surface sediments (H1–H17) with red triangles
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all PAHs in the SRM 1941b samples were between 65.2%
(Flu) and 110.4% (IcdP) of the certified values (Table S3).
Detection limits (DLs) were calculated as three times of the
signal-to-noise (S/N) ratios in blank samples and varied from
0.2 to 1.1 ng g−1 for individual PAHs (Table S2). All reported
concentrations were corrected by surrogate recoveries and
expressed on a dry weight (dw) basis.

Data statistical analysis

Statistical analyses of the results were performed using
the Microsoft Excel 2010 (Microsoft Co., Redmond,
WA, USA) and SPSS 18.0 for Windows (SPSS Inc.,
Chicago, IL, USA). Pearson correlation coefficient with
two-tailed test (t test) was used to characterize the rela-
tionships between different sets of data. Four molecular
ratios of Fla/(Fla + Pyr), Ant/(Ant + Phe), IcdP/(IcdP +
BghiP), and BaA/(BaA + Chr) were used to identify the
possible PAH sources.

Toxicity and ecological risk assessment

In general, low molecular weight (LMW, 2–3 rings)
PAHs exhibit significant acute toxicity, whereas high
molecular weight (HMW, 4–6 rings) PAHs are charac-
terized by potential carcinogenic toxicity. As molecular
weight increases, the carcinogenicity of PAHs also

increases with reducing acute toxicity (Kim et al.
2013). In this study, the carcinogenic potency of
sedimental PAHs was estimated by BaP equivalent
(BaPeq) concentrations calculated using BaP toxic equiv-
alency factors (TEFs) (Nisbet and Lagoy 1992; Wang
et al. 2013; Ning et al. 2014). In detail, BaPeq concen-
tration of each PAH was calculated by multiplying the
concentration with corresponding TEF, and the carcino-
genic potency of total PAHs could be defined as the
sum of BaPeq concentrations of 16 individual PAHs
(Ning et al. 2014).

PAH contaminants in the sediments can be used by benthic
organisms, then enter into food chains and pose potential risk
to aquatic ecosystem (Dudhagara et al. 2016). The Sediments
Quality Guidelines are useful tools to evaluate the risk of
PAHs to organisms and ecosystem and widely applied for
sediment quality assessment in aquatic environments (Qiao
et al. 2006; He et al. 2014). Effects range-low (ERL) values
and effects range-median (ERM) values which were
established by 10 and 50% effective concentrations respec-
tively were used in this study (He et al. 2014). PAH concen-
trations lower than ERL values were considered to be
harmful rarely to organisms, concentrations higher than
ERM values were considered to be harmful frequently,
and concentrations between ERL values and ERM values
were considered to be harmful occasionally (Long et al.
1995; MacDonald et al. 1996).

Table 1 Descriptive statistics for PAH concentrations (ng g−1, dw) in surface sediments from the Haihe River

PAHs Abbreviation Ring Min Max Mean Median SD CV (%)

Naphthalene Nap 2 17.0 200.0 67.1 50.6 53.0 78.9

Acenaphthylene Acy 3 35.9 79.8 55.9 51.6 14.1 25.1

Acenaphthene Ace 3 0.9 131.0 18.9 4.4 37.3 196.9

Fluorene Flu 3 1.1 33.6 10.9 5.2 11.5 104.8

Phenanthrene Phe 3 3.8 84.4 30.5 15.4 27.1 88.8

Anthracene Ant 3 7.5 12.0 11.7 12.0 1.1 9.3

Fluoranthene Fla 4 19.2 880.0 187.2 84.8 248.1 132.5

Pyrene Pyr 4 2.8 257.0 47.6 17.6 68.9 144.7

Benzo[a]anthracene BaA 4 16.4 1546.0 337.8 92.2 513.0 151.9

Chrysene Chr 4 13.0 1357.0 280.8 76.0 433.8 154.5

Benzo[b]fluoranthene BbF 5 2.8 1042.0 207.8 50.8 315.6 151.8

Benzo[k]fluoranthene BkF 5 3.8 936.0 215.7 53.6 311.1 144.2

Benzo[a]pyrene BaP 5 5.4 1362.0 270.1 71.4 412.6 152.7

Dibenzo[a,h]anthracene DahA 5 1.4 816.0 159.6 37.2 251.8 157.7

Benzo[g,h,i]perylene BghiP 6 NDa 424.0 86.7 40.8 113.0 130.3

Indeno[1,2,3-cd]pyrene IcdP 6 1.2 656.0 136.8 32.0 218.3 159.6

∑CPAHsb – – 44.0 7715.0 1608.7 479.6 2429.4 151.0

∑PAHs – – 171.4 9511.2 2125.4 762.8 2913.1 137.1

a Below the detection limit
b The sum concentration of seven carcinogenic PAHs
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Results and discussion

Levels and spatial distribution of PAHs

Sixteen priority PAHs were investigated in surface sediments
from different sampling locations of the Haihe River.
Descriptive statistics for the concentrations of individual
PAHs, seven carcinogenic PAHs (BaA, Chr, BbF, BkF, BaP,
DahA, and IcdP) and total PAHs are provided in Table 1. All
PAHs were detected at 17 sampling sites except that BghiP
was not found at site H6. The mean detection rate of 16 indi-
vidual PAHs was 99.6%. As listed in Table 1, there were
obvious differences on individual PAH concentrations among
all samples. BaA had the highest concentrations varying from
16.4 to 1546.0 ng g−1 with a mean value of 337.8 ng g−1. Flu,
Ant, and Ace had relatively low concentrations of 10.9 ± 11.5,
11.7 ± 1.1, and 18.9 ± 37.3 ng g−1, respectively. BaP, one of
the most toxic PAHs, was detected in all samples and ranged
from 5.4 to 1362.0 ng g−1 with a mean value of 270.1 ng g−1.
In brief, HMW PAHs exhibited relatively higher levels than
LMW ones. The decreasing order based on mean concentra-
tions was: BaA > Chr > BaP > BkF > BbF > Fla > DahA >
IcdP > BghiP > NaP > Acy > Pyr > Phe > Ace > Ant > Flu. In

addition, the coefficients of variation (CVs) of individual
PAHs were calculated and ranged from 9.3 to 196.9%. Most
of individual PAH values (13 of the 16) displayed a high
spatial variability with CV >100%. To some extent, the large
CV could reflect that the occurrence of PAHs in surface sed-
iments from the Haihe River might be related to anthropogen-
ic activities and energy consumption structure along the river
(Sun et al. 2015).

The spatial distributions of total PAHs and seven carcino-
genic PAHs in surface sediments from the Haihe River are
shown in Fig. 2. Total PAH concentrations varied greatly de-
pending on sampling locations and ranged from 171.4 to
9511.2 ng g−1 with a mean value of 2125.4 ng g−1. The highest
concentration was observed at site H17 (9511.2 ng g−1)
followed by H16 (7695.0 ng g−1) and H13 (6669.4 ng g−1),
while the lowest was recorded at site H6 (171.4 ng g−1). The
maximum value was over 50-fold higher than the minimum
value. Sites H13, H16, and H17were all located close to large-
scale industrial enterprises, which was the main reason of high
concentrations under the influence of industrial emission.
Slightly high concentrations of total PAHs were also found
at sites H1 and H2, two sites in densely populated urban areas
(TC), due to the secondary environment problems (e.g., traffic

Fig. 2 Concentrations of total PAHs and seven carcinogenic PAHs in 17 surface sediments
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emission, fuel consumption, and domestic sewage discharge)
caused by the large population. On the contrary, low concen-
trations observed at some sites in TS could be explained by
fewer pollution sources in such agricultural cultivation re-
gions. The concentrations of seven carcinogenic PAHs ranged
from 44.0 to 7715.0 ng g−1 with a mean value of
1608.7 ng g−1, and shared similar distribution characteristics
to total PAH concentrations. On average, seven carcinogenic
PAHs accounted for 75.7% of total PAHs in all samples. The
percentage was highest at site H16 (85.3%) and lowest at site
H6 (25.7%). These seven PAHswere the major contributors to
total PAHs in surface sediments from the Haihe River and
should be paid more attention.

For three particular sampling regions, the mean concentra-
tions of total PAHs in surface sediments occurred in the

following order: BN (5127.0 ± 4024.2 ng g−1) > TC
(2436.4 ± 540.0 ng g−1) > TS (562.4 ± 340.5 ng g−1). The
mean concentrations of seven carcinogenic PAHs of TC, TS,
and BN were 1766.5 ± 400.9, 335.8 ± 223.9, and
4129.0 ± 3366.3 ng g−1, respectively. The general tendency
of PAH contaminants was decreased at first and then sharply
increased in the process of runoff flowing from upstream to
estuary. Binhai New Area, located in the coastal region of the
Bohai Bay, is one of the most rapidly developing areas in
China. Severe PAHs pollution happening in this area was
reasonable and could be attributed to three factors. Firstly, this
area is densely populated and characterized by flourishing
industrial activities. Many large-scale industrial enterprises
such as shipbuilding plants, petrochemical plants, metal
manufacturing plants, and steel mills are concentrated along

Table 2 Comparison of total PAH concentrations (ng g−1, dw) in surface sediments from different locations worldwide

Locations Na Total concentrations Mean concentrations Pollution levels References

Haihe River, China, 2011 16 171.4–9511.2 2125.4 Moderate to very high This study

Haihe River, China, 2004 16 774.81–255,371.91 27,074.08 Moderate to very high Jiang et al. 2007

Beiyun River, China 16 171–8650 4241 Moderate to very high Shen et al. 2009

Ziyaxin River, China 16 326.89–11,296.66 2926.40 Moderate to very high Liu et al. 2013a

Bohai Bay, China 16 140.6–300.7 188.0 Moderate Hu et al. 2010

Bohai Sea, China 16 97.2–300.7 175.7 Low to moderate Hu et al. 2013

Lijiang River, China 16 160–602 329 Moderate Xue et al. 2013

Songhua River, China 16 68.25–654.15 234.15 Low to moderate Zhao et al. 2014

Shenzhen River, China 16 1028–1120 1074 High Deng et al. 2014

Liangtan River, China 16 69–6250 2040 Low to very high Liu et al. 2013b

Aojiang River, China 15 490.6–883.4 740.6 Moderate Li et al. 2009

Dongjiang River, China 16 100–3400 880 Moderate to high Zhang et al. 2011

Huangpu River, China 16 313–1707 1154 Moderate to high Liu et al. 2008

Xihe River, China 16 340–12,900 5593 Moderate to very high Guo et al. 2011

Luan River, China 16 20.9–287.0 115.3 Low to moderate Cao et al. 2010

Huaihe River, China 16 95.2–877.5 370.8 Low to moderate Feng et al. 2012

Erjen River, Taiwan 16 22–28,622 737 Low to very high Wang et al. 2015a

Hyeongsan River, Korea 16 5.3–7700 2200 Low to very high Koh et al. 2004

Chao Phraya River, Thailand 17 33–594 263 Low to moderate Boonyatumanond et al. 2006

Prai River, Malaysia 16 1102–7938 4357 High to very high Keshavarzifard et al. 2014

Malacca River, Malaysia 16 716–1210 1023 Moderate to high Keshavarzifard et al. 2014

Gomti River, India 16 5.24–3722.87 697.25 Low to high Malik et al. 2011

Tiber River, Italy 6 157.8–271.6 215.2 Moderate Patrolecco et al. 2010

Ammer River, Germany 16 112–22,900 8770 Moderate to very high Liu et al. 2013b

Arc River, France 16 151–1257 549 Moderate to high Kanzari et al. 2012

Huveaune River, France 16 572–4235 1966 Moderate to high Kanzari et al. 2014

Savannah River, USA 24 29–5375 1216 Low to very high Sanders et al. 2002

Iguaçu River, Brazil 16 131–1713 554 Moderate to high Leite et al. 2011

Biobio River, Chile 16 15–276 104 Low to moderate Barra et al. 2009

aNumber of PAH compounds analyzed in each study
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the river banks. Large amounts of domestic and industrial
wastewater is discharged through drain outlets into the
Haihe River. Secondly, water activities brought by tourism
and transportation are frequent in this river section and result
in accidental oil spillage sometimes. Thirdly, the Haihe River
is a sluice-controlled river. The presence of sluice at the river
mouth weakens the water exchange ability with adjacent sea
areas, which is not conducive to the dispersion of PAH con-
taminants. Generally, the accumulation of PAHs in surface
sediments from the Haihe River was affected by multiple an-
thropogenic activities with industrial pollution as the major
contributor.

A comparison of total PAH concentrations in surface sed-
iments collected from different locations (including two trib-
utaries of the Haihe River, some adjacent sea areas and other
rivers around the world) is given in Table 2 and Fig. S1. The
levels of sediment pollution evaluated by total PAH concen-
trations could be classified as: low, 0–100 ng g−1; moderate,
100–1000 ng g−1; high, 1000–5000 ng g−1; and very high,
>5000 ng g−1 (Baumard et al. 1998). The pollution levels of
surface sediments from the Haihe River in this study were
moderate to very high. Surface sediment samples from the
Haihe River were taken previously in 2004 and the mean
concentration of total PAHs was 27,074.1 ng g−1 (Jiang
et al. 2007), approximately 13 times higher than that in this
study. The difference might be attributed to desilting works
and renovation implemented in recent years. The mean con-
centration of total PAHs in this study was slightly lower than

those in two tributaries, but higher than those in adjacent sea
areas. The continuous inflow of tributaries could exacerbate
PAHs pollution of the Haihe River, and similar situation
would happen in the offshore areas influenced by the Haihe
River. In addition, compared with other rivers around the
world, the mean concentration of total PAHs in this study
was similar to those in the Liangtan River, Hyeongsan
River, and Huveaune River, lower than those in the Xihe
River, Prai River, and Ammer River, but higher than those
in other rivers. Obviously, the comparison indicated that
PAHs pollution in the Haihe River was already at a relatively
serious level and further treatment measures should be
adopted to protect this significant urban ecosystem. Such
comparison of reported data could be subjective and slightly
inaccurate sometimes because of variances in the numbers and
types of individual PAHs investigated, the numbers of sedi-
ment samples taken, the sediment fractions analyzed, and the
analytical methods used.

Composition pattern of PAHs

Composition pattern of PAHs contains much important infor-
mation on different sources that contribute PAH contaminants
to environmental samples (Cao et al. 2005). Based on the
number of aromatic rings, the 16 PAHs could be divided into
five groups: 2-ring, 3-ring, 4-ring, 5-ring, and 6-ring PAHs.
The relative abundance of PAHs by ring size is illustrated in
Fig. 3. The concentrations ranged from 17.0 to 200.0 ng g−1

Fig. 3 Composition profiles of
PAH compounds in surface
sediments from the Haihe River
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for 2-ring PAHs, from 52.4 to 330.0 ng g−1 for 3-ring PAHs,
from 51.4 to 3863.0 ng g−1 for 4-ring PAHs, from 13.4 to
4156.0 ng g−1 for 5-ring PAHs, and from 1.2 to 1080 ng g−1

for 6-ring PAHs. In general, 4-ring and 5-ring PAHs were the
predominant compounds for all samples, followed by 6-ring
and 3-ring PAHs, while the relative abundance of 2-ring PAHs
was the lowest. Numerically, 4-ring and 5-ring PAHs jointly
accounted for 80.3% of total PAHs on average, among which
the percentages of BaA, Chr, BaP, BkF, and BbF were 15.9,
13.2, 12.7, 10.2, and 9.8%, respectively. It should be noted
that the general composition characteristics above were just
suitable to most samples. LMW PAHs had relatively higher
percentages in sediment samples of TS (mean 23.6%) much
more than TC (mean 12.2%) and BN (mean 5.5%). More
significantly at sites H6 and H10, 3-ring PAHs were even
the most abundant PAHs. LMW PAHs are considered to orig-
inate from both petrogenic and low-temperature combustion
sources, whereas HMW PAHs have predominantly high-
temperature pyrolytic sources (Mai et al. 2003). High percent-
ages of LMWPAHs at some sites indicated the contribution of
petrogenic processes. Furthermore, HMW PAHs are more re-
sistant to degradation and more hydrophobic to be

accumulated in the sediments (Liu et al. 2015b). As a result,
higher concentrations of HMW PAHs than LMW PAHs have
been commonly observed in surface sediments from freshwa-
ter and marine environments (Liu et al. 2015b; Yuan et al.
2016; Zhang et al. 2016). The composition of PAHs in this
study showed a significant difference between proportions of
HMW PAHs (90.8%) and LMW PAHs (9.2%), which was in
agreement with the universal result found in aquatic surface
sediments.

Source identification of PAHs by isomer ratios

Identifying the possible sources of PAHs is extremely
important in understanding the fate of PAH contami-
nants and how the processes occurring in the designated
area contribute to PAHs pollution (Maciel et al. 2015;
Yang et al. 2015; Gu et al. 2016). Anthropogenic PAHs
in the environment are mainly from incomplete combus-
tion processes and the release of petroleum and its
products (Mai et al. 2003). Molecular indices based on
ratios of isomeric concentrations have been widely ap-
plied to distinguish PAHs from pyrolytic and petrogenic

Fig. 4 Plots of four isomeric
ratios in surface sediments from
the Haihe River
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sources (Yunker et al. 2002; Li et al. 2015; Wang et al.
2015b; Gu et al. 2016). In order to determine the pos-
sible PAH sources in surface sediments from the Haihe
River, four isomer ratios of Fla/(Fla + Pyr), Ant/(Ant +
Phe), IcdP/(IcdP + BghiP), and BaA/(BaA + Chr) were
selected, calculated, and plotted in Fig. 4. Phe is ther-
modynamically more stable than Ant and the more exis-
tence of Phe indicates that PAHs are mainly the result of
petrogenic activities (Yang et al. 2013). Indeed, petroleum
products usually exhibit a quite low Ant/(Ant + Phe) ratio.
It is accepted that the ratio of Ant/(Ant + Phe) <0.10 is
indicative of petroleum sources while the ratio of Ant/
(Ant + Phe) >0.10 suggests combustion sources of PAHs
contamination (Yunker et al. 2002). In addition, for Fla/
(Fla + Pyr) and IcdP/(IcdP + BghiP), the ratios below
0.40 and 0.20 suggest petroleum sources; the ratios over
both 0.50 are considered to be associated with grass,
wood, and coal combustion; and other intermediate ratios
(0.40–0.50 and 0.20–0.50) are characteristic of petroleum
(e.g., liquid fossil fuel, vehicle, and crude oil) combustion
(Yunker et al. 2002). In the case of BaA/(BaA + Chr), the
ratio <0.20 is usually taken to indicate petroleum origins,
the ratio >0.35 is probably attributable to combustion or-
igins, and the ratio between 0.20 and 0.35 means PAHs
from either petroleum or combustion (Yunker et al. 2002;
Wang et al. 2015b).

In this study, the ratios of Fla/(Fla + Pyr) ranged from 0.70
to 0.91 with a mean of 0.80 (much higher than 0.50), which
indicated that PAHs contamination from biomass and coal
combustion. For Ant/(Ant + Phe), the ratios in all samples
were higher than 0.10 (from 0.12 to 0.76), suggesting

pyrolytic sources (e.g., petroleum, wood, and coal combus-
tion). More accurately to different regions, the mean ratios of
Ant/(Ant + Phe) in TC, TS, and BNwere 0.19, 0.40, and 0.20,
respectively. Low values near 0.10 were mainly found in ur-
ban areas such as sites H13, H17, H16, H1, and H2, implying
the slight contribution of petroleum products. For IcdP/(IcdP
+ BghiP), the ratios ranged from 0.29 to 1.00 with a mean of
0.61. The IcdP/(IcdP + BghiP) ratio >0.50 indicated that the
main sources at most sites (11 of the 17) were biomass and
coal combustion, whereas the rest six sites were contaminated
by petroleum combustion. The ratios of BaA/(BaA + Chr)
were in the stable range of 0.53 to 0.59 (>0.35), indicating
combustion sources of PAHs. Overall, the above data demon-
strated that PAHs in surface sediments from the Haihe River
originated frommixed combustion of petroleum, grass, wood,
and coal to a large degree.

In addition, the correlations between above four isomer
ratios were analyzed. It was found that the correlations
between any two of Fla/(Fla + Pyr), Ant/(Ant + Phe),
IcdP/(IcdP + BghiP), and BaA/(BaA + Chr) were very
poor (R2 < 0.10), except for the correlation of Fla/(Fla +
Pyr) and BaA/(BaA + Chr) (Table S4). The correlation
analysis revealed that molecular ratios were not an un-
equivocal method to recognize PAH sources due to the
complexity of parameters determining PAHs distribution
in the Haihe River (Wang et al. 2015b). Inconsistent re-
sults could be observed when using different isomer ra-
tios. To enhance the reliability of source apportionment
and better understand the potential PAH sources, more
precise analytical methods with comprehensive data
should be applied in the future researches.

Fig. 5 Total BaPeq concentrations in surface sediments from the Haihe River
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Toxicity and potential ecological risk

Toxicity based on the BaPeq concentrations

The TEF values used in this study and carcinogenic potencies
of PAHs in surface sediments are provided in Table S5. Total
BaPeq concentrations ranged from 9.6 to 2615.3 ng g−1, with a
mean value of 523.8 ng g−1. The BaPeq concentrations of
seven carcinogenic PAHs ranged from 9.4 to 2609.6 ng g−1,
with a mean value of 522.4 ng g−1, which were much higher
than those in surface sediments from the Songhua River
(mean 13.2 ng g−1) (Zhao et al. 2014). Seven carcinogenic
PAHs were the main contributors to total carcinogenic poten-
cy and the mean BaPeq concentration of seven carcinogenic
PAHs accounted for 99.7% of total PAHs. For individual car-
cinogenic PAHs, the mean BaPeq concentrations decreased in
the following order: BaP (270.1 ng g−1) > DahA
(159.6 ng g−1) > BaA (33.8 ng g−1) > BkF (21.6 ng g−1) >
BbF (20.8 ng g−1) > IcdP (13.7 ng g−1) > Chr (2.8 ng g−1).

The spatial distribution of total BaPeq concentrations is
shown in Fig. 5. The highest value at site H17 was approxi-
mately 250-fold higher than the lowest value at site H6. The
mean total BaPeq concentrations in TC, TS, and BN were
618.3, 106.6, and 1320.2 ng g−1, respectively. High carcino-
genic toxicity appeared primarily in surface sediments from

urban river sections (TC and BN). Considering the different
harmfulness among various PAHs, the BaPeq concentrations
calculated by toxic equivalency factors could reflect the po-
tential risk to organisms with a more accurate perspective than
total PAH concentrations in surface sediments to some extent.

Potential ecological risk of PAHs

The measured concentrations of individual PAHs, LMW
PAHs, HMW PAHs, and total PAHs were compared with
ERL values and ERM values in 17 surface sediments
(Table 3). As shown, the concentrations of Acy at most sam-
pling sites (14 of the 17 except for sites H3, H4, and H12)
were of the intermediate range (ERL–ERM), indicating that
adverse biological effects related to Acy would occur occa-
sionally in most regions of the Haihe River. The concentra-
tions of Phe, Ant, and Pyr at all sites were lower than corre-
sponding ERL values, indicating that aquatic organisms could
rarely affected by these three PAHs. The concentrations of
DahA higher than ERM value at sites H13, H16, and H17
had adverse biological effects on organisms frequently, be-
tween ERL value and ERM value at sites H1, H2, H7, and
H8 had adverse biological effects occasionally, and lower than
ERL value at other ten sites had adverse biological effects
rarely. For NaP, Ace, Flu, Fla, BaA, Chr, and BaP, the

Table 3 Comparison of PAH concentrations with ERL and ERM guideline values in surface sediments from the Haihe River (ng g−1, dw)

PAHs ERLa ERMa Concentration range Number of sampling sites

<ERL ERL–ERM >ERM

Nap 160 2100 17.0–200.0 15 2 0

Acy 44 640 35.9–79.8 3 14 0

Ace 16 500 0.9–131.0 14 3 0

Flu 19 540 1.1–33.6 14 3 0

Phe 240 1500 3.8–84.4 17 0 0

Ant 85.3 1100 7.5–12.0 17 0 0

Fla 600 5100 19.2–880.0 15 2 0

Pyr 665 2600 2.8–257.0 17 0 0

BaA 261 1600 16.4–1546.0 12 5 0

Chr 384 2800 13.0–1357.0 14 3 0

BbF – – 2.8–1042.0 – – –

BkF – – 3.8–936.0 – – –

BaP 430 1600 25.4–136.0 14 3 0

DahA 63.4 260 1.4–816.0 10 4 3

BghiP – – ND–424.0 – – –

IcdP – – 1.2–656.0 – – –

LMW PAHs 552 3160 75.7–412.2 17 0 0

HMW PAHs 1700 9600 66.0–9099.0 12 5 0

∑PAHs 4022 44,792 171.4–9511.2 14 3 0

aData from He et al. (2014)
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concentrations between corresponding ERL values and ERM
values at some sites (in a range from two to five) could cause
adverse biological effects on organisms occasionally. For dif-
ferent sampling sites, 16 PAH concentrations were all below
corresponding ERL values at sites H3, H4, and H12, and
surface sediments from these sites presented almost no eco-
logical risk. For other 14 sites, there was at least one PAH
concentration above ERL value that would cause adverse bi-
ological effects. Especially at sites H13, H16, and H17 in BN,
the concentrations of DahAwere greater than ERM value and
the concentrations of total PAHs were between ERL value and
ERM value. Surface sediments from partial section of the
Haihe River in BN had relatively high possibility of serious
ecological risk. Generally, these findings mentioned above
indicated that surface sediments from most survey regions of
the Haihe River exhibited certain levels of ecological risk in
terms of PAHs. More properly, ERL and ERM values are not
threshold concentrations of sediment toxicity (O’Connor
2004). The assessment of PAHs in Haihe River sediments
using these two values may overestimate or underestimate
the quality of Haihe River sediments.

Conclusions

This study provided important data on the occurrence
and distribution of PAHs in surface sediments from the
Haihe River. Total PAH concentrations were relatively
high in comparison with other reported rivers around
the world, indicating serious PAHs pollution in the
Haihe River. PAH concentrations in surface sediments
varied significantly among sampling locations with high
values in industrial areas (BN) and densely populated
areas (TC). Four-ring and 5-ring PAHs were dominant
in most samples, and BaA, Chr, and BaP exhibited the
higher values. For molecular ratios, Fla/(Fla + Pyr),
Ant/(Ant + Phe), IcdP/(IcdP + BghiP), and BaA/(BaA
+ Chr) were recorded at all sampling sites. The results
suggested that PAHs originated mainly from various
combustion sources. The mean total BaPeq concentration
was 523.8 ng g−1, which was mostly contributed by
seven carcinogenic PAHs. In relation to ecological risk
assessment, there was at least one PAH concentration
higher than ERL value at most sites, which could cause
adverse effects on aquatic organisms. Urban river sys-
tem plays an important role in substances circulation
and can affect human health directly. Therefore, more
attention should be paid and further researches should
be continuously conducted in such important ecosystem.
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