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Abstract Comprehensively evaluating water quality with a
singlemethod alone is challenging because water quality eval-
uation involves complex, uncertain, and fuzzy processes.
Moreover, water quality evaluation is limited by finite water
quality monitoring that can only represent water quality con-
ditions at certain time points. Thus, the present study proposed
a dynamic fuzzy matter–element model (D–FME) to compre-
hensively and continuously evaluate water quality status. D–
FME was first constructed by introducing functional data
analysis (FDA) theory into a fuzzy matter–element model
and then validated using monthly water quality data for the
Poyang Lake outlet (Hukou) from 2011 to 2012. Results
showed that the finite water quality indicators were represent-
ed as dynamic functional curves despite missing values and
irregular sampling time. The water quality rank feature curve
was integrated by the D–FME model and revealed compre-
hensive and continuous variations in water quality. The water
quality in Hukou showed remarkable seasonal variations, with
the best water quality in summer and worst water quality in
winter. These trends were significantly correlated with water
level fluctuations (R = −0.71, p < 0.01). Moreover, the exten-
sion weight curves of key indicators indicated that total

nitrogen and total phosphorus were the most important pollut-
ants that influence the water quality of the Poyang Lake outlet.
The proposed D–FME model can obtain scientific and intui-
tive results. Moreover, the D–FME model is not restricted to
water quality evaluation and can be readily applied to other
areas with similar problems.

Keywords Water quality evaluation . Fuzzymatter–element
model . Functional data analysis . Poyang Lake

Introduction

Water is essential to all life forms and access to freshwater
with desirable quality is a prerequisite to sustainable develop-
ment (Srebotnjak et al. 2012). However, water is often pollut-
edwith chemical, physical, and biological contaminants main-
ly caused by anthropogenic activities (Smith et al. 1999;
Vitousek et al. 1997). Many monitoring programs and proto-
cols, such as the Harmonized Monitoring Scheme in Britain
(Hurley et al. 1996), the National Water Quality Assessment
in the USA (Kolpin et al. 1998), and the National Monitoring
and Assessment Program in Denmark (Conley et al. 2002),
have been implemented to provide a comprehensive image of
water quality status. These monitoring programs, however,
produce finite parameter observations that can only represent
water quality condition at certain time points. Moreover, water
quality evaluation involves complex, uncertain and fuzzy pro-
cesses (Ip et al. 2007). Therefore, developing a comprehensive
and dynamic water quality evaluation model is necessary for
water resource management and protection.

Water quality in freshwater bodies is a complex issue that
results from physical, chemical, and biological processes, and
the interactions among these processes (Taner et al. 2011).
Various methods, including multivariate statistical analysis
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(Kazi et al. 2009; Ouyang et al. 2006; Vega et al. 1998),
artificial neural networks (Gazzaz et al. 2012), water quality
index (Abtahi et al. 2015; Lermontov et al. 2009), fuzzy com-
prehensive assessment (Zou et al. 2006), and matter element
analysis (Liu and Zou 2012; Wong and Hu 2014), have been
developed in recent decades to characterize and evaluate water
quality. However, these mathematical evaluation methods
have limitations. For example, multivariate statistical analysis
requires large water quality samples to obtain reasonable re-
sults, and the artificial neural network lacks accurate analysis
for each performance index (Deng et al. 2015); Although
fuzzy theory is widely used because of its advantages in solv-
ing problems with fuzzy boundaries and controlling the effect
of sampling errors on evaluation results (Liu et al. 2010;
Ocampo-Duque et al. 2006), it cannot effectively distinguish
adjacent characteristic indicators. The fuzzy matter–element
(FME) model combines the advantages of both fuzzy and
matter element theories (Deng et al. 2015). It can analyze data
in the forms of intervals and solve contradictory problems
(Wong and Hu 2014). In addition, using fuzzy membership
in FME can efficiently deal with the fuzziness and uncertainty
of the evaluation process. Deng et al. (2015) applied the FME
model to assess the river health status of the Taihu Lake basin.
They found that the FME model has more advantages in
reflecting objective factors compared with other comprehen-
sive assessment methods. The FME model efficiently con-
siders the uncertainty and fuzziness in the optimized selection
of environmental monitoring points (Wang et al. 2015). Zhang
et al. (2011) also found that the FME model is practical and
reliable in the evaluation of environmental impact for land use
planning.

The FMEmodel, however, is effective only when no value
is missing from the dataset, which is difficult to satisfy in field
monitoring. Furthermore, dynamic water quality evaluation is
always limited by finite sampling campaigns that can only
represent water quality at finite discrete time points (e.g.,
weekly, monthly, and seasonal samplings) (Yan et al. 2015).
Functional data analysis (FDA) has emerged as an effective
approach toward modeling time series data and has received
attention in public health and biomedical applications (Ullah
and Finch 2013). The principle of FDA is to express discrete
observations from a time series in the form of a function that
represents all monitored data as a single observation (Ramsay
2006; Ramsay and Silverman 2002). The temporal variations
of water quality parameters are described by continuous
smooth dynamics which allows accurate estimates of param-
eters to use in analysis. Given that the FDA approach is highly
flexible, the timing intervals of data observations do not have
to be equally spaced and missing values are acceptable
(Müller et al. 2011). FDA has received considerable attention
(Haggarty et al. 2012; Henderson 2006) since its introduction
in water quality research in 1997 (Champely and Doledec
1997). FDA has also been used in water quality evaluation.

Yan et al. (2015) incorporated FDAwith commonly used wa-
ter quality index to solve the shortcomings in the dynamic
assessment, which uses variable weights and water quality
index. The same authors also introduced FDA into fuzzy set
theory to develop a dynamic variable fuzzy set assessment
model (Yan et al. 2016).

This study firstly developed the dynamic fuzzy matter-
element (D-FME) model by introducing the FDA theory
into the FME model, to comprehensively and continuous-
ly evaluate the water quality evaluation. A 2-year monthly
water quality dataset in the outlet of Poyang Lake
(Hukou) was used to examine the reasonability and
strength of the D-FME model.

Materials and methods

Study area

The Poyang Lake (115°47′–116°45′E, 28°22′–29°45′N) is
located on the south bank of the Yangtze River. The lake
provides a habitat for rare migratory birds in winter and
has been designated as a globally important eco-region by
the World Wide Fund for Nature (Tang et al. 2016). The
lake nourishes a drainage area of 16.22 × 104 km2 and
plays a significant role in supplying freshwater and fish,
restricting flooding, regulating local climate, and
degrading pollutants in the area. It has a subtropical mon-
soon climate with an average annual temperature of
17.6 °C and a mean annual precipitation of 1450–
1550 mm that falls mostly during summer. The lake is
freely connected to the Yangtze River at Hukou (Fig. 1).
The water quality of Hukou partially determines the water
environment of the lower reaches of the Yangtze River.

Data

According to the pollution features of the Poyang lake
and traditional water quality indices in China (Ban et al.
2014; Li et al. 2017), dissolved oxygen (DO), chemical
oxygen demand (CODMn), ammonium nitrogen (NH4-N),
total nitrogen (TN), and total phosphorus (TP) were se-
lected as key indicators for water quality evaluation. DO
reflects the overall state of the water quality and low DO
concentrations are harmful to aquatic organisms. CODMn

is an indicator of organic pollution. NH4-N was proved to
be an important nutrient indicator of that controls the
presence frequency of aquatic vegetation (Zhang et al.
2016). TN and TP are key indicators of lake eutrophica-
tion. Water quality was classified into five classes
(Table 1) in accordance with the National Surface Water
Environmental Quality Standards of China (Chinese
Environmental Protection Agency 2002). It should be
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noted that the water quality standards are expressed in
intervals rather than values, and classification I indicates
the best water quality. Monthly water quality date from
2011 to 2012 including key indicators and corresponding
sampling data were used in this study (Hydrology Bureau
of the Poyang Lake 2010). No sampling was conducted in
January 2012. DO and TN concentrations were missing in
September 2011 and November 2012, respectively. Thus,
they were excluded from the FME model. The daily water
level data at Hukou gauge station was obtained from the
Hydrological Bureau of Jiangxi Province, China.

Fuzzy matter–element model

Generation of compound fuzzy matter–element

The complexity and uncertainty of water quality evaluation
have been pointed out by previous studies (Beck 1987; Ip
et al. 2007). The matter–element model, which is based on
classical and fuzzy mathematics, is commonly used to solve
complex and uncertain problems (Cai 1999). The fuzzy

matter–element is defined with triple ordered Bobjects, char-
acteristics, and fuzzy values,^ which were denoted as R = (N,
C, u) (Cai 1999). Accordingly, the compound fuzzy matter–-
element of the mth water quality object (Rm) is established by
n feature vectors Ci (indicators), kwater quality classifications
Gj, and the corresponding fuzzy value uij and can be expressed
as the following matrix:

Rm
nk ¼

G1 G2 ⋯ Gk

C1 u11 u12 ⋯ u1k
C2 u21 u22 ⋯ U2k

⋮ ⋮ ⋮ ⋯ ⋮
Cn un1 un2 ⋯ unk

2
66664

3
77775 ð1Þ

where Ci is the ith indicator and i = 1,2,…n;Gj is the jth water
quality classification and j = 1,2…k; uij is the fuzzy member-
ship degree of the ith indicator of jth classification and is
calculated based on fuzzy membership functions and corre-
sponding water quality classifications. Previous studies have
shown that numerous observations can be approximately
regarded as normal distributions with membership functions
under a similar category (Li et al. 2011). Therefore, in the
present study, we used normal membership function instead
of triangular or lower semi-trapezoidal functions. The normal
membership function is expressed as follows:

uij ¼ exp −
xi−aij
bij

� �2
" #

ð2Þ

where xi is the measured concentration value of the ith indi-
cator, aij and bij are the characteristic parameters of the normal
distribution function that meet the conditions of aij > 0 and
bij > 0. In Formula (2), uij = 1 when xi = aij, therefore aij is the
average value of the jth classification criterion of the ith

Table 1 Water quality classifications based on the Environmental
Quality Standards for Surface Water, China (GB3838-2002)

Parameter Classification of water quality

I II III IV V

DO (mg/L) ≥ 7.5 6 5 3 2

CODMn (mg/L) ≤ 2 4 6 10 15

TN (mg/L) ≤ 0.2 0.5 1 1.5 2

TP (mg/L) ≤ 0.01 0.025 0.05 0.1 0.2

NH4-N (mg/L) ≤ 0.15 0.5 1 1.5 2

Fig. 1 Location of the Poyang
Lake and monitoring sites

19140 Environ Sci Pollut Res (2017) 24:19138–19148



indicator, which is the middle value of each interval [xp,xq].
Here j = 1,2…k. Therefore, the formula of aij is as follows:

aij ¼ xp þ xq
2

ð3Þ

where xp and xq are the lower and upper boundary values of
the jth classification criterion of the ith indicator, respectively.

In Table 1, the boundary values of the classifications are
transition values from one classification to another. Therefore,
the membership functions of two adjacent grades should be
equal at boundary values, as shown by the following equation:

uij ¼ exp −
xq−

xqþxp
2

bij

 !2
2
4

3
5 ¼ 1

2
ð4Þ

bij ¼
xq−xp
�� ��
2
ffiffiffiffiffiffiffi
ln2

p ð5Þ

aij and bij are calculated for each indicator and water quality
grade in accordance with the water quality classification
boundary values of all indicators. Thus, the compound FME
matrix was obtained.

Determination of extension weights

In accordance with the matter–element extension theory, the
extension weights of each indicator for each object were cal-
culated with the simple correlative function (Wong and Hu
2014). The simple correlative function assigns weights based
on the correlation between the values of each indicator and the
corresponding water quality classification. Therefore, worse
indicators have higher weights, which is consistent with the
idea of the Bbucket effect^ (Li et al. 2017). For the mth eval-
uation object, let

rij ¼
2 xi−xp
� �
xq−xp

; if xi≤
xp þ xq

2
2 xq−xi
� �
xq−xp

; if xi >
xp þ xq

2

8>>><
>>>: ð6Þ

where rij is the simple correlative function of the ith indicator
of the jth water quality classification; xi is the measured value
of the ith indicator, and let

rijmax
¼ max

j¼1;2::k
rij
� � ð7Þ

Then, the representative water quality indicators are iden-
tified either as benefit (i.e., the larger, the better) or cost (i.e.,
the smaller, the better). For benefit indicators, such as DO, we
define

ri ¼ n− jmaxð Þ � 1þ rijmax

� �
; if rijmax

≥−0:5
n− jmaxð Þ � 0:5; i f rijmax

< −0:5

�
ð8Þ

Meanwhile, for cost indicators

ri ¼ jmax � 1þ rijmax

� �
; if rijmax

≥−0:5
jmax � 0:5 ; if rijmax

< −0:5

�
ð9Þ

The limiting condition of Formulas (8)–(9) occurs when
certain indicators, especially for pollutants like TN and TP,
exceed the water quality classification boundary, which may
happen in natural water bodies. Finally, the weight of indicator
wi is given by

wi ¼ ri

∑
n

i¼1
ri

ð10Þ

Calculation of fuzzy neartude

Fuzzy neartude is the measure of proximity between evaluated
objects and water quality standards (Deng et al. 2015). It
avoids negative values in the matter–element evaluation pro-
cess by introducing a similarity measure (Wong and Hu 2014).
A greater value of fuzzy neartude indicates that the evaluated
objects are closer to a certain grade. The fuzzy neartude matrix
of the mth evaluation object was obtained with Hamming
neartude (ρHj) (Teng et al. 2012), as follows:

ρH j ¼ 1− ∑
k

j¼1
wi ~uij−~ui0
��� ��� ð11Þ

where ~uij is the scaled fuzzy matter–element matrix (uij), and

~ui0 ¼
r10
r20

rn0

��������

��������
¼

1
1
⋮
1

��������

��������
ð12Þ

Generation of non-integral feature value

The water quality feature value of the mth evaluation object
was calculated as follows:

Jm ¼ ∑
k

j¼1
j� ρH j

∑
k

j¼1
ρH j

0
BBB@

1
CCCA ð13Þ

where Jm is the non-integral water quality rank feature value of
the mth evaluation object. A low value for Jm indicates better
water quality and vice versa. Here, in reference to similar stud-
ies that used the FME model (Deng et al. 2015), we defined
water quality as excellent when 1 < Jm < 1.5 and as bad when
4.5 < Jm < 5. The water quality grades are good, medium, and
poor when i-0.5 < Jm < i + 0.5, i = 2, 3, 4, respectively.
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Dynamic fuzzy matter–element model

The FDA theory was introduced into the proposed FMEmod-
el to dynamically evaluate water quality based on finite water
quality sampling campaigns. The basic principle of FDA is to
express discrete observations in the form of continuous func-
tion curves, thus enabling accurate parameter estimation and
effective data noise reduction (Ramsay and Dalzell 1991;
Ramsay and Silverman 2002). FDA methods are not neces-
sarily based on the assumption that the concentration values
observed at different time points are independent (Ullah and
Finch 2013). In FDA, the sampling timing intervals of data
observations do not have to be equally spaced, which is often
the case in reality. The key step of FDA is smoothing, which
converts raw discrete data points into smoothly varying func-
tions. Various smoothing techniques, such as B-splines,
Fourier smoothing, cubic smoothing, and wavelet smoothing,
have been proposed (Henderson 2006). Cubic smoothing is
unsuitable for regions of complex change, where it may get
over-smooth easily. Fourier smoothing is more suitable for
periodic data. Wavelet smoothing can efficiently deal with
data with frequent and severe fluctuations, whereas B-spline
smoothing is the best choice for representing non-periodic
data (Henderson 2006; Ullah and Finch 2013), which is the
case in the present study. B-spline smoothing is the most pop-
ular technique because of its simplicity and flexibility in ad-
dressing nonparametric and semi-parametric modeling situa-
tions (Ullah and Finch 2013; Yan et al. 2015). Therefore, the
present study utilized a fourth-order B-spline smoothing tech-
nique. The smoothing procedure is expressed as follows:

xi tð Þ ¼ ∑
K

p¼1
dipφp tð Þ ð14Þ

where xi(t) is the concentration curves of the ith indicator;
φp(t) is the pth basis function and p = 1,2…K, K is the total
number of B-spline basis functions; and dip is the coefficient
of the ith indicator of the pth basis function.

The implementation of the D–FME model is illustrated in
Fig. 2. A roughness penalty approach was defined to trade off

curve roughness against data fitting, and the smoothing pa-
rameter (λ) was used to control the smoothness of the curves
(Ramsay et al. 2009). Furthermore, the optimal value for the
smoothing parameter was identified with the generalized
cross-validation measure (GCV) that was developed by
Wahba and Craven (1978). The Package fda that was devel-
oped by Ramsay and Silverman (2002; 2006) for R version
3.3.1 (Team R 2012) specifically to support FDA is available
at <https://cran.r-project.org/web/packages/fda/index.html >.

Results and discussion

Concentration curves of indicators

The 2-year monthly sampling observations for each indicator
were converted to a continuous concentration curve via FDA
(Fig. 3). As shown in Fig. 3a, the DO concentration curve
showed similar variations in 2011 and 2012. A decreasing
trend was observed during the first half of the year, reached
the minimum during summer (July–September), and then
gradually increased during the second half of the year. These
trends were in accordance with temperature variations, which
are negatively correlated with DO dynamics (Vega et al.
1998). Compared with other lakes, the average CODMn con-
centration in Hukou was relatively low at 2.6 mg/L (Beyhan
and Kaçıkoç 2014; Taner et al. 2011). In addition, the CODMn

concentration curve, which is shown in Fig. 3b, showed insig-
nificant temporal variations with little oscillation from 2011 to
2012. These patterns indicated a relatively low level of organ-
ic pollution in Poyang Lake that was contributed by anthro-
pogenic sources, such as industrial and domestic sewage.
Similar with DO, the concentration curves of NH4-N, TN,
and TP all showed low peaks during summer in 2011–2012,
which is in accordance with the highest discharge and water
levels in summer. During summer, the pollutants in the lake
are more degraded and diluted because lake tributaries pro-
duce substantial freshwater discharge, which significantly in-
creases the degradation capacity of the water (Li et al. 2016).
Moreover, the degradation capacities are low in winter and
high in summer because of the variations in water quantity
and temperature (Yan et al. 2015). In 2011, NH4-N, TN, and
TP all decreased before July and then sharply increased after
July; these trends can be attributed to the drastic transition
between flood and dry in 2011. The water level decreased
substantially after July 2011 (Fig. 6). The TN and NH4-N
concentration curves peaked in December and January 2012
(winter), whereas the TP concentration peaked in October
2011 and remained low from January to October in 2012.
This phenomenon may be attributed to the decrease in TP
pollutant flux in 2012.

It is to be noted that the sampling time of every month was
not equally spaced, which is common in practical samplingFig. 2 Water quality evaluation process with the D–FME model
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Fig. 3 Observed data and concentration values of a DO, b CODMn, c NH4-N, d TN, and e TP
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campaigns. For example, the first three sampling campaigns
were implemented on 11/1/2011, 14/2/2011, and 13/3/2011
(Fig. 3). Moreover, missing values exist for each indicator in
February 2012, and DO and TN were also missing for
September 2011 and June 2012, respectively. Nonetheless,
these problems can be efficiently addressed by FDA via the
B-spline smoothing technique. Figure 3 showed that although
the concentration curves did not precisely pass through each
observation value, the observed variation trends of all indica-
tors were correctly captured. This observation can be attribut-
ed to monitoring errors, which are assumed to be inevitable in
FDA. The optimal curve was determined as the one with the
minimum mean square error (Yan et al. 2016). However, un-
certainty still existed when high intensity rainfall events
caused monitoring outliers and uncontrolled sewage was
discharged into lake, which contributed to deviations between
the concentration curves and the observation values (Seiler
et al. 2015; Zhou et al. 2012), for example, the deviation of
TN concentration curve in June and November in 2011.

Dynamic extension weight curves

The dynamic extension weight curves, which are based on
simple correlative function, were calculated with Formulas
(6)–(10). The results are presented in Fig. 4. In 2011 and
2012, TN and TP had average weights of 0.32 and 0.26.
These values were remarkably higher than those of other indi-
cators and indicated their high influence on the overall water
quality of Poyang Lake. From a temporal perspective, the
weight of TN was high from January to April when TN con-
centration was relatively high and reached its minimum in July
for both 2011 and 2012 when the TN concentration was lowest
within the year. Similar variation can be observed for NH4-N
weight curve. By contrast, the weight of DO was low from

January to March (winter) when the oxygen demand of aquatic
organisms was low. Then, DO gradually increased and reached
a maximum average weight of 0.19 during the spring and sum-
mer because of various redox reaction activities, including
breeding of fishes and growth of planktons and aquatic vege-
tation. The weight of DO began to decrease gradually again in
winter. Remarkable low peak in weight curve of TP was ob-
served in January 2012. The weight curve of CODMn exhibited
little fluctuations through the year and had a mean weight of
0.13. These dynamics of the weight curves were consistent
with those of concentration curves, which were influenced by
pollutant effluents, dilution effect, and degradation processes.

Unlike in previous studies, the combination of FDA
and matter–element extension theory produced the dy-
namic curves of the weight variations in indicators
throughout the year (Akkoyunlu and Akiner 2012;
Gharibi et al. 2012; Abtahi et al. 2015). The simple cor-
relative function method determines weights based on
concentration curves and corresponding water quality
grades (Wong and Hu 2014). Moreover, the more pollut-
ing the indicator is, the higher its weight would be during
evaluation. This method is similar to the principle of the
Bbucket effect,^ which emphasizes the effect of the ex-
treme indicator on the overall evaluation results. It is also
consistent with an existing weighting method that is based
on the relative importance and degree of pollution
(Semiromi et al. 2011; Yan et al. 2015).

Results of dynamic water quality evaluation

The different parameter groups (a and b) of normal distribu-
tion for each water classification were determined with
Formulas (3,4 and 5) and in accordance with the water quality
classifications of the five indicators presented in Table 1.
Fuzzy membership degree was obtained via Formula (2) and
the concentration curves. Then, the finite and continuous
fuzzy neartude curves to the five water quality classifications
(i.e., I, II, III, IV, and V) were generated. For simplicity, only
fuzzy neartude to classifications I, II, IV, and V are shown in
Fig. 5. Fuzzy neartude measures the fuzzy closeness degree of
the water sample to water quality classifications. This method
outperforms the traditional correlative degree method in mat-
ter–element theory by avoiding negative values in the correl-
ative degree (Wong and Hu 2014). A high fuzzy neartude
value indicates a close proximity between the water sample
and water quality classifications (Teng et al. 2012). Figure 5a
showed that the water quality conditions in Poyang Lake were
related differently to classifications I, II and classes IV, V.
These relationships can be divided into three periods. Firstly,
during January and December, the fuzzy neartude to classifi-
cation V was considerably higher than that of other classifica-
tions, indicating relatively poor water quality during this peri-
od. Secondly, during summer (June–August), the fuzzyFig. 4 Dynamic weight curves of the five indicators
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neartude to classifications I and II was significantly higher
than that of classifications IV and V, which indicated that the
water quality condition during this period was the most desir-
able. The fuzzy neartude to classification V was almost zero,
which signified zero possibility that water quality belonged to
classification V during summer. The third period (February to
May and September to November) was mixed without clear
information on which classification the water quality should
belong to (Fig. 5a). Therefore, judging water quality condition
based on the maximum fuzzy neartude is not scientific.
Instead, water quality conditions should be objectively and
intuitively characterized with the non-integral water quality
rank feature value.

Figure 5b presents the fuzzy neartude to water quality clas-
sifications as a bar plot. Although the results of fuzzy neartude
on sampling date were almost identical with Fig. 5a at specific
time points, the fuzzy neartude curves were more intuitive and
comprehensive. Moreover, because of the missing values in
the dataset, the fuzzy neartude in June 2011, January 2012,
and November 2012 cannot be calculated with the FME mod-
el. The efficient use of smoothing techniques in FDA has also
been reported by Yan et al. (2016).

The non-integral water quality rank feature curve was gen-
erated based on Formula (13). The monthly discrete values
from 2011 to 2012 are exhibited in Fig. 6. The comprehensive
water quality rank feature curve in Poyang Lake outlet (Hukou)
showed similar seasonal variations in 2011 and 2012; specifi-
cally a decreasing trend from January to July and an increasing
trend in the second half of the year. These trends indicated that
water quality condition improved from winter to summer and
deteriorated from autumn to winter.We extracted the finite rank
feature values of each day from the curve. The average water
quality rank feature values were 3.27 and 3.05 in 2011 and
2012, which can be classified as medium in accordance with
the rules set in the BMaterials and methods^ section. The

highest rank feature value was observed in December and
January (winter), whereas the lowest was observed in July.
Similar to the concentrations curves of indicators, a sharp in-
crease was observed after July 2011. The water quality evalu-
ation results for the Poyang Lake that were obtained by the D–
FME model were consistent with those of obtained by fuzzy
theory (Li et al. 2017). The rank feature value clearly showed a
reverse variation trend with water level variation in Poyang
Lake. Correlation analysis showed that water quality rank fea-
ture value and water level were significantly correlated
(R = −0.71, p < 0.01), which indicated that water level varia-
tions greatly influenced pollutant transportation and
degradation. This result was consistent with previous studies.
For example, Li et al. (2016) examined the seasonal pollutant
concentration variations and their relationship with
hydrological conditions and found that water quality is likely
to be good during periods of high water levels. Liu et al. (2016)
also concluded that water level fluctuations are the principal
drivers of physicochemical variables in Poyang Lake. Similar
studies have also shown the great influence of water level var-
iations on water quality and aquatic ecosystem health (Coops
et al. 2003; O’Farrell et al. 2011).

FME theory focuses on solving fuzzy incompatibility, as
well as comprehensively and objectively reflecting the
influence of all indicators. Li and Li (2014) have proven that
the FME model with Hamming approach degree proficiently
handles fuzzy and incompatible problems in evaluating the
ecosystem health of Beijing and Shanghai. Zhu et al. (2016)
also reported that the FMEmodel was comparable to the fuzzy
optimum method and Technique for Order of Preference by
Similarity to Ideal Solution method when evaluating different
reservoir flood control operation alternatives. The evaluation
results from finite observations were consistent with the rank
feature curve. Although it captured the overall variation of syn-
thetic water quality, less information was obtained. Moreover,

Fig. 5 Fuzzy neartude curves (a) and finite values (b) to classifications I, II, IV, and V
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sampling months with missing values were excluded in the
FME model. However, the D–FME model efficiently solved
the problem of missing data by calculating the quantitative
concentration curves that were generated by smoothing. The
FME model is a case of D–FME model at specific time points.
Therefore, the combination of FME theory and FDA is of great
use for the comprehensive and continuous evaluation of water
quality. The D–FME model can provide intuitive and efficient
results and can be utilized for similar problems in other fields.

Conclusion

The present study proposed the D–FME model, which was
constructed by incorporating the FME model with FDA the-
ory, for the effective and continuous evaluation of variations
in water quality. The weights of water quality indicators for
each sample were calculated with the simple correlative func-
tion. Finite water quality data were converted into continuous
concentration curves by the B-spline smoothing technique.
The non-integral water quality rank feature value was obtain-
ed via fuzzy neartude method. The proposed model was suc-
cessfully applied to the outlet of the Poyang Lake (Hukou).

FME theory is suitable for multifactor evaluation and can
comprehensively and objectively reflect the impacts of all
indicators. However, it cannot address the problem of missing
values. Moreover, FME can only represent water quality con-
ditions at specific time points. The D–FME model efficiently
solved these problems and integrated finite water quality in-
dicators into a single water quality rank feature curve, thereby
making water quality evaluation comprehensive and intuitive.

The average non-integral water quality rank feature value
of Poyang Lake was 3.27 and 3.05 in 2011 and 2012, respec-
tively, which denoted mediumwater quality. The DO, NH4-N,

TN, and TP concentration curves all showed similar seasonal
variation within the year. The water quality evaluation results
based on the D–FMEmodel also showed the same trend, with
the best water quality in summer and worst water quality in
winter. Moreover, the water quality in Poyang Lake was sig-
nificantly correlated with water level variations. The proposed
D–FME is not restricted to water quality evaluation and can be
readily applied to other areas.
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