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Abstract In this paper, several extreme learning machine
(ELM) models, including standard extreme learning machine
with sigmoid activation function (S-ELM), extreme learning
machine with radial basis activation function (R-ELM), online
sequential extreme learningmachine (OS-ELM), and optimal-
ly pruned extreme learning machine (OP-ELM), are newly
applied for predicting dissolved oxygen concentration with
and without water quality variables as predictors. Firstly,
using data from eight United States Geological Survey
(USGS) stations located in different rivers basins, USA, the
S-ELM, R-ELM, OS-ELM, and OP-ELM were compared
against the measured dissolved oxygen (DO) using four water
quality variables, water temperature, specific conductance,
turbidity, and pH, as predictors. For each station, we used data
measured at an hourly time step for a period of 4 years. The
dataset was divided into a training set (70%) and a validation
set (30%). We selected several combinations of the water
quality variables as inputs for each ELM model and six dif-
ferent scenarios were compared. Secondly, an attempt was
made to predict DO concentration without water quality

variables. To achieve this goal, we used the year numbers,
2008, 2009, etc., month numbers from (1) to (12), day num-
bers from (1) to (31) and hour numbers from (00:00) to
(24:00) as predictors. Thirdly, the best ELM models were
trained using validation dataset and tested with the training
dataset. The performances of the four ELMmodels were eval-
uated using four statistical indices: the coefficient of correla-
tion (R), the Nash-Sutcliffe efficiency (NSE), the root mean
squared error (RMSE), and the mean absolute error (MAE).
Results obtained from the eight stations indicated that: (i) the
best results were obtained by the S-ELM, R-ELM, OS-ELM,
and OP-ELM models having four water quality variables as
predictors; (ii) out of eight stations, the OP-ELM performed
better than the other three ELMmodels at seven stations while
the R-ELM performed the best at one station. The OS-ELM
models performed the worst and provided the lowest accura-
cy; (iii) for predicting DO without water quality variables, the
R-ELM performed the best at seven stations followed by the
S-ELM in the second place and the OP-ELM performed the
worst with low accuracy; (iv) for the final application where
training ELM models with validation dataset and testing with
training dataset, the OP-ELM provided the best accuracy
using water quality variables and the R-ELM performed the
best at all eight stations without water quality variables.
Fourthly, and finally, we compared the results obtained from
different ELM models with those obtained using multiple lin-
ear regression (MLR) and multilayer perceptron neural net-
work (MLPNN). Results obtained using MLPNN and MLR
models reveal that: (i) using water quality variables as predic-
tors, the MLR performed the worst and provided the lowest
accuracy in all stations; (ii) MLPNNwas ranked in the second
place at two stations, in the third place at four stations, and
finally, in the fourth place at two stations, (iii) for predicting
DO without water quality variables, MLPNN is ranked in the
second place at five stations, and ranked in the third, fourth,
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and fifth places in the remaining three stations, while MLR
was ranked in the last place with very low accuracy at all
stations. Overall, the results suggest that the ELM is more
effective than the MLPNN and MLR for modelling DO con-
centration in river ecosystems.

Keywords Modeling . Dissolved oxygen . Extreme learning
machine . OP-ELM . OS-ELM . S-ELM . R-ELM .

MLPNN .MLR

Introduction

Dissolved oxygen concentration (DO) is the amount of mo-
lecular oxygen dissolved in water and plays a crucial role in
determination of water quality. Among all other water quality
variables that must be regularly measured and monitored, DO
is practically the most important. The importance given to DO
concentration is not only for itself, but also for its influence on
so many other water quality variables and several other pro-
cesses. DO provides regular information about water quality
in rivers, streams, and lakes and is required for the survival of
the aerobic aquatic organisms. Understanding the variation of
DO is therefore a major priority for water resource managers.
In addition to the traditional methods used for measuring DO
concentration, previous attempts have been conducted to pro-
pose alternative methods to estimate DO concentrations main-
ly based on mathematical modeling.

To date, several researchers worldwide have attempted to
develop effective and robust models for DO concentration.
These studies can be divided into two categories: (i) estimation
models and (ii) forecasting models. For the first category, the
following three subgroups exist: (1) artificial neural network
(ANNs)models, includingmultilayer perceptron neural network
(MLPNN), radial basis function neural network (RBFNN), gen-
eralized regression neural network (GRNN), cascade correlation
artificial neural networks (CCNN), and Elman neural networks
(ELNN) (Akkoyunlu et al. 2011; Ay and Kisi 2012; Heddam
2014a, 2016a; Diamantopoulou et al. 2007; Liu et al. 2012); (2)
fuzzy logic and neuro-fuzzy models (Ranković et al. 2012;
Heddam 2014b; Ay and Kisi 2016); (3) evolutionary models
(Kisi et al. 2013; Heddam 2014c, 2016b); (4) artificial neural
network and wavelet decomposition conjunction models (Xu
and Liu 2013; Evrendilek and Karakaya 2014a, b, 2015); (5)
support vector machines (SVM) (Liu et al. 2013; Liu et al.
2014). For the second category, the objective is the development
of models capable estimating DO concentrations using only
antecedent values of DO without inclusion of water quality var-
iables as inputs (Alizadeh and Kavianpour 2015; Wang et al.
2013; Faruk 2010; Heddam 2016b).

Akkoyunlu et al. (2011) compared MLPNN and RBFNN
to estimate DO at different depths in Lake Ecosystem in
Turkey. Ay and Kisi (2012) attempted to estimate DO at the

upstream station of Foundation Creek, Colorado, USA, using
data from the downstream and vice versa, using two models;
MLPNN and RBFNN. Heddam (2014a) demonstrated that
GRNN model was a good and powerful tool for estimating
hourly DO concentration. Heddam (2016a) applied RBFNN
for estimating DO using four water quality variables.
Diamantopoulou et al. (2007) firstly presented a CCNNmodel
for predicting DO at a monthly time step. The application of
the ELNN was reported by Liu et al. (2012). In all the above
studies, the authors selected several water quality variables as
inputs at different time steps, from hourly to monthly.
Adaptive neuro-fuzzy inference system (ANFIS) is another
well-known model that widely reported as a powerful tool
for modeling DO concentration. Ranković et al. (2012) were
firstly demonstrated that the ANFIS model could be success-
fully applied for modeling DO concentration using monthly
data from Gruža Reservoir, Serbia. Heddam (2014b) and Ay
and Kisi (2016) compared two ANFIS models, (i) grid
par t i t ion-based fuzzy inference sys tem, named
ANFIS_GRID, and (ii) subtractive clustering-based fuzzy in-
ference system, named ANFIS_SUB, for estimating DO, at
hourly and monthly time steps, respectively.

Few studies in the literature have focused on the application
of the evolutionary models for modeling DO concentration.
Kisi et al. (2013) demonstrated that gene expression program-
ming (GEP) provided better results compared to the standard
MLPNN and ANFIS models. Heddam (2014c) applied two
dynamic evolving neural-fuzzy inference systems, (i) offline-
based system namedDENFIS-OF and (ii) online-based system,
named DENFIS-ON, for modeling DO at an hourly time step,
and demonstrated that the DENFISwere the best in comparison
to the MLPNN and multiple linear regression (MLR) models.
Heddam (2016b) proposed evolving fuzzy neural network
(EFuNN) for estimating DO and demonstrated that the
EFuNN was more accurate than the MLR model.

Combined wavelet transforms (WT) and ANNs and
sometimes MLR models, is another kind of approach
adopted in the literature for estimating DO concentration.
Meanwhile, Xu and Liu (2013) applied a wavelet neural net-
work (WNN) conjunction models for DO estimation using
monthly data from Jishan Lake in Duchang County, Jiangxi
Province, China. Evrendilek and Karakaya (2014a) selected
the orthogonal wavelet families for denoising time series of
water quality variables, and applied three ANN models for
estimating DO, at Yenicaga Lake, Bolu, in Turkey.
Evrendilek and Karakaya (2014b, 2015) applied DWT and
MLR conjunction models for estimating DO concentration
using data from Lake Abant, Turkey. Support vector machines
(SVM) based on kernel function is largely used in the area of
water science; however, it is relatively a new form of models
used for modeling DO. Liu et al. (2013) compared least
squares support vector regression (LSSVR), SVM and
MLPNN for modeling DO in river crab culture ponds,

Environ Sci Pollut Res (2017) 24:16702–16724 16703



China, and demonstrated that LSSVRwas the best. In another
study, Liu et al. (2014) demonstrated that particle swarm op-
timization (PSO) significantly improves the predictive capa-
bilities of the LSSVR model in predicting DO. A particular
type of model called the extended stochastic harmonic analy-
sis (ESHA) was developed by Abdul-Aziz and Ishtiaq (2014)
and compared with the classical harmonic analysis (CHA) for
estimating hourly DO concentration, and found that the ESHA
model was better when compared to CHA model.

Forecasting DO concentration models were rarely present-
ed in the literature. This kind of models adopt antecedent
values as input to forecast the future DO value at a specific
horizon. Faruk (2010) investigated the capabilities of the
MLPNN in forecasting monthly DO concentration in the
Buyuk Menderes basin, Turkey. Wang et al. (2013) applied
three models, namely, bootstrapped wavelet neural network
(BWNN), MLPNN, and WNN, for forecasting monthly DO.
Alizadeh and Kavianpour (2015) compared two forecasting
models: MLPNN and WNN models in DO forecasting. The
authors demonstrated that using four antecedent values of DO
as inputs, the model provided better results at hourly time step
when compared to the model at daily time step. Heddam
(2016c) used the OP-ELM for forecasting DO in 7 days ahead,
using previous values of DO measured at an hourly time step.

An analysis of the works reported above revealed that most
of the works focused on the prediction of DO without water
quality variables (category of forecasting models), is rarely
adopted. Recently, Heddam (2016d) proposed a new kind of
model for predicting DO without water variables. The author
compared RBFNN andMLR for modelingDO using the com-
ponents of the Gregorian calendar that are: (i) year number, (ii)
number of months from 1 to 12, (iii) number of days from 1 to
31, and (iv) number of hours from 0:00 to 24:00. To the best of
the authors’ knowledge, there is no such study in the literature
which examines the potential of extreme learning machines
(ELM)-based approach, for modeling DO concentration with
water quality variables as predictor. Hence, this study aims to
introduce new kind of models for estimating DO concentra-
tion in river. The proposed ELM models were first applied for
estimating DO using four water quality variables as inputs,
and second, they were applied for forecasting DO without
water quality variables and using only the component of the
Gregorian calendar as input. Finally, we investigated whether
the proposed ELM models can outperform the well-known
multilayer perceptron neural network (MLPNN) and multiple
linear regression (MLR) approaches for modelingDO concen-
tration with and without water quality variables as predictors.

Methods

ELM is a new data-driven model, first presented by Huang
et al. (2004) and developed later by Huang et al. (2006a, b).

ELM has been introduced to improve the learning ability of
the standard single hidden layer feedforward neural networks
(SLFN). As a result, several attempts have been made over the
past few years, with success, to improve the original algo-
rithm; consequently, some changes were made and several
types of ELM have been introduced. The present work aims
to compare four ELM categories: the standard ELM with sig-
moid activation function called S-ELM, the ELM with radial
basis activation function (R-ELM), the online sequential ex-
treme learning machine (OS-ELM), and the optimally pruned
extreme learning machine (OP-ELM) for the first time. The
four ELM models were also compared with the standard mul-
tilayer perceptron neural network (MLPNN) and multiple lin-
ear regression (MLR) models. Detailed descriptions of the
proposed models are presented below.

Extreme learning machines

In order to improve the performance and the learning ability of
the SLFN, Huang et al. (2006a, b) introduced the ELM as a
new learning algorithm. In ELM, parameters of hidden nodes
are randomly selected and the output weights are analytically
determined using least squares method (Huang et al. 2006a, b;
Huang et al. 2012). Details of the mathematical formulation of
the ELM can be summarized as follows (Fig. 1):

For N arbitrary training samples represented by (xi, yi),
where xi = [xi1, xi2, … , xiD]

T∈RD and [yi1, yi2, …, yiD]
T∈RD;

The output of an SLFNwithN hidden nodes can be represented
by (Huang et al. 2006a, b):

f N xð Þ ¼ ∑
N

i¼1
βi f i x j

� � ¼ ∑
N

i¼1
βi f i wi⋅x j þ bi

� �
¼ oj x∈Rn;wi∈Rn ð1Þ

where wi is the weight vector connecting the input layer to the
ith hidden node, βi is the weight connecting the ith hidden
node to the output node, and f is the hidden node’s activation
function. Consequently, (wi × x) denotes the inner product of

Nj1

x1 x2 x3 x4

1 ΒN

Problem based

optimization contraint

Hidden nodes not to be tuned and

generated randomly

(w1, b1)

Inputs variables

(wN, bN)

Output variable

Output layer weights are 

determined analytically using least-

squares method (LSM)

Fig. 1 ELM structure (Huang 2015)

16704 Environ Sci Pollut Res (2017) 24:16702–16724



vectors wi and the input x.Here, wi = [wi1, wi2,…, wiD]
T is the

weight vector connecting the ith hidden node to the input
nodes, βi = [βi1, βi2,…, βik]

T is the weight vector connecting
the ith hidden node to the output nodes, and bi is the threshold
of the ith hidden node. The standard SLFN with N hidden
nodes with activation function f(x) can be written as (Huang
et al. 2015):

Hβ ¼ T ð2Þ

where

H ¼
f 1 w1⋅x1 þ b1ð Þ ⋯ f N wN ⋅x1 þ bNð Þ

⋮ ⋮ ⋮
f 1 w1⋅xN þ b1ð Þ ⋯ f N wN ⋅xN þ bNð Þ

2
4

3
5 ð3Þ

β ¼
βT
1

⋮
βT
N

2
4

3
5 and T ¼

tT1
⋮
tTN

2
4

3
5 ð4Þ

ELM simply solves the function by:

β ¼ HþT ð5Þ

where H+ is the Moore-Penrose generalized inverse of matrix
H. In the present study, we applied two types of ELM; S-ELM
with sigmoid activation function and R-ELMwith radial basis
activation function. Two activation functions are presented
below (Huang 2015; Liang et al. 2006).

The sigmoid function:

f w; b; xð Þ ¼ 1

1þ e− w⋅xþbð Þ ð6Þ

The radial basis functions with the popular Gaussian function:

f w; b; xð Þ ¼ e−b x−wk k2 ð7Þ

ELM has been successfully applied for modeling reference
evapotranspiration (ET0) at the north, mid, and southern parts
of Iraq (Abdullah et al. 2015); prediction of monthly effective
drought index in eastern Australia (Deo and Şahin 2015);
simulation of monthly mean streamflow water level in eastern
Queensland (Deo and Şahin 2016); forecasting monthly
streamflow discharge rates in the Tigris River, Iraq (Yaseen
et al. 2016); and prediction of daily water level in the Urmia
Lake, Iran (Shiri et al. 2016).

Online sequential extreme learning machine

Online sequential extreme learning machine (OS-ELM) was
first proposed by Liang et al. (2006) as a variant ELM algo-
rithm. OS-ELM is a modified version of the original ELM,
developed for single hidden layer feedforward networks
(SLFNs) with additive or radial basis function (RBF) hidden
nodes (Liang et al. 2006). In the original ELM, the learning

algorithm starts only if all the training samples are ready, con-
sequently, when new data are available, the ELM must be
retrained (Liang et al. 2006). Contrary to the ELM, OS-ELM
is capable of learning the available data one-by-one or
Bchunk-by-chunk^ with a fixed or varying chunk size (Liang
et al. 2006; Huang et al. 2011); when the learning procedure
for any particular observation is completed, the observation is
discarded from the pattern (Liang et al. 2006; Huang et al.
2011). The OS-ELM algorithm is implemented in two stages:
(i) the initialization and (ii) the online sequential learning
phase. The learning algorithm is summarized as follows
(Singh et al. 2016): (i) Training data are sequential one-by-
one or block-by-block, (ii) only a new data sample is presented
to the learning algorithm for training; the data samples are not
used for training again and again; (iii) once finished with the
data sample, it will be discarded from the pattern; and (iv) prior
knowledge about the length of the data samples to be presented
to the learning algorithm is not necessary (Singh et al. 2016).

If a new chunk of data is received, it results in a problem of
minimizing (Liang et al. 2006):

H0

H1

� �
w− T0

T1

� �����
���� ð8Þ

Consequently, the connecting weight w becomes:

w 1ð Þ ¼ K−1
1

H0

H1

� �T T0

T1

� �
ð9Þ

where

K1 ¼ H0

H1

� �T H0

H1

� �
¼ K0 þ HT

1H1 ð10Þ

In order to increase the efficiency of sequential learn-
ing, w(1) must be calculated as a function of w(0), K1,
H1, and T1:

H0

H1

� �T T0

T1

� �
¼ HT

0T0 þ HT
1T1

¼ K1w 0ð Þ−HT
1H1w 0ð Þ þ HT

1T1 ð11Þ

w(1) can be expressed as follows by combining (10) and (11):

w 1ð Þ ¼ K−1
1

H0

H1

� �T T 0

T 1

� �
¼ w 0ð ÞþK−1

1 H
T
1 T1−H1w 0ð Þ
� �

ð12Þ

Iteratively, when the (k + 1) new chunk of data arrives, the
recursive method is implemented for acquiring the updated
solution. w (k+1) can be updated by:

w kþ1ð Þ ¼ w kð Þ þ K
−1
kþ1H

T
kþ1 Tkþ1−Hkþ1w kð Þ

� �
ð13Þ

with

K−1
kþ1 ¼ K−1

k −K−1
k HT

kþ1 I þ Hkþ1K−1
k HT

kþ1

� �−1 � Hkþ1K−1
k ð14Þ
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OS-ELM has been successfully applied for many engineer-
ing problems (Lima et al. 2016; Yadav et al. 2016; Wang and
Han 2014).

Optimally pruned extreme learning machine

Optimally pruned extreme learning machine (OP-ELM) was
first proposed byMiche et al. (2008a, b) and presented later by
Miche et al. (2010). OP-ELMs accepts multiple types of func-
tions, i.e., Gaussian, sigmoid, and linear (Pouzols and
Lendasse 2010a, b). Using a real-world data set on a toy ex-
ample (Miche et al. 2008b) demonstrated in a clear and effec-
tive manner that the original ELM suffers from an important
drawback that lead to a decrease in the accuracy of the algo-
rithm, when irrelevant or correlated variables are presented in
the training data set (Sovilj et al. 2010). OP-ELM is presented
as a good solution for pruning away irrelevant variables.
(Miche et al. 2008a, 2010). The OP-ELM is achieved in three
steps (Moreno et al. 2014; Grigorievskiy et al. 2014): (i) an
over-parameterized ELM is built with initially large number of
neurons; (ii) an appropriate ranking of the hidden neurons is
made upon based on their contribution to the linear explana-
tion of the ELM output, using the multi-response sparse re-
gression (MRSR) (Similä and Tikka 2005) or least angle re-
gression (LARS) (Efron et al. 2004) if the output is one-
dimensional; (iii) leave-one-out (LOO) validation is used to
decide how many neurons to prune. Presented as a good al-
ternative to solve complex problems, OP-ELM has been suc-
cessfully applied for many engineering problems (Sorjamaa
et al. 2008; Sovilj et al. 2010; Moreno et al. 2014;
Grigorievskiy et al. 2014; Akusok et al. 2015; Heddam
2016c).

Multilayer perceptron neural network

Multilayer perceptron neural network (MLPNN) (Rumelhart
et al. 1986) is a well-known ANNs model and mainly adopted
for solving problems in environmental science. MLPNN is a
universal approximator (Hornik et al. 1989; Hornik 1991).
MLPNN is composed of layers of units called neurons.
MLPNN has three types of layers: an input layer, one or more
hidden layers, and an output layer. In the present study, we
have used a model with only one hidden layer with sigmoid
activation function and a linear activation function also called
identity function in the output layer. The number of neurons in
the hidden layer is determined with trial and error. The input
layer contains the predictors (pH, TE, SC, and TU) for models
with water quality variables, and the year, month, day, and
hour numbers for the models without water quality variables.
Finally, the output layer contains only one neuron; the DO
concentration. More details about MLPNN can be found in
Haykin (1999).

Multiple linear regression)

Multiple linear regression (MLR) is a method adopted to pro-
vide a simple linear relation between a set of predictors (xi),
and one variable called response (Y); the model can be pre-
sented as follow:

Y ¼ f xið Þ ¼ β0 þ β1x1 þ β2x2þβ3x3 þ β4x4 þ βixi ð15Þ
where Y is the response (DO); xi is the water quality variables
(pH, TE, SC, and TU); and βi is the parameters of the models.

Case studies

DO modeling in river ecosystems with and without water qual-
ity variables was demonstrated using eight different datasets
from different basins in USA: Clackamas, Willamette,
Umpqua, Tualatin, Delaware, and Cumberland basins.
Detailed presentation of the rivers with the identification code
of each station (ID) at different basins is reported in Table 1. For
the eight stations, data are available at the United States
Geological Survey (USGS) website:http://or.water.usgs.gov/
cgi-bin/grapher/table_setup.pl?site_id. The water quality data
used in this study consisted of measured water temperature
(TE, °C), turbidity (TU FNU), pH (std. unit), specific
conductance (SC, μS/cm) and dissolved oxygen (DO, mg/L).
Water quality variables were measured at 1-h time interval. For
each station, we selected a period of record for four calendar
years. Detailed descriptions of the data set with the period of
records are reported in Table 2. Each data set is divided into two
subsets: (i) a training subset (70%) and (ii) a validation subset
(30%); results for each station are reported in Table 3. Table 4
represents the statistical parameters of water quality variables in
the study area. In the table, the terms Xmean, Xmax, Xmin, Sx, Cv,
and R denote the mean, maximum, minimum, standard devia-
tion, coefficient of variation, and the coefficient of correlation
between the variable and the DO, respectively.

Application and results

The aim of this study is to demonstrate the capability and
usefulness of the ELM models for the prediction of DO con-
centration in river ecosystems with and without water quality
variables as inputs. The investigation was conducted in three
phases. First, by selecting four water quality variables (TE,
pH, SC, and TU), several combinations were selected and
six scenarios (Table 5) (i) TE, pH, SC, and TU; (ii) TE, pH,
and SC; (iii) TE, SC, and TU; (iv) TE and SC; (v) TE and pH;
and (vi) TE and TU were compared. The selection of the six
combinations is mainly based on the correlation coefficient.
Second, an attempt is made to predict DO concentration
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without water quality variables as input. Within this context,
we have selected four inputs variables that are (i) year number,
(ii) month number from 1 to 12, (iii) day number of the month
from 1 to 31, and (iv) hour number from 0:00 to 24:00. For
example, the inputs of the pattern that correspond to 15
December 2010 at 22:00 are described as below:

1. Input 1: year number, i.e., B2010^.
2. Input 2: month number, i.e., B12^.
3. Input 3: day number, i.e., B15^.
4. Input 4: hour number, i.e., B22.00^.

Flowchart of the proposed approaches with and without
water quality variables is presented in Fig. 2.

Similar to the models with water quality variables,
the models without water quality always have four input
variables. Third, the best ELM models are evaluated by
training with validation dataset and testing with training
dataset, with and without water quality variables.

In order to remove the effect of different units of measure-
ment, the data were standardized using the Z score method
(Gulgundi and Shetty 2016):

xni;k ¼ xi;k−mk

SdK
ð16Þ

where xni, k is the normalized value of the variable k (input or
output) for each sample i. xi,k is the original value of the
variable k. mk and Sdk are the mean value and standard devi-
ation of the variable k. According to Gulgundi and Shetty
(2016), the Z score method is mainly adopted in the studies
based on statistical analysis; furthermore, the effect of differ-
ent units of measurement was completely eliminated. It has
been demonstrated that the Z score method (Gulgundi and
Shetty 2016; Heddam 2016c, d, e) improves the performances
and the accuracy of the models. In this study, four statistical
indices were selected to evaluate the different ELM models.
These indices are the coefficient of correlation (R), the Nash-
Sutcliffe efficiency (NSE), the root mean squared error
(RMSE), and the mean absolute error (MAE), calculated as
follows (Legates and McCabe 1999):

R ¼
1

N
∑ Oi−Omð Þ Pi−Pmð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
∑
n

i¼1
Oi−Omð Þ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
n

i¼1
Pi−Pmð Þ2

r
2
664

3
775 ð17Þ

NSE ¼ 1−
∑
N

i¼1
Oi−Pi½ � 2

∑
N

i¼1
Oi−Om½ � 2

ð18Þ

Table 2 Data set presentation for all stations

Station ID Latitude Longitude Period of record Total pattern Incomplete
pattern

Final
pattern

14211010 45° 22′ 46″ 122° 34′ 34″ NAD27 01 January 2010–31 December 2013 35,064 364 34,700

14211720 45° 31′ 03″ 122° 40′ 09″ NAD83 01 January 2010–31 December 2013 35,064 2258 32,806

14316460 43° 18′ 22″ 122° 30′ 42″ NAD27 01 January 2010–31 December 2013 35,064 1366 33,698

14317450 43° 19′ 29″ 122° 59′ 55″ AD27 01 January 2009–31 December 2012 35,064 1237 33,827

14207200 45° 21′ 24″ 122° 41′ 02″ NAD27 01 January 2010–31 December 2013 35,064 4780 30,284

14206241 45° 30′ 01″ 122° 59′ 24″ NAD27 01 January 2010–31 December 2013 35,064 1888 33,176

1463500 40° 13′ 18″ 74° 46′ 41″N AD83 01 January 2007–
31 December 2010

35,064 3327 31,737

3431083 36° 09′ 50″ 86° 41′ 57″ NAD27 01 January 2010–31 December 2013 35,064 4690 30,374

45° 22′ 46″: 45°, 22 min, and 46 s; 35,064 = 8784 + (8760 × 3); 8760 = 24 h × 365 days (2008 and 2012 are leap years); one pattern corresponds to 1 h in
a day

Table 1 Geographical location
of the selected stations Site Basin Station ID

Clackamas River near Oregon City Clackamas Basin, Oregon 14211010

Willamette River at Portland Willamette Basin, Oregon 14211720

N. Umpqua River at Soda Springs, nr Toketee Falls Umpqua Basin, Oregon 14316460

N. Umpqua River near Idleyld Park Umpqua Basin, Oregon 14317450

Tualatin River at Oswego Diversion Dam Tualatin Basin, Oregon 14207200

Tualatin River at Hwy 219 at Jackson Bottom Tualatin Basin, Oregon 14206241

Delaware River at Trenton, NJ Delaware basin Commission 1463500

Mill Creek at Lebanon Road at Nashville, TN Cumberland Basin, Tennessee 3431083

Environ Sci Pollut Res (2017) 24:16702–16724 16707



RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
Oi−Pið Þ2

s
ð19Þ

MAE ¼ 1

N
∑
N

i¼1
Oi−Pij j ð20Þ

where N is the number of data points, Oi is the measured
value, and Pi is the corresponding model prediction. Om and
Pm are the average values ofOi and Pi. For applying the ELM
models, we used the following Matlab codes: (i) for OP-ELM
model, we used the code available at http://research.ics.aalto.
fi/eiml/software.shtml and for the OS-ELM, S-ELM, and R-
ELM we used the code available at http://www.ntu.edu.sg/
home/egbhuang/elm_codes.html.

Predicting DO using water quality variables
as predictors

Table 6 shows the evaluation of the OP-ELM1, OS-ELM1, S-
ELM1, R-ELM1, MLPNN1, and MLR1 models in training
and validation phases for each station. It should be noted that
Table 6 contains only the best models. The complete results,
including the best and the worst models developed are report-
ed in Tables A1–A6 as supplementary materials.

According to the obtained results, some important conclu-
sions can be drawn. First, among the six OP-ELMmodels, the
OP-ELM1 is always the best followed by the OP-ELM2 in the
second place, the OP-ELM3 and OP-ELM4 ranked as third.
Second, it is clear from Table A1 that inclusion of turbidity in
the models does not help to significantly improve the perfor-
mances of the proposed models, and the accuracy of the
models is slightly improved. However, the TU is not suitable
as input variable and may not be a predictor of DO concentra-
tion. Third, water TE and pH are the most important predictors
of DO. According to Table A1, the R varies with different
combinations in the training phase. The best R value (0.990)
was obtained using OP-ELM1 at two stations: USGS
14211720 and USGS 14317450. Similarly, the best NSE val-
ue (0.980) was obtained using OP-ELM1 at the USGS
14317450 station. In terms of the RMSE and MAE, the best
performances were obtained using OP-ELM1, with RMSE

equal to 0.152 mg/L and MAE equal to 0.110 mg/L, at the
USGS 14316460 station. In addition, the results for the six
OP-ELM models in the validation phase are also summarized
in Table A1. As shown in Table A1, the OP-ELM1 and OP-
ELM2 provide the best accuracy at eight stations, with high R
and NSE, and low RMSE and MAE. Furthermore, the results
obtained in the validation phase indicate that: (i) inclusion of
the TU as input does not help to improve the accuracies of the
proposed models (ii) OP-ELM5 model with TE and pH as
inputs provides good results at four stations with R values
ranging from 0.914 to 0.987; NSE values range from 0.835
to 0.975. The validation results for the best OP-ELM1 models
show smaller RMSE andMAEwith values equal to 0.172 mg/
L and 0.116, respectively. Measured and predicted DO con-
centrations with OP-ELM1 at the eight stations in the valida-
tion phase, using water quality variables as inputs are present-
ed in Fig. 3. The scatterplots apparently illustrate that the
estimates of the OP-ELM1 model closely follow the corre-
sponding measured DO values (especially the extreme
values).

Results obtained using the six OS-ELM models in
the training and validation phases at all eight stations
are summarized in Table A2. It should be observed here
that the six OS-ELM models give high accuracy and the
OS-ELM1 performs better than the other models by
showing lower RMSE and MAE values, and higher
NSE and R values. The results indicate that the OS-
ELM1 and OS-ELM2 are the best among the all six
models. These models relatively give the high R and
NSE, and low RMSE and MAE values. It can be ob-
served that the OS-ELM models yield results worse than
those obtained using the OP-ELM models. When com-
paring these two models taking into account the increas-
ing importance of the input variables from two to four
inputs, the OP-ELM models perform superior to the OS-
ELM models. According to Table A2, the R and NSE
values obtained using OS-ELM1 model in the validation
phase, lie in an interval between 0.923 and 0.987 and
0.852 and 0.974, respectively. Similarly, the validation
results of the best OS-ELM1 models, respectively, show
smaller RMSE and MAE with values equal to 0.179
and 0.134 mg/L when compared to other models. The

Table 3 The number of data used in training (70%) and validation (30%) subsets for all stations

Models Stations

14,211,010 14,211,720 14,316,460 14,317,450 14,207,200 14,206,241 1,463,500 3,431,083

All data 34,700 32,806 33,698 33,827 30,284 33,176 31,737 30,374

Training 24,290 22,965 23,589 23,679 21,199 23,224 22,216 21,262

Validation 10,410 9841 10,109 10,148 9085 9952 9521 9112
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RMSE and MAE accuracies of the best OS-ELM1 mod-
el were increased by 25.40 and 26.60% using OP-
ELM1, respectively. Measured and predicted DO con-
centrations with OS-ELM1, at the eight stations in the
validation phase, using water quality variables as inputs

are presented in Fig. 4. Scatterplots apparently illustrate
that the estimates of the OS-ELM1 model closely fol-
lows the corresponding measured DO values.

Table A3 shows the model evaluation of the six S-ELM
models in the training and validation phases at all eight

Table 4 Statistical parameters of the used data sets for all stations

Station Data set Unit Xmean Xmax Xmin Sx Cv R

USGS ID 14211010 TE °C 10.37 22.30 0.00 5.02 0.48 −0.91
SC uS/cm 50.66 76.00 26.00 10.18 0.20 −0.65
pH / 7.59 9.20 6.70 0.32 0.04 -0.15

TU FNU 3.76 520.00 0.00 12.21 3.25 0.18

DO mg/L 11.34 15.20 7.20 1.39 0.12 1.00

USGS ID 1463500 TE °C 13.42 30.90 0.00 9.19 0.69 −0.89
SC uS/cm 191.68 305.00 85.00 39.89 0.21 −0.33
pH / 7.87 9.50 6.60 0.51 0.06 -0.01

TU FNU 6.61 410.00 0.00 17.01 2.57 −0.06
DO mg/L 10.99 16.90 5.70 2.25 0.21 1.00

USGS ID 3431083 TE °C 16.76 32.90 0.20 7.58 0.45 −0.76
SC uS/cm 504.23 821.00 126.00 77.62 0.15 0.26

pH / 8.07 9.00 7.00 0.28 0.03 0.58

TU FNU 12.95 620.00 0.20 28.45 2.20 −0.12
DO mg/L 9.35 18.90 2.40 2.67 0.29 1.00

USGS ID 14206241 TE °C 10.83 22.00 1.20 4.10 0.38 −0.90
SC uS/cm 91.84 134.00 53.00 12.68 0.14 −0.30
pH / 7.20 7.80 6.70 0.20 0.03 -0.41

TU FNU 10.73 220.00 0.00 11.49 1.07 0.18

DO mg/L 10.07 13.50 7.30 1.01 0.10 1.00

USGS ID 14207200 TE °C 13.11 23.90 1.80 5.61 0.43 −0.87
SC uS/cm 198.34 380.00 67.00 82.00 0.41 −0.81
pH / 7.02 7.40 6.70 0.11 0.02 0.07

TU FNU 9.79 120.00 0.10 11.37 1.16 0.46

DO mg/L 8.59 12.90 4.30 1.67 0.19 1.00

USGS ID 14211720 TE °C 12.24 24.00 1.60 5.43 0.44 −0.95
SC uS/cm 72.08 98.00 48.00 9.35 0.13 −0.53
pH / 7.27 8.10 6.60 0.18 0.02 -0.52

TU FNU 9.33 170.00 0.80 13.12 1.41 0.53

DO mg/L 11.57 14.90 6.00 1.76 0.15 1.00

USGS ID14316460 TE °C 7.36 15.20 0.80 3.29 0.06 −0.96
SC uS/cm 54.08 69.00 27.00 5.89 0.11 −0.16
pH / 7.68 8.90 7.00 0.18 0.02 -0.48

TU FNU 1.61 990.00 0.00 7.53 4.68 0.06

DO mg/L 11.83 14.70 10.00 0.83 0.07 1.00

USGS ID 14317450 TE °C 9.33 20.50 0.00 4.34 0.46 −0.98
SC uS/cm 53.02 71.00 28.00 8.84 0.17 −0.47
pH / 7.69 8.70 6.70 0.27 0.04 -0.50

TU FNU 3.04 330.00 0.00 8.16 2.68 0.15

DO mg/L 11.57 14.80 8.90 1.17 0.10 1.00

Xmean mean; Xmax maximum; Xmin minimum; Sx standard deviation; Cv coefficient of variation; R coefficient of correlation with DO, TE water
temperature, DO dissolved oxygen, SC specific conductance, TU turbidity, uS/cm micro Siemens per centimeter, mg/L milligram per liter, FNU
Formazin Nephelometric Unit
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stations. According to Table A3, in the validation phase,
the S-ELM1 is the best model for the all stations, with the
highest R and NSE values, and the lowest RMSE and
MAE values. The R and NSE values of the best S-
ELM1 model are 0.988, and 0.977, respectively. Based
on the RMSE and MAE as seen in Table A3, the S-
ELM1 is selected as the best model in approximating
hourly DO with the values equal to 0.179 and 0.140 mg/
L, respectively. Furthermore, it can be observed that the
S-ELM1 models yield results worse than those obtained
using the OP-ELM1 model and yield results better than
those obtained using the OS-ELM1 models. In the valida-
tion phase, the OP-ELM1 improves the S-ELM1 model
with 18.60 and 57.14% reductions in RMSE and MAE,
respectively. By contrast, the accuracy of the S-ELM1
model in respect to the RMSE and MAE was increased
by 21.83 and 59.40%, respectively, against the OS-ELM1
model. Among the two-input models (combination 5, TE
and pH inputs), the S-ELM5 is the best model with R,
NSE, RMSE, and MAE values equal to 0.987, 0.974,
0.192, and 0.152 mg/l, respectively. Measured and pre-
dicted DO concentrations with S-ELM1 models at eight
stations in the validation phase, using water quality

variables as predictors are presented in Fig. 5. It is obvi-
ous from the parameters of the fit line equations in
scatterplots that the S-ELM1 model estimates are close
to corresponding DO values.

Table A4 shows the model evaluation of the six R-
ELM models in the training and validation phases at all
eight stations. Similar to the results obtained using OP-
ELM, OS-ELM, and S-ELM, the R-ELM1 is the best
model at the all stations, with the highest R and NSE
values, and the lowest RMSE and MAE values. The best
results is obtained using the R-ELM1 at the USGS
14317450 with R, NSE, RMSE, and MAE values equal
to 0.988 and 0.976, respectively. In addition, R-ELM1 has
the minimum value of RMSE (0.189 mg/L) and MAE
(0.150 mg/L) values. As seen in Table A4, the R-ELM5
with only two water quality variables as inputs (TE and
pH) is the best model with R, NSE, RMSE, and MAE
values equal to 0.987, 0.974, 0.189, and 0.150 mg/L, re-
spectively. The R-ELM1 model clearly performs worse
than the OP-ELM1 and S-ELM1 models; however, the
R-ELM1 provides better results than the OS-ELM1 model.
In the validation phase, OP-ELM1 improves the OS-
ELM1, S-ELM1, and R-ELM1 models, with the 10.41,

MM/DD/YYYY HH/MN TE: °C SC: uS/cm pH: std.unit TU: FNU DO: mg/L

Without water quality as predictors Using water quality variables as predictors Output 

x1 x2 x3 x4 Y

MM: Month

DD: Day

YYYY: Year 

HH/MN: Hours 

x1

x2

x3

x4

From 01 to 12 

From 01 to 31 

2008, 2009…2012 

From 01:00 to 00:00 

Y

Y

Scenario 1

oi
r

a
n

e
c

S
2

Fig. 2 Flowchart of the two
proposed modeling scenarios:
scenario 1 using water quality
variables as predictor and
scenario 2 without water quality
variables as predictors

Table 5 The input combinations
of different models Models Inputs combinations

OP-ELM OS-ELM S-ELM R-ELM MLPNN MLR

OP-ELM1 OS-ELM1 S-ELM1 R-ELM1 MLPNN1 MLR1 TE, SC, pH, TU

OP-ELM2 OS-ELM2 S-ELM2 R-ELM2 MLPNN2 MLR2 TE, SC, pH

OP-ELM3 OS-ELM3 S-ELM3 R-ELM3 MLPNN3 MLR3 TE, SC,TU

OP-ELM4 OS-ELM4 S-ELM4 R-ELM4 MLPNN4 MLR4 TE, SC

OP-ELM5 OS-ELM5 S-ELM5 R-ELM5 MLPNN5 MLR5 TE, pH

OP-ELM6 OS-ELM6 S-ELM6 R-ELM6 MLPNN6 MLR6 TE, TU

OP-ELM optimally pruned extreme learning machine, OS-ELM online sequential extreme learning machine, S-
ELM standard extreme learning machine, R-ELM radial basis function extreme learning machine, MLR multiple
linear regression, MLPNN multilayer perceptron neural network
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3.91, and 5.49% reductions in RMSE, respectively. In ad-
dition, the accuracy of the OP-ELM1 model in respect to
the MAE is increased by 12.50, 5.00, and 6.33% against
the OS-ELM1, S-ELM1, and R-ELM1, respectively.
Measured and predicted DO concentrations with R-ELM1
models at eight stations in the validation phase, using

water quality variables as predictors are presented in
Fig. 6. It is obvious from the parameters of the fit line
equations in scatterplots that the DO estimates by the R-
ELM1 models closely follow the measured values.

Table A5 shows the model evaluation of the six
MLPNN models in the training and validation phases

Table 6 Performances of different models in modeling DO at all stations using water quality variables as predictors

Models Stations Training (70%) Validation (30%) Ranks

NSE R RMSE MAE NSE R RMSE MAE

OP-ELM1 14,211,010 0.968 0.984 0.235 0.179 0.966 0.983 0.240 0.183 1
14,211,720 0.950 0.990 0.405 0.186 0.933 0.989 0.472 0.198 1
14,316,460 0.965 0.982 0.152 0.110 0.962 0.981 0.158 0.116 1
14,317,450 0.980 0.990 0.169 0.130 0.979 0.989 0.172 0.133 1
14,207,200 0.954 0.977 0.360 0.272 0.952 0.976 0.363 0.278 1
14,206,241 0.944 0.971 0.225 0.169 0.941 0.970 0.231 0.174 3
1,463,500 0.934 0.967 0.583 0.435 0.930 0.965 0.596 0.446 1
3,431,083 0.857 0.926 1.014 0.763 0.853 0.924 1.014 0.767 1

OS-ELM1 14,211,010 0.959 0.979 0.265 0.206 0.958 0.979 0.268 0.209 5
14,211,720 0.933 0.981 0.467 0.273 0.919 0.981 0.520 0.280 5
14,316,460 0.949 0.974 0.183 0.135 0.951 0.975 0.179 0.134 5
14,317,450 0.974 0.987 0.193 0.153 0.974 0.987 0.192 0.152 5
14,207,200 0.939 0.969 0.414 0.323 0.938 0.969 0.413 0.323 4
14,206,241 0.945 0.972 0.223 0.166 0.941 0.970 0.232 0.172 2
1,463,500 0.918 0.958 0.653 0.500 0.915 0.956 0.660 0.505 5
3,431,083 0.857 0.926 1.015 0.761 0.852 0.923 1.016 0.767 2

S-ELM1 14,211,010 0.961 0.980 0.258 0.202 0.960 0.980 0.260 0.203 4
14,211,720 0.935 0.981 0.463 0.266 0.920 0.981 0.518 0.275 4
14,316,460 0.955 0.977 0.173 0.127 0.956 0.978 0.170 0.127 4
14,317,450 0.977 0.988 0.179 0.139 0.977 0.988 0.179 0.140 3
14,207,200 0.936 0.968 0.422 0.329 0.936 0.968 0.419 0.327 5
14,206,241 0.915 0.956 0.276 0.207 0.914 0.956 0.280 0.211 5
1,463,500 0.924 0.961 0.629 0.475 0.921 0.960 0.636 0.482 4
3,431,083 0.838 0.915 1.081 0.808 0.837 0.915 1.067 0.805 5

R-ELM1 14,211,010 0.968 0.984 0.235 0.180 0.966 0.983 0.240 0.184 2
14,211,720 0.940 0.984 0.443 0.243 0.925 0.984 0.502 0.251 3
14,316,460 0.962 0.981 0.158 0.115 0.959 0.979 0.165 0.120 2
14,317,450 0.977 0.988 0.180 0.140 0.976 0.988 0.182 0.142 4
14,207,200 0.950 0.975 0.375 0.285 0.948 0.974 0.376 0.287 2
14,206,241 0.959 0.979 0.192 0.142 0.951 0.975 0.210 0.156 1
1,463,500 0.930 0.964 0.603 0.453 0.926 0.962 0.616 0.465 2
3,431,083 0.871 0.933 0.962 0.721 0.859 0.927 0.992 0.746 3

MLPNN1 14,211,010 0.964 0.982 0.248 0.192 0.963 0.981 0.252 0.195 3
14,211,720 0.970 0.985 0.309 0.227 0.969 0.984 0.314 0.232 2
14,316,460 0.959 0.979 0.166 0.121 0.959 0.979 0.164 0.122 3
14,317,450 0.978 0.989 0.176 0.138 0.978 0.989 0.177 0.138 2
14,207,200 0.945 0.972 0.391 0.303 0.944 0.972 0.393 0.303 3
14,206,241 0.928 0.963 0.254 0.193 0.926 0.962 0.259 0.197 4
1,463,500 0.926 0.962 0.618 0.470 0.923 0.961 0.626 0.476 3
3,431,083 0.847 0.921 1.048 0.792 0.846 0.920 1.038 0.791 4

MLR1 14,211,010 0.947 0.973 0.302 0.243 0.944 0.972 0.308 0.247 6
14,211,720 0.951 0.975 0.395 0.291 0.952 0.975 0.393 0.294 6
14,316,460 0.933 0.966 0.210 0.159 0.931 0.965 0.213 0.159 6
14,317,450 0.966 0.983 0.218 0.174 0.966 0.983 0.217 0.174 6
14,207,200 0.841 0.917 0.667 0.524 0.842 0.918 0.657 0.519 6
14,206,241 0.843 0.919 0.375 0.288 0.848 0.921 0.372 0.287 6
1,463,500 0.893 0.945 0.746 0.563 0.888 0.942 0.757 0.571 6
3,431,083 0.726 0.852 1.405 1.062 0.731 0.855 1.370 1.050 6

Due to lack of space the results for all six combinations (1 to 6) can be found in the supplementary material. The table contains only the best models
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USGS 1463500 USGS 3431083

USGS 14206241 USGS 14207200

USGS 14211010 USGS 14211720

USGS 14316460 USGS 14317450

Fig. 3 Scatterplot of measured vs
calculated DO using OP-ELM1
models in the validation period
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USGS 1463500 USGS 3431083

USGS 14206241 USGS 14207200

USGS 14211010 USGS 14211720

USGS 14316460 USGS 14317450

Fig. 4 Scatterplot of measured vs
calculated DO using OS-ELM1
models in the validation period
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USGS 1463500 USGS 3431083

USGS 14206241
USGS 14207200

USGS 14211010 USGS 14211720

USGS 14316460 USGS 14317450

Fig. 5 Scatterplot of measured vs
calculated DO using S-ELM1
models in the validation period
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USGS 1463500 USGS 3431083

USGS 14206241 USGS  14207200

USGS 14211010 USGS 14211720

USGS 14316460 USGS 14317450

Fig. 6 Scatterplot of measured vs
calculated DO using R-ELM1
models in the validation period
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USGS 1463500 USGS 3431083

USGS 14206241

USGS 14211010

USGS  14207200

USGS 14211720

USGS 14316460 USGS 14317450

Fig. 7 Scatterplot of measured vs
calculated DO using MLPNN1
models in the validation period
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USGS 1463500 USGS 3431083

USGS 14206241

USGS 14211010 USGS 14211720

USGS  14207200

USGS 14316460 USGS 14317450

Fig. 8 Scatterplot of measured vs
calculated DO using MLR1
models in the validation period
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at all eight stations. According to Table A5, MLPNN1
have the best accuracy and performed the best in com-
parison to the all other five models. In the validation
phase, the R varies with different combinations. The
best R and NSE values (0.989 and 0.978) were obtained
using MLPNN1 at the USGS 14317450station. In terms
of the RMSE and MAE, the best performances were
obtained using MLPNN1, with RMSE equal to
0.177 mg/L and MAE equal to 0.138 mg/L. Although
the results obtained using MLPNN at the eight stations
are very satisfactory, we also conclude that OP-ELM1 is
performing better compared to the MLPNN1 in all sta-
tions, and the MLPNN1 ranks only second, third, and
fourth, in terms of the performance criteria. Measured
and predicted DO concentrations with MLPNN1 models
at eight stations in the validation phase, using water
quality variables as predictors are presented in Fig. 7.

Results using MLR are presented herein to draw a ro-
bust conclusion about the results obtained using the ELM
and MLPNN models. Results using MLR are tabulated in
Table A6. According to Table A6, both MLR1 and MLR2
perform well for modeling DO in all stations. On the other
hand, MLR1 provided the best results compared to all
other models. By comparing the results obtained using
MLR1 and all ELM and MLPNN1 models, MLR1 pre-
sents the worst overall performances and rank in the last
place. Measured and predicted DO concentrations with
MLR1 models at eight stations in the validation phase,
using water quality variables as predictors are presented
in Fig. 8.

Finally, we compared the results obtained using the
OP-ELM1, OS-ELM1, S-ELM1, R-ELM1, MLPNN1,
and MLR1 models. The performances of the six models
are tabulated in Table 6. As shown in Table 6, the six
models are ranked according to the performances of
each model in the validation phase at all eight stations.
According to Table 6, OP-ELM1 model provides the
best performance and is ranked in the first place at
seven stations and in the second place at one station.

R-ELM1 is ranked in the first place in one station, in
the second place in four stations, and it is third at only
one station. MLPNN is ranked in the second place at
two stations, in the third place in four stations, and
finally, in the fourth place in two stations. OS-ELM1
and S-ELM1models are ranked either third, fourth, and
fifth, except at two stations where OS-ELM1 model is
ranked in the second place, as reported in Table 6.
Finally, according to Table 6, we can conclude that
the MLR1 is the worst model among all the compared
models, and ranked in the sixth place. Details compari-
son and ranking of the six models is reported in
Table 7.

Finally, in order to illustrate the capabilities and use-
fulness of the best obtained models OP-ELM1, OS-
ELM1, S-ELM1, R-ELM1, MLPNN1, and MLR1 hav-
ing TE, pH, SC, and TU variables as inputs, the models
were also evaluated by interchanging the training and
validation datasets by setting the training dataset (30%)
and validation dataset (70%) and the results are summa-
rized in Table 8. As seen from the table, the results are
always good and the models provide high accuracy,
with the exception of the R-ELM1 at the USGS
3431083 station, in which the performances of the mod-
el are dramatically decreased. For the 30% training and
70% validation case, the major parts of the results ap-
proximate the results obtained at 70% training and 30%
validation case, which may mean that the models are
capable to predic t DO with a high accuracy.
Comparing the performances of the four models, OP-
ELM1 yields the best results and ranks in the first place
at six stations, while the MLR1 presents the worst over-
all performances.

Predicting DO without water quality variables
as predictors

Table 9 shows the model evaluation of the four ELM,
MLPNN, and MLR models without water quality variables

Table 7 Ranking and
comparison of different six
models in modeling DO at all
stations using water quality
variables as predictors

Stations Comparison

14211010 OP-ELM1 > R-ELM1 > MLPNN1 > S-ELM1 > OS-ELM1 > MLR1

14211720 OP-ELM1 > MLPNN1 > R-ELM1 > S-ELM1 > OS-ELM1 > MLR1

14316460 OP-ELM1 > R-ELM1 > MLPNN1 > S-ELM1 > OS-ELM1 > MLR1

14317450 OP-ELM1 > MLPNN1 > S-ELM1 > R-ELM1 > OS-ELM1 > MLR1

14207200 OP-ELM1 > R-ELM1 > MLPNN1 > OS-ELM1 > S-ELM1 > MLR1

14206241 R-ELM1 > OS-ELM1 > OP-ELM1 > MLPNN1 > S-ELM1 > MLR1

1463500 OP-ELM1 > R-ELM1 > MLPNN1 > S-ELM1 > OS-ELM1 > MLR1

3431083 OP-ELM1 > OS-ELM1 > R-ELM1 > MLPNN1 > S-ELM1 > MLR1

> superior
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as predictors, at all eight stations. In the validation phase, as
seen in Table 9, all the ELM models provide good approxi-
mates with respect to four statistical indices. R-ELM is the
best model and ranks first at seven stations while the
MLPNN ranks in the second place at five stations, followed
by the S-ELM and the OS-ELM in the third and fourth places,
respectively. Without water quality variables as predictors,

MLR presents the worst overall performances. Using MLR,
the R and NSE values never exceed 0.44 and 0.186, respec-
tively. Table 9 also shows that RMSE andMAEwere found to
be very high, and in some case, they reached to 2.573 and
2.104 mg/L, respectively. The R-ELM model yields low
RMSE and MAE values (0.223 and 0.171 mg/L) at the
USGS 14316460 and it is better than the all other models.

Table 8 Evaluation of the optimal models trained with validation dataset and tested with training dataset by using water quality variables as predictors

Station Models Training (30%) Validation (70%) Ranks

NSE R RMSE MAE NSE R RMSE MAE

14211010 OP-ELM1 0.967 0.984 0.235 0.181 0.967 0.983 0.239 0.183 1
OS-ELM1 0.952 0.976 0.284 0.223 0.953 0.976 0.284 0.222 5
S-ELM1 0.958 0.979 0.268 0.212 0.959 0.979 0.266 0.210 4
R-ELM1 0.967 0.984 0.235 0.180 0.966 0.983 0.240 0.183 2
MLPNN1 0.964 0.982 0.246 0.191 0.965 0.982 0.246 0.189 3
MLR1 0.945 0.972 0.306 0.246 0.947 0.974 0.301 0.242 6

14211720 OP-ELM1 0.932 0.989 0.476 0.202 0.947 0.988 0.418 0.201 1
OS-ELM1 0.917 0.980 0.526 0.284 0.932 0.980 0.473 0.277 5
S-ELM1 0.920 0.981 0.517 0.275 0.934 0.981 0.464 0.269 4
R-ELM 0.924 0.984 0.504 0.247 0.939 0.984 0.448 0.243 2
MLPNN1 0.966 0.983 0.328 0.249 0.967 0.983 0. 454 0.246 3
MLR1 0.952 0.975 0.394 0.294 0.931 0.975 0.496 0.291 6

14316460 OP-ELM1 0.967 0.983 0.148 0.109 0.953 0.977 0.177 0.128 1
OS-ELM1 0.948 0.974 0.185 0.137 0.945 0.972 0.192 0.140 4
S-ELM1 0.958 0.979 0.165 0.123 0.944 0.972 0.193 0.133 3
R-ELM1 0.964 0.982 0.153 0.113 0.914 0.959 0.238 0.153 5
MLPNN1 0.961 0.980 0.161 0.119 0.955 0.977 0.173 0.127 2
MLR1 0.934 0.967 0.208 0.158 0.933 0.966 0.211 0.159 6

14317450 OP-ELM1 0.980 0.990 0.166 0.128 0.979 0.989 0.173 0.132 1
OS-ELM1 0.975 0.987 0.188 0.147 0.975 0.987 0.189 0.147 5
S-ELM1 0.977 0.989 0.178 0.138 0.977 0.988 0.180 0.140 4
R-ELM1 0.978 0.989 0.177 0.137 0.977 0.988 0.180 0.139 3
MLPNN1 0.978 0.989 0.176 0.137 0.977 0.989 0.179 0.139 2
MLR1 0.966 0.983 0.219 0.175 0.966 0.983 0.217 0.174 6

14207200 OP-ELM1 0.955 0.977 0.350 0.267 0.950 0.975 0.374 0.282 1
OS-ELM1 0.907 0.953 0.504 0.396 0.905 0.952 0.515 0.402 5
S-ELM1 0.939 0.969 0.410 0.318 0.937 0.968 0.418 0.323 4
R-ELM1 0.950 0.975 0.369 0.281 0.947 0.973 0.386 0.292 2
MLPNN1 0.945 0.972 0.388 0.300 0.942 0.971 0.402 0.310 3
MLR1 0.842 0.918 0.657 0.520 0.841 0.917 0.667 0.526 6

14206241 OP-ELM1 0.944 0.972 0.226 0.168 0.938 0.969 0.236 0.175 4
OS-ELM1 0.945 0.972 0.223 0.166 0.943 0.971 0.227 0.169 2
S-ELM1 0.916 0.957 0.277 0.207 0.913 0.955 0.280 0.208 5
R-ELM1 0.960 0.980 0.190 0.139 0.943 0.972 0.225 0.158 1
MLPNN1 0.927 0.963 0.257 0.194 0.925 0.962 0.259 0.195 3
MLR1 0.848 0.921 0.372 0.285 0.843 0.919 0.376 0.286 6

1463500 OP-ELM1 0.932 0.965 0.590 0.442 0.931 0.965 0.598 0.445 1
OS-ELM1 0.895 0.946 0.730 0.551 0.898 0.948 0.727 0.552 5
S-ELM1 0.922 0.960 0.632 0.479 0.923 0.961 0.631 0.476 4
R-ELM1 0.931 0.965 0.594 0.444 0.930 0.965 0.600 0.448 2
MLPNN1 0.928 0.963 0.607 0.456 0.928 0.963 0.610 0.457 3
MLR1 0.888 0.942 0.756 0.571 0.893 0.945 0.746 0.564 6

3431083 OP-ELM1 0.857 0.926 1.000 0.758 0.847 0.920 1.050 0.788 2
OS-ELM1 0.862 0.928 0.981 0.744 0.854 0.924 1.025 0.770 1
S-ELM1 0.840 0.916 1.059 0.801 0.834 0.913 1.091 0.818 5
R-ELM1 0.877 0.936 0.928 0.702 0.795 0.896 1.214 0.799 4
MLPNN1 0.843 0.918 1.049 0.792 0.840 0.916 1.073 0.802 3
MLR1 0.732 0.855 1.368 1.044 0.725 0.852 1.406 1.058 6
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As can be seen from the comparison made in Table 9, the
models’ accuracies in estimating hourly DO values decrease
by using the components of the Gregorian calendar as predic-
tors instead of water quality parameters. Ranking accuracy of
the four models is reported in Table 9 according to the perfor-
mances of each model in the validation phase at all eight
stations.

Table 10 shows the model evaluation of the four ELM
models trained using validation dataset (30%) and tested using
training dataset (70%) without water quality variables as in-
puts. A first analysis of the obtained results reveals that: (i) the
performance accuracy of the developed models was decreased
and (ii) the R-ELM provides the best results in all training and
validation phases at all eight stations, followed by the

Table 9 Performances of the proposed models in modeling DO at all stations without water quality variables as predictors

Station Models Training (30%) Validation (70%) Ranks

NSE R RMSE MAE NSE R RMSE MAE

14211010 OP-ELM 0.857 0.926 0.494 0.387 0.853 0.923 0.500 0.394 4
OS-ELM 0.851 0.923 0.504 0.407 0.849 0.922 0.505 0.408 5
S-ELM 0.899 0.948 0.416 0.329 0.896 0.947 0.420 0.332 3
R-ELM 0.951 0.975 0.289 0.223 0.939 0.969 0.322 0.251 1
MLPNN 0.925 0.961 0.359 0.279 0.924 0.961 0.360 0.280 2
MLR 0.177 0.423 1.188 0.961 0.186 0.438 1.175 0.949 6

14211720 OP-ELM 0.855 0.940 0.691 0.482 0.840 0.939 0.731 0.494 4
OS-ELM 0.852 0.939 0.698 0.499 0.838 0.938 0.736 0.509 5
S-ELM 0.874 0.952 0.644 0.446 0.856 0.949 0.694 0.462 3
R-ELM 0.934 0.982 0.465 0.265 0.889 0.968 0.610 0.343 1
MLPNN 0.925 0.962 0.489 0.386 0.923 0.960 0.496 0.393 2
MLR 0.107 0.329 1.691 1.393 0.112 0.329 1.688 1.394 6

14316460 OP-ELM 0.856 0.925 0.309 0.238 0.849 0.921 0.316 0.244 5
OS-ELM 0.859 0.927 0.306 0.238 0.858 0.926 0.306 0.239 4
S-ELM 0.887 0.942 0.274 0.212 0.887 0.942 0.273 0.213 3
R-ELM 0.925 0.962 0.223 0.171 0.915 0.957 0.236 0.183 1
MLPNN 0.889 0.943 0.271 0.205 0.889 0.943 0.270 0.208 2
MLR 0.069 0.267 0.785 0.669 0.066 0.268 0.785 0.668 6

14317450 OP-ELM 0.850 0.921 0.461 0.361 0.849 0.921 0.460 0.357 5
OS-ELM 0.909 0.953 0.358 0.287 0.906 0.952 0.363 0.289 1
S-ELM 0.904 0.950 0.368 0.294 0.901 0.949 0.373 0.295 3
R-ELM 0.951 0.975 0.262 0.208 0.867 0.934 0.432 0.338 4
MLPNN 0.903 0.950 0.370 0.287 0.904 0.951 0.366 0.289 2
MLR 0.085 0.274 1.137 0.927 0.092 0.297 1.128 0.923 6

14207200 OP-ELM 0.777 0.882 0.789 0.607 0.771 0.878 0.791 0.611 5
OS-ELM 0.815 0.903 0.718 0.563 0.812 0.902 0.716 0.562 4
S-ELM 0.850 0.922 0.647 0.507 0.844 0.919 0.652 0.511 3
R-ELM 0.908 0.953 0.507 0.382 0.882 0.939 0.568 0.433 1
MLPNN 0.874 0.935 0.594 0.466 0.868 0.932 0.602 0.469 2
MLR 0.141 0.375 1.549 1.254 0.145 0.381 1.529 1.240 6

14206241 OP-ELM 0.697 0.835 0.522 0.413 0.696 0.834 0.525 0.415 5
OS-ELM 0.766 0.875 0.458 0.362 0.768 0.877 0.459 0.362 3
S-ELM 0.875 0.936 0.334 0.261 0.776 0.886 0.451 0.343 2
R-ELM 0.885 0.941 0.322 0.252 0.857 0.926 0.360 0.281 1
MLPNN 0.752 0.867 0.472 0.365 0.754 0.868 0.473 0.364 4
MLR 0.166 0.423 0.865 0.699 0.169 0.425 0.868 0.700 6

1463500 OP-ELM 0.794 0.891 1.032 0.809 0.783 0.885 1.052 0.826 5
OS-ELM 0.850 0.922 0.882 0.670 0.844 0.919 0.893 0.681 4
S-ELM 0.886 0.941 0.770 0.584 0.880 0.938 0.782 0.595 2
R-ELM 0.925 0.962 0.623 0.459 0.908 0.953 0.686 0.513 1
MLPNN 0.870 0.933 0.821 0.625 0.864 0.930 0.832 0.634 3
MLR 0.156 0.406 2.090 1.790 0.162 0.413 2.066 1.767 6

3431083 OP-ELM 0.688 0.830 1.497 1.153 0.676 0.822 1.505 1.166 4
OS-ELM 0.717 0.848 1.426 1.116 0.705 0.840 1.436 1.127 2
S-ELM 0.701 0.837 1.465 1.132 0.690 0.831 1.471 1.143 3
R-ELM 0.809 0.899 1.172 0.899 0.781 0.884 1.235 0.954 1
MLPNN 0.684 0.827 1.506 1.169 0.670 0.819 1.518 1.186 5
MLR 0.069 0.263 2.587 2.114 0.051 0.229 2.573 2.104 6
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MLPNN in the second place, S-ELM in the third place, OS-
ELM in the fourth place, OP-ELM in the fifth place, and
finally, MLR with the lowest accuracy ranks in the last place.
In the validation phase, R-ELM yields the lowest RMSE
(0.186 mg/L) and MAE (0.243 mg/L), and the highest R
(0.975) and NSE (0.920) indices. Based on these results, it is
clear that none of the proposed models are able to provide the
performances achieved using the R-ELM.

Conclusions

In the present study, an attempt was made to estimate DO
concentration using four different ELM models; also, the pa-
per investigated whether ELM can outperform MLPNN and
MLR, for modeling DO with and without water quality vari-
ables as predictors. Various water quality datasets obtained
from eight different stations; USA were used for developing

Table 10 Evaluation of the optimal models trained with validation dataset and tested with training dataset without water quality variables as predictors

Station Models Training (30%) Validation (70%) Ranks

NSE R RMSE MAE NSE R RMSE MAE

14211010 OP-ELM 0.839 0.916 0.522 0.414 0.824 0.908 0.548 0.434 5
OS-ELM 0.861 0.928 0.485 0.391 0.859 0.927 0.491 0.396 4
S-ELM 0.894 0.946 0.424 0.337 0.889 0.943 0.436 0.345 3
R-ELM 0.954 0.977 0.280 0.215 0.919 0.961 0.372 0.282 1
MLPNN 0.912 0.955 0.387 0.302 0.912 0.955 0.389 0.303 2
MLR 0.187 0.436 1.174 0.947 0.175 0.419 1.189 0.960 6

14211720 OP-ELM 0.841 0.941 0.729 0.487 0.843 0.934 0.719 0.505 5
OS-ELM 0.833 0.936 0.747 0.506 0.842 0.934 0.719 0.510 4
S-ELM 0.869 0.955 0.662 0.436 0.878 0.953 0.633 0.439 3
R-ELM 0.916 0.982 0.529 0.275 0.920 0.975 0.513 0.317 1
MLPNN 0.944 0.972 0.423 0.334 0.944 0.972 0.422 0.334 2
MLR 0.110 0.329 1.690 1.395 0.104 0.326 1.695 1.394 6

14316460 OP-ELM 0.870 0.933 0.292 0.228 0.861 0.928 0.304 0.237 5
OS-ELM 0.879 0.938 0.282 0.220 0.869 0.932 0.294 0.229 4
S-ELM 0.889 0.943 0.270 0.210 0.879 0.938 0.283 0.219 3
R-ELM 0.929 0.964 0.217 0.168 0.911 0.954 0.243 0.186 1
MLPNN 0.905 0.951 0.251 0.193 0.900 0.949 0.257 0.199 2
MLR 0.072 0.277 0.782 0.665 0.073 0.275 0.784 0.667 3

14317450 OP-ELM 0.875 0.935 0.419 0.335 0.867 0.930 0.434 0.344 5
OS-ELM 0.907 0.952 0.361 0.290 0.897 0.946 0.382 0.305 4
S-ELM 0.906 0.951 0.364 0.290 0.896 0.946 0.384 0.305 3
R-ELM 0.955 0.977 0.252 0.198 0.922 0.961 0.331 0.264 1
MLPNN 0.917 0.958 0.340 0.267 0.913 0.955 0.352 0.274 2
MLR 0.094 0.297 1.127 0.919 0.086 0.273 1.137 0.924 6

14207200 OP-ELM 0.691 0.832 0.919 0.718 0.681 0.826 0.944 0.737 5
OS-ELM 0.819 0.905 0.704 0.550 0.813 0.902 0.722 0.564 4
S-ELM 0.848 0.921 0.645 0.506 0.842 0.918 0.665 0.520 3
R-ELM 0.911 0.955 0.492 0.370 0.861 0.931 0.624 0.474 1
MLPNN 0.856 0.925 0.627 0.496 0.856 0.925 0.634 0.500 2
MLR 0.145 0.381 1.529 1.240 0.140 0.375 1.549 1.254 6

14206241 OP-ELM 0.772 0.879 0.455 0.358 0.755 0.869 0.469 0.369 5
OS-ELM 0.778 0.882 0.449 0.356 0.765 0.875 0.459 0.366 4
S-ELM 0.776 0.886 0.451 0.343 0.875 0.936 0.334 0.261 2
R-ELM 0.896 0.946 0.308 0.240 0.850 0.922 0.367 0.282 1
MLPNN 0.814 0.902 0.411 0.326 0.804 0.897 0.419 0.333 3
MLR 0.169 0.424 0.868 0.699 0.165 0.420 0.866 0.699 6

1463500 OP-ELM 0.823 0.907 0.949 0.741 0.822 0.907 0.961 0.753 5
OS-ELM 0.848 0.921 0.881 0.678 0.848 0.921 0.887 0.681 4
S-ELM 0.883 0.940 0.772 0.584 0.881 0.939 0.785 0.597 2
R-ELM 0.924 0.961 0.621 0.456 0.900 0.949 0.721 0.540 1
MLPNN 0.863 0.929 0.836 0.641 0.866 0.931 0.833 0.640 3
MLR 0.161 0.410 2.069 1.767 0.152 0.403 2.094 1.793 6

3431083 OP-ELM 0.679 0.824 1.497 1.168 0.660 0.813 1.563 1.215 5
OS-ELM 0.714 0.845 1.413 1.095 0.705 0.840 1.456 1.120 2
S-ELM 0.691 0.831 1.468 1.129 0.687 0.829 1.500 1.147 3
R-ELM 0.808 0.899 1.158 0.890 0.772 0.879 1.281 0.983 1
MLPNN 0.675 0.822 1.506 1.176 0.675 0.822 1.529 1.182 4
MLR 0.053 0.230 2.572 2.104 0.067 0.261 2.590 2.118 6
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the models. The novelty of the present work lies on one hand
in the application of the ELM approaches at the first time, and
in the other hand, an attempt to estimate DO concentration
without water quality variables and using the components of
the Gregorian calendar as inputs. From the results obtained,
we can draw the following conclusions. First, in the first ap-
plication using the four water quality variables as inputs, the
OP-ELMwas found to be more accurate than the OS-ELM, S-
ELM, and R-ELM at seven stations and provided the best
accuracy in the validation phase, with high R and NSE values
(from 0.924 to 0.989) and (from 0.853 to 0.933), respectively.
Comparison of the best OP-ELM models suggests that the
OP-ELM models are superior to the MLPNN and MLR at
all stations, and the MLR is the worst models in all stations.
Therefore, the OP-ELM model is a very promising tool for
modeling DO concentration. Second, in the second applica-
tion using the components of the Gregorian calendar as inputs,
the R-ELM performed the best at seven stations and provided
the best accuracy in the validation phase, with highR and NSE
values (from 0.884 to 0.969) and (from 0.781 to 0.939), re-
spectively. The MLPNN is ranked in the second place at five
stations, while theMLR results suggest that the linear model is
very poor with very low accuracy, which leads to the conclu-
sion that the MLR is insufficient for mapping a good relation
between DO and the components of the Gregorian calendar;
hence, the selection of nonlinear models like ELM and
MLPNN are highly recommended. In addition, the important
conclusion could be drawn that, in some cases, the inclusion
of the turbidity as input did not improve the accuracies of the
proposed models; on the contrary, it made them worse. The
study also indicated that the hourly DO might be successfully
estimated by the ELM models using only components of the
Gregorian calendar as inputs when water quality data are
missing or do not exist.
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