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Abstract The concentration characteristics, sources, and po-
tential ecological risk assessment of 16 PAHs were investigat-
ed in the surface water from the Songhua River Basin,
Northeast China. A total of 48 river water samples, including
16 from the main streams and 32 from the tributaries, were
collected. Samples were separated into dissolved phases and
suspended particle matter (SPM) via filtration with 0.47 μm
glass fiber filters. Each phase was analyzed for PAHs. The
total PAH concentration in the dissolved phase in the water
ranged from 32.5 to 108 ng L−1 and from 0.3 to 62.3 μg g−1

(dry weight) in the suspended particle matter (SPM). The total
PAH concentration in the main stream was lower than in the
tributaries; the volume of annual runoff of rivers had a

significant effect on the PAH in the rivers. The 2- and 3-
ring PAHs dominated in both the dissolved phase and SPM,
indicating a relatively recent local source of PAHs in the study
area. The concentrations of PAHs in the Songhua River Basin
are lower when compared with the values previously reported
in the literature from other rivers around the world. The
sources of PAHs were assessed by diagnostic ratios and prin-
cipal component analysis (PCA), and the ecological risk of the
PAHs was assessed based on the risk quotient (RQ). The di-
agnostic ratios and PCA indicated that the main sources of
PAHs originated from pyrogenic and petrogenic sources, and
pyrogenic sources had a greater impact. The ecological risk
assessment indicated that the PAHs presented low ecosystem
risk in the Songhua River Basin.
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Introduction

Due to the carcinogenic and mutagenic potential, polycyclic
aromatic hydrocarbons (PAHs) have been identified as prior-
ity pollutants by the US Environmental Protection Agency
and have attracted a great amount of attention. (Keith and
Telliard 1979). PAH compounds are composed of two or more
fused aromatic rings which are mainly produced during the
incomplete combustion of fossil fuels and petroleum product
release. Considering the fact that the major source of PAHs are
of anthropogenic origin, they are now one of the ubiquitous
pollutants in the environment (Yunker et al. 2002). The PAHs
are introduced to aquatic environments through atmospheric
deposition (dry and wet), surface runoff, oil leakage, and
waste water discharge (Johnsen et al. 2005). These PAHs could
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pollute sources of drinking water (Wu et al. 2011a, 2011b).
Also, exposure of aquatic organisms (phytoplankton, zooplank-
ton, benthic macrofauna, and fish) that dwell in the polluted
aquatic environments to PAH, portends great danger to human
health, due to possible bioconcentration and biomagnification of
PAHs, as well as the critical role of these organisms in the food
chain. (Patrolecco et al. 2010; Guo et al. 2011).

The Songhua River Basin (41°42′–51°38′N, 119°52′–
132°31′E; Fig. 1) is the biggest tributary of the Amur River
and is the third largest river basin in China, covering an area of
55.72 × 104 km2. The basin flows through Inner Mongolia
Municipality, Heilongjiang, Liaoning, and Jilin Provinces.
The Songhua River Basin has two headstreams: the Nen
River and the Second Songhua River. The Nen River is the
northern headstream and originates in the Daxinganling
Mountains. The southern headstream is the Second Songhua
River in the Changbai Mountains. After their confluence, the
river is called the Songhua River and follows into the
Heilongjiang River.

The rainy season spans from June to September and ac-
counts for 85% of annual rainfall. The ice-bound period lasts
at least 5 months. The Songhua River Basin is one of the most
important agricultural bases of China and is one of the three
black soil terrains in the world. The Daqing Oilfield, which is
the largest oilfield in China, is also located in the basin. The
rivers of the Songhua River Basin are an important water
resource in the area. Despite their strategic importance, rapid
economic development and high-energy consumption in the
region during the last several decades, and their attendant ex-
tensive human activities such as industrial and agricultural
activities, urbanization, etc., have caused constant and increas-
ing emission of pollutants into the rivers (Wang et al. 2012;
Ministry of Environmental Protection of the People’s
Republic of China 2015; Wang et al. 2016).

Considering the nature of anthropogenic activities that is
dominant in the region, certain degree of health risk associated
with PAHs exists, especially in urban areas. A few studies
have been conducted on the water quality in the rivers of
Songhua River Basin; however, few have focused on PAHs
(Liu et al. 2007; Voulvoulis et al. 2007; Wang et al. 2013;
Wang et al. 2015a, 2015b; Cui et al. 2016; Wang et al.
2016). In the past, the investigations of PAHs were mainly
focused on the concentrations and distribution in the sedi-
ments and coastal water (Dickhut et al. 2000; Wang et al.
2001; Mai et al. 2002; Yim et al. 2005); few investigations
have accessed the distribution and ecosystem risk of PAHs in
the rivers, especially in Northeast China (Chen et al. 2004;
Patrolecco et al. 2010). It has been established that exposure
of PAHs to organisms and human beings via water sources is
the most significant routes of exposure (Okoli et al. 2015).
Considering the potential toxicity effects of PAHs, it is neces-
sary to analyze the characteristics and assess the ecological
risk of the PAHs in the aquatic environments.

The present work presents a systematic research study on
the PAHs of the Songhua River Basin. The objectives of this
study were (1): to evaluate the distribution characteristics of
PAHs in the dissolved form in the water and in SPM in the
Songhua River Basin, (2) to trace the possible sources of the
PAHs by molecular diagnostic ratios and PCA, and (3) to
determine the contamination status and evaluate the potential
environmental risks in the aquatic system.

Material and methods

Chemicals and materials

The 16 EPA priority PAHs measured in this study included
naphthalene (Nap), acenaphthylene (Acy), acenaphthene
(Ace), fluorene (Fle), phenanthrene (Phe), anthracene (Ant),
fluoranthene (Fla), pyrene (Pyr), benzo[a]anthracene (B[a]A),
chrysene (Chr), benzo[b]fluoranthene (B[b]F), benzo[k]-
f luoranthene (B[k ]F) , benzo [a] pyrene (B[a ]P),
indeno[1,2,3-cd]pyrene (Ipy), Dibenzo[a,h]anthracessne
(DBA), and benzo[g,h,i]perylene (BPE). A mixed standard
solution of 16 EPA priority PAHs, internal standards (2-
fluorobiphenyl and p-terphenyl-d14) and surrogate PAH stan-
dards (naphthalene-D8, acenaphthene-D10, phenanthrene-D10,
chrysene-D12, and perylene-D12) were purchased from
Accustandard Inc. (New Haven, CT, USA). Hexane, dichlo-
romethane (DCM), and methanol were purchased fromMerck
Inc. (New Jersey, NJ, USA). Neutral silica gel and aluminum
oxide (Al2O3) were purchased from Silicycle Incorporation
(Quebec, Canada). J.T. Baker C18 solid-phase extraction
(SPE) cartridges (200 mg/6 mL) were purchased from
Sigma-Aldrich (Saint Louis, MO, USA). All glassware and
Whatman glass fiber filters (GF/Fs, 0.47 μm) were heated at
450 °C for 5 h before use.

Sample collection

The surface water sampling sites were along the main
streams of the Songhua River Basin, the Second Songhua
River, the Nen River, and their major tributaries (Fig. 1). A
total of 48 river water samples, including 16 from main
streams and 32 from tributaries, were collected using the
baked glass bottles on July 2010. Sites 1–5 were located in
the main stream of the Songhua River (SHR), sites 6–9 in
the Second Songhua River (SSHR), sites 10–16 in the Nen
River (NR), sites 17–27 in the tributaries of the Songhua
River (TSHR), sites 28–30 in the tributaries of the Second
Songhua River (TSSHR), and sites 31–48 in tributaries of
the Nen River (TNR). The sum of 16 PAH concentrations
is designated ΣPAH.
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Sample pretreatment

All samples were divided into two phases, the dissolved phase
and SPM, via filtration with 0.47-μm glass fiber filters (GF/
Fs); the volume of each sample was 2 L, and the surrogates
were added before filtration. Each phase was analyzed for
PAHs. Extraction of the dissolved phase PAHs was processed
following the previously method (Hu et al. 2014). In brief,
dissolved PAHs in the water were extracted with C18 SPE

cartridges. The SPE columns were activated with 5-mL meth-
anol, followed by 2.5-mL deionized water, and 12%methanol
(V/V) was added to amend the water samples (to eliminate
possible adsorption of PAHs on the walls of the sample con-
tainers) before passing through the cartridges. The flow rate
was controlled at 6 mL/min with a vacuum. After the extrac-
tion process, the cartridges were dried with a N2 stream (to
eliminate evaporation of low weight PAHs and achieve high
recoveries) and thereafter eluted three times with 3 mL of

Fig. 1 Map showing the location
of sampling sites in Songhua
River Basin
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DCM. The eluates were later combined and concentrated to
2 mL under a gentle N2 stream. After exchanging the solvent
to 10 mL hexane, the eluate was concentrated to approximate-
ly 0.5 mL. Prior to the instrumental analysis, the internal stan-
dards were added.

The SPM-loaded filters extraction was conducted as previ-
ously reported (Mai et al. 2002). In brief, after being freeze-
dried and weighed, the SPM-loaded filters were shredded and
the surrogate standards were spiked. Then the filters were
Soxhlet extracted for 48 h with 250 mL DCM. After the
DCM was concentrated to 2 ml, the extract solvent was re-
placed with hexane. Then, the extract was cleaned by passing
through an alumina/silica gel column. The column was first
eluted with 15 mL hexane and discarded the first fraction
eluted from the column, while the second fraction eluted with
DCM/hexane (30:70, v/v) was collected and concentrated to
0.5 mL. Prior to GC-MS analysis, the internal standards were
added.

Instrumental analysis

The chromatographic analysis was performed on an Agilent
6890 gas chromatography and 5972B mass selective detector,
e q u i p p e d w i t h a D B - 5 c a p i l l a r y c o l u m n
(60 m × 0.25 mm × 0.25 μm). In total, 1.0 μL sample was
injected by an auto sampler. The oven temperature program
was: a 2-min hold at 80 °C, followed by an increase to
180 °C at 10 °C/min, an increase to 220 °C at 2 °C/min, and
an increase to 290 °C at 8 °C/min (Xu et al. 2014).

Quality control and assurance

Procedural blank, spiked blank, and spiked samples were used
for each set of samples for quality control. The recoveries of
the surrogate standards were 62.8 ± 3.2% for naphthalene-d8,
77.1 ± 5.6% for acenaphthene-d10, 81.1 ± 11.2% for phenan-
threne-d10, 81.3 ± 10.3% for chrysene-d12, and 75.5 ± 12.1%
for perylene-d12. The average recoveries of the 16 PAHs var-
ied from 71.6 to 101% in spiked blanks and from 63.2 to
103% in spiked samples. Method detection limit was dervied
with statistical analysis of repeatability by the low concentra-
tion standard addition experiments; the field blank and proce-
dure blanks were deducted. The instrument detection limits
were 1–5 ng/ml for 16 EPA PAHs. The procedural blank
was used to assess the effect of the experimental procedure
on the concentration of PAHs, while the spiked blank and
spiked samples were used to monitor the recovery efficiency
in the present study. The concentrations of PAHs were not
corrected with blanks and recoveries because the average re-
covery values of the 16 PAHs obtained in the present study
were within the analytically acceptable range (70–120%)
(Okoli et al. 2016; Bispo et al. 2011; Fajgelj and Ambrus
2000).

Statistical analyses

Principal component analysis (PCA) is a useful tool of multi-
variate analysis that uses an orthogonal transformation to con-
vert the original observations into a set of values called prin-
cipal components. The number of original variables is reduced
to the number of principal components without an obvious
loss in the total variance. The principal component has the
possible variance in turn. Grouping factors were selected
when the components contributed more than 10% of the total
variance, and each factor was associated with an emission
source. The most representative PAH compounds in each fac-
tor were identified based on loading values. Factors were se-
lected based on loading values greater than 0.5 (Ho et al.
2002; Singh et al. 2004). The software SPSS 20.0 was used
for the PCA analysis. Other statistical analyses were per-
formed with Origin 8.0.

Results and discussion

PAH concentrations in the dissolved form and SPM

ΣPAH in the dissolved form and SPM in the surface water from
the main streams of the SHR, the SSHR, the NR, and their major
tributaries are presented in Tables 1 and 2 respectively. Not all of
the 16 priority PAHs were detected in all of the surface water
samples. The high molecular weight PAHs of BbF, BkF, Ipy,
BaP, BPE, and DBAwere not detected in the dissolved form in
surface water, mainly because they are hydrophobic and tend to
associate with SPMor colloids. As shown in Table 1, PAH in the
dissolved form from surface water ranged from 13.9 to 305.5 ng
L−1, and the average PAH in the dissolved form in the SHR,
SSHR, NR, TSHR, TSSHR, and TNR were 33.7 ± 5.8,
51.9 ± 5.6, 34.1 ± 9.8, 65.1 ± 81.1, 92.1 ± 68.8, and
65.2 ± 17.9 ng L−1, respectively. The PAH in the dissolved form
from TSSHR was significantly higher than that from the other
rivers in the Songhua River Basin, and the PAH in the dissolved
form from SHR was the lowest. A large variability in samples
collected from TSSHR and TSHR was observed because PAH
from TSHR and TSSHR in different sample sites exhibited sig-
nificant difference which have made the range of concentrations
in TSHR and TSSHR get so large compared to the other rivers
and tributaries. As shown in Fig. 1, the SSHR is the shortest and
SHR is the longest among the three rivers; the number of sam-
pling sites were 3 in TSSHR, 11 in TSHR, and 18 in TNR
respectively. Most of the sampling sites in TSSHR and TSHR
were near the villages or cities, which exposes the rivers to more
contamination through pollutant chemicals discharge and dispos-
al. The PAH in some sample sites are obviously higher due to
the special nature of the sampling site, as indicated by the visible
outliers shown in Fig. 2. Among the main streams, PAH in the
dissolved form in the SHR was the lowest, while PAH in the
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SSHR was the highest. This may be due to the different amount
of runoff. The mean annual runoff in the SHR, NR, and SSHR
were 76.2, 22.73, and 16.23 billion cubic meters, respectively.
The results implied that the PAH concentrations were diluted
more with more runoff. The same trend was observed in the
tributaries of the Songhua River Basin. Most of the average
PAH values in the tributaries were higher than that in the main
streams of the SHR, NR, and SSHR (Fig. 3). Hence, the PAHs in
the tributaries may have contributed to the main stream.

As shown in Table 2, the PAH in the SPM from the
Songhua River Basin varied from 0.3 to 109.7 μg g−1. The
average PAH in the SPM from SHR, SSHR, NR, TSHR,
TSSHR, and TNR were 2.9 ± 2.2, 18.3 ± 22.1, 12.4 ± 10.6,
13.5 ± 32.0, 0.9 ± 0.8, and 8.4 ± 6.8 μg g−1, respectively. The
trends observed in the SPM were as similar to those of the
dissolved form. The average PAH in SPM in the TSSHR
was significantly higher than that from the other rivers in the
Songhua River Basin. Among the main streams, the average
PAH in the SPM form the SHR was the lowest, while the
average PAH from the SSHRwas the highest. This observation
may be due to the different amount of runoff. The PAH varia-
tions in the suspended particles from the tributary are affected
by complex combination of series of factors: the runoff volume
of the rivers, population density, distance of the sampling sites
from the city and factories, and other possible emission sources.
During the flood, some containers and cans from factories were
poured into the rivers, which serve as input sources to the rivers.

The PAH concentrations at each sample site in the Songhua
River Basin are presented in Fig. 2a–c. The results indicated
that the higher concentration of PAHswas obviously related to
urban sources contribution. The highest concentration of
PAHs in the dissolved phase and in the suspended particle
matter was observed at sampling sites 26 and 27, respectively,
which are situated near the Mudanjiang City (Fig. 2a, b).
Mudanjiang River is one of the biggest tributaries of SHR,
and Mudanjiang City is the important regional central cities
of northeast China, and with growing industrial and urban
development in the past few years, sewage discharges, urban
runoff, contamination emission of vehicular exhaust, and
shipping activities were intense in Mudanjiang City. While
higher concentration of PAHs in the dissolved phase was
found at site S30, the sampling site 30 is situated in the
Yinma River which is one of the biggest tributaries of SSHR
and pass through six counties. Another study has reported that
the deterioration of water quality of Yinma River had an evi-
dent influence on SSHR (Sun et al. 2011). Similarly, the
higher PAH concentration in the suspended particle matter
was observed at site 7 which is situated near the Songyuan
City in SSHR. There are eight wharf around Songyuan City,
and the Jilin oilfield which is the one of the four major pro-
duction oil fields of China is located in Songyuan City. The
urban and oilfield sources showed significant contribution to
the PAHs at site 7.T
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As discussed earlier, the amount of annual runoff maybe
has a significant effect on the PAH in the rivers. The amount
of annual runoff in the main streams was obviously higher
than that in the tributaries in the Songhua River Basin; how-
ever, there were a complex set of factors causing unexpected
results. In general, the PAHs in the tributaries maybe one of
the main contributors to the main stream of the SHR.

Compared with PAHs pollution levels reported previously
in the literature (Table 3), the PAH values in the Songhua

River Basin were similar to those in the Moscow River and
Mississippi River (Eremina et al. 2016; Zhang et al. 2007) and
lower than in the Yangtze River (Yu et al. 2016), Tianjin River
(Shi et al. 2005), Daliao River (Zheng et al. 2016), Pear
River(Liu et al. 2014), Gaoping River (Doong and Lin
2004), Cauca River (Sarria-Villa et al. 2016), and Gomti
River (Malik et al. 2011).The PAH concentrations in the
Songhua River Basin are relatively low. There are two possi-
ble reasons. First, during the sampling time in 2010, there was
heavy flooding in the Songhua River Basin; it was the most
serious floods over the past 15 years. According to hydrology
record, the flood increased the river discharge greatly to the
Songhua River basin, and the PAHs have been diluted by the
flood water (Song et al. 2015). The flooding also changed the
PAH processes of dissolution, adsorption, and deposition in
the water. The second reason is that the average population
density is approximately 97 indiv km−2 throughout the river
basin, and the population is mainly concentrated between
Changchun City and Harbin City. The population density is
much lower than the average population density (approxi-
mately 135 indiv km−2) in China, so the anthropogenic con-
tributions were likely relatively lower.

PAH composition profiles

The mean compositional profiles of the PAHs in the main
streams of the SHR, SSHR, and NR and their major tributaries
are shown in Fig. 3. The 2- and 3-ring PAHs were the most
abundant PAHs in both the water and SPM. In the water sam-
ples, the mean percentage of low molecular weight PAHs (2-
and 3-ring) was 96.2%, (range from 94.5 to 97.4%), and the
proportion of 4-ring PAHs ranged from 2.3 to 4.9% of PAH,
with a mean of 3.6%. Few 5- and 6-ring PAHs were detected
in the surface water.

The proportion of PAHs in the SPMwas also dominated by
lower ring number PAHs except in SSHR. The percentage of
2- and 3-ring PAHs ranged from 39.2 to 82.1%, with a mean

Fig. 2 Total PAHs in Songhua River Basin in water (a), SPM (b) and in
water + SPM
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value of 70.3%. The mean percentage of 4-ring PAHs was
20.9%, with a range from 16.5 to 31.7%. The 4-ring PAHs
make up the largest percentage of the high-ring number PAHs
(4-, 5-, and 6-ring). In SSHR, the proportion of higher ring
number PAHs was higher in the SPM than in other rivers in
the Songhua River Basin. As discussed above, there were
visible outliers of higher concentration of PAHs both in the
dissolved phase and in the suspended particle found, due to
contributions of urban and oilfield sources. This observation
was also the reason for the higher proportion of higher ring
number PAHs in this SSHR.

The results, which the low molecular weight PAHs (2- and
3-ring) were dominant in the surface water, have been found
in other studied area (Fernandes et al. 1997; Li et al. 2010;
Song et al. 2013) indicating a relatively recent local source of
PAHs in the study area. The observed trend is also a result of
the solubility of PAHs. The solubility of PAHs has a negative
trend with the molecular weight of PAHs. Low molecular
weight PAHs are more likely to remain in solution than their
higher molecular weight counterparts. Hence, high molecular
weight PAHs are preferentially adsorbed onto SPM and fine
particles and sink in the sediments due to the low aqueous
solubility and hydrophobic nature which results in lower
levels of higher molecular weight PAHs in the water samples
(Zhu et al. 2004).

Identification of PAH sources by diagnostic ratios

The anthropogenic source of PAHs in the environment is typ-
ically generated via petrogenic process (petroleum oil and
refined products) and pyrogenic process (combustion of

organic matter, coal). Generally speaking, PAHs of petrogenic
origin are abundant in 2- and 3-ring PAHs; however, PAHs
from pyrogenic origin have higher molecular weight PAH
compounds. Different PAH sources are marked with different
ratios of some individual PAHs (Zhang and Tao 2008).
Several ratios of specific individual PAHs are used to infer
possible sources (Yunker et al. 2002, Ping et al. 2007; Wang
et al. 2015a, 2015b; Parinos and Gogou 2016). In present
study, the ratios of Fla/(Fla + Pyr) vs. Ant/(Ant + Phe) and
Ipy/(Ipy + BPE) vs. BaA/(BaA + Chr) were used to identify
the sources of PAHs in the Songhua River Basin. To avoid
misdiagnosis of PAH origins caused by PAH partitioning be-
tween dissolved form and SPM, total PAH concentrations
(dissolved + particle) were used to calculate the diagnostic
ratios. The ratio of Fla/(Fla + Pyr) < 0.4 is characteristic of
petroleum contamination, and ratios between 0.4 and 0.5 in-
dicate that the PAHs derived from the petroleum combustion
and the combustion of grass, wood, and coal result in a ratio
>0.5. The ratio of Ant/(Phe + Ant) with 0.1 is usually used to
distinguish petrogenic and pyrolytic origins. Petroleum prod-
ucts usually have low Ant/(Phe + Ant) (<0.1), while an Ant/
(Phe + Ant) > 0.1 indicates that the origin is petrogenic
(Yunker et al. 2002).

In the present study, the ratio of Ant/(Phe + Ant) at most
sites was less than 0.1, while Fla/(Fla + Pyr) varied from 0.32
to 0.68(Fig. 4a), indicating the PAHs in the Songhua River
Basin originated from combined sources, and the combustion
of coal, petroleum, and biomass being the most important
origins of PAHs in this region.

Ratios of BaA/(BaA + Chr) < 0.20 and Ipy/(Ipy +
BPE) < 0.2 are characteristic of a petroleum source. The ratio

Table 3 Comparison of PAHs
concentrations in rivers
worldwide

Locations ΣPAHs Range in
water (ng L−1)

ΣPAHs Range in
SPM(μg g−1)

Reference

Yellow River, China 179–369 a 0.05–0.16 Li et al. 2006

Tianjin River, China 45.8–1270 a 0.94–64.2 Shi et al. 2005

Pearl River, China 849–1370 a Liu et al. 2014

Yangtze River, China 128–302 a Yu et al. 2016

Daliao River estuary, China 71.1–4250 a 1970–11,600 d Zheng et al. 2016

Gaoping River, Taiwan 10.0–9400 a Doong and Lin 2004

Mississippi river, USA 62.9–145 a Zhang et al. 2007

Taizi River, China 367–5794.5 a Song et al. 2013

Danube River, Hungary 25–1210 a Nagy et al. 2013

Moscow River, Russia 50.6–120 b Eremina et al. 2016

Cauca River, Colombia 52.1–12,888.2c Sarria-Villa et al. 2016

Songhua River Basin 182–397 a 0.3–62.3 This study

a Sum of 16 PAHs
b Sum of seven PAHs
c Sum of 12 PAHs
dUnit, ng L−1
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of BaA/(BaA + Chr) ranged from 0.20 to 0.35, and Ipy/(Ipy +
BaP) from 0.20 to 0.50 indicate PAHs originated from petro-
leum combustion. BaA/(BaA + Chr) > 0.35 and Ipy/(Ipy +
BPE) > 0.50 indicate PAHs derived from coal, wood, and grass
combustion (Yunker et al. 2002). In Fig. 4b, the samples show
evidence of a combination sources of biomass combustion,
petroleum-derived pollution, and coal combustion.

The distribution of Fla/(Fla + Pyr) vs. Ant/(Ant + Phe), and
Ipy/(Ipy + BPE)vs. BaA/(BaA + Chr) indicated that sources of
the PAHs in of SHR, SSHR, NR, TSHR, TSSHR, and TNR
were a combination of biomass combustion, petroleum-
derived pollution, and coal combustion(Fig. 4).

In summary, the diagnostic ratios indicated that the PAHs
in the Songhua River Basin originated from combined
sources. Combustion of biomass, coal, and petroleum was

the dominant source of PAHs in the Songhua River Basin.
However, degradation of some PAHs is expected to take place
during the river water that navigates its course downstream,
which would lead to uncertainty about the trace sources.
Having provided the qualitative identification with diagnostic
ratios, PCA is necessary to provide the quantitative
assessments.

Source identification of PAHs by PCA

Three principal components contributed more than 79.9% of
the total variances (Fig. 5).

PC1 was characterized by high loadings of Fla, Pyr, BaA,
Chr, BbF, BkF, and DBA and explained 40.6% of the vari-
ance. BkF are typical markers of gasoline and vehicle diesel
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emissions, while BbF and Chr are indicators of coal combus-
tion. The high loadings for Fla, Pyr, and Chr indicated coal
combustion (Harrison et al. 1996; Khalili et al. 1995; Simcik
et al. 1999). PC1 represented combination of diesel vehicle

emissions, gasoline emissions, coal combustion, and petro-
leum combustion.

PC2 (23.6% of the total variation) was characterized by
lower molecular weight PAHs (Nap, Acy, Ace, Fle, Ant, and

Fig. 5 Plots with PC1, PC2, and
PC3 from principal component
analysis for PAHs from the
Songhua River Basin

Table 4 Mean values of RQ(NCs), RQ(MPCs), RQ PAHs(NCs), and RQPAHsMPCs) of PAHs in the Songhua River basin, China

Water (ng L−1) RQ(NCs) RQ(MPCs)

TEFs NCs MPCs SHR SSHR NR TSHR TSSHR TNR SHR SSHR NR TSHR TSSHR TNR

Nap 0.001 12.00 1200.00 0.00 0.10 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Acy 0.001 0.70 70.00 0.00 0.10 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ace 0.001 0.70 70.00 0.00 0.10 0.30 0.10 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00

Fle 0.001 0.70 70.00 0.30 0.70 1.30 0.60 0.10 0.70 0.00 0.00 0.00 0.00 0.00 0.00

Phe 0.001 3.00 300.00 0.40 2.30 2.20 1.40 0.20 1.60 0.00 0.00 0.00 0.00 0.00 0.00

Ant 0.001 0.70 70.00 0.10 0.60 0.70 0.70 0.10 0.30 0.00 0.00 0.00 0.00 0.00 0.00

Fla 0.01 3.00 300.00 0.10 1.70 0.50 0.60 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00

Pyr 0.001 0.70 70.00 0.40 12.00 1.70 2.10 0.10 1.30 0.00 0.10 0.00 0.00 0.00 0.00

BaA 0.10 0.10 10.00 0.70 3.00 0.90 7.00 0.10 0.50 0.00 0.00 0.00 0.10 0.00 0.00

Chr 0.01 3.40 340.00 0.00 0.20 0.10 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BbF 0.10 0.10 10.00 0.90 10.00 1.00 8.00 0.20 0.60 0.00 0.10 0.00 0.10 0.00 0.00

BkF 0.10 0.40 40.00 0.10 0.50 0.10 1.30 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00

BaP 1.00 0.50 50.00 0.00 4.20 0.10 0.60 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00

DBA 1.00 0.50 50.00 0.10 4.20 0.10 0.80 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00

IPY 0.10 0.40 40.00 0.10 0.10 0.10 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BPE 0.01 0.30 30.00 0.20 32.00 0.20 1.70 0.00 0.30 0.00 0.30 0.00 0.00 0.00 0.00

RQ∑PAHs 0.00 69.40 6.20 21.50 0.00 2.90 0.00 0.00 0.00 0.00 0.00 0.00
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Phe), which are indicative of non-combustion fossil fuel pro-
cesses (Dachs et al. 2002). As characterized by PC2, the PAHs
may be due to the emissions from oilfield drilling platforms
and motor vehicles including unburnt diesel oil and gasoline
in the Songhua River Basin.

High loadings of BaP and BPE and IPY contributed more
than 15.6% of the total variance for PC3 which are typical
markers of diesel vehicles and gasoline (Harrison et al. 1996).

The diagnostic ratios and the PCA were consistent with
respect to the source of PAH contamination. The area was
exposed to PAHs originating from petrogenic and pyrogenic
sources, and pyrogenic source had a greater impact.

Though alkylated PAHs and dibenzothiophenes would
have given more information on the sources of PAHs and their
risks, the present study focused on the 16 EPA priority PAHs;
due to their prevalence and established toxicity profile, the
present study focused on the 16 EPA PAHs. The study of
alkylated dibenzothiophenes and other parent PAHs will be
undertaken in the future to have a better understanding of the
pollutant behavior in the environment.

Ecological risk assessment by RQ

The PAHs in river water can be absorbed by phytoplankton
and zooplankton, accumulated in the body of aquatic organ-
isms, and enters into the food web, resulting in a potential risk
to the river ecosystems. Ecological risk assessment of PAHs is
important to identify the possible dangers to the aquatic eco-
system (Wu et al. 2011a, 2011b).

When assessing the potential risk of PAHs in the aquatic
ecosystem from the Songhua River Basin, the concentrations
of PAHs in the water were compared to their corresponding
quality values, and reference values described in previous lit-
eratures were used for the assessment. The ecosystem risks of
16 individual PAHs were characterized by the risk quotients
RQNCs and RQMPCs (Kalf et al. 1997; Cao et al. 2010;
Dushyant et al. 2016). RQNCs and RQMPCs were calculated
as follows:

RQNCs ¼
CPAHs

CQV NCsð Þ

RQMPCs ¼
CPAHs

CQV MPCsð Þ

where CPAHs is the concentration of a specific individual PAH
in the medium, CQV(NCs) is the quality values of the negligible
concentrations (NCs) and CQV(MPCs) is the maximum permis-
sible concentrations (MPCs) in the medium. RQ(NCs) < 1.0
indicates that a specific PAH is risk free and the risk can be
of negligible, while RQ(MPCs) < 1.0 and RQ(NCs) > 1.0 indicate

concentration level of the specific PAH poses a moderate risk.
To prevent further contamination, some control action should
be taken. RQ(MPCs) > 1.0 indicates that the pollution with a
specific PAH is severe; the ecosystem risk of the PAH is high
risk, and urgent and effective control methods and remedial
measure should be taken immediately.

The average values of RQ(NCs) and RQ(MPCs) in different
media from different sites are listed in Table 4. The average
values presented RQ(NCs) > 1.0 and RQ(MPCs) < 1.0 for Phe,
Fla, Pyr, BaA, BbF, BaP, DBA, and BPE in the SHR; for Phe,
Fla, Pyr, BaA, BbF, BaP, DBA, and BPE in the SSHR; for Fle,
Phe, Pyr, and BbF in the NR; and for Phe BaA, BbF, BkF, and
BPE in the TSHR, which indicated that these PAHs pre-
sented a medium level of ecosystem risk at these sites.
However, no ecosystem risk was identified for Nap,
Acy, Ace, Ant, Chr, and Ipy at any of the sampling
sites. No values of RQ(MPCs) > 1.0 were found, which
indicated no severe ecosystem risk of individual PAHs
was at any of the sites in Songhua River Basin. In
general, high molecular weight PAHs are more muta-
genic and carcinogenic. The ecosystem risk is mainly
due to 3- and 4-ring PAHs; the moderate molecular
weight PAHs posed a much greater ecosystem risk in
the Songhua River Basin.

To assess the ecosystem risk more accurately and compre-
hensively, the ecosystem risk posed by the combination of all
16 PAHs was characterized based on the risk quotients
RQ PAHs(NCs) and RQ PAHs(MPCs). When the values of
RQ(NCs) and RQ(MPCs) of the individual PAHs were greater
than 1, they were combined to calculate RQ PAHs(NCs) and
RQ PAHs(MPCs) of PAHs. RQ PAHs(NCs) and RQ PAHs(MPCs)

were calculated as follows:

RQ∑PAHs NCsð Þ ¼ ∑
16

i¼1
RQNCs RQ NCsð Þ≥1ð Þ

RQ∑PAHs MPCsð Þ ¼ ∑
16

i¼1
RQMPCs RQ MPCsð Þ≥1ð Þ

The values of RQ PAHs(NCs) and RQ PAHsMPCs reflect the
ecosystem risk levels of the PAHs. RQ PAHs(NCs) = 0 indicates
that PAHs in a level of risk free, while RQ PAHs(MPCs) = 0 and
range of RQ PAHs(NCs) from 1 to 800 suggest that PAHs in a
level of low risk, RQ PAHs(NCs) □ ≥ 800 and RQ PAHs(MPCs) = 0
indicate the PAHs in a level of moderate risk1, the
RQ PAHs(MPCs) ≥ 1 and RQ PAHs(NCs) □ < 800 indicate the
PAHs pose a moderate risk2, RQ PAHs(NCs) □ ≥ 800 and
RQ PAHs(MPCs) ≥ 1 indicate the ecosystem risk of the PAHs
is high risk.

As shown in Table 4, RQ PAHs(NCs) in SSHR, NR,
TSHR, and TNR was less than 800 but greater than
1.0, while RQ PAHs(MPCs) was 0, which indicated that
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the contamination of PAH in the aquatic environment
of the SSHR, NR, TSHR, and TNR showed low eco-
system risk. There was no risk in the SHR and TSSHR;
the PAH contamination in these rivers was negligible.
RQ PAHs (MPCs ) was a lways less than 1.0 , and
RQ PAHs(NCs) was always less than 800, which indicated
that there was no moderate- or high-risk PAH contam-
ination in the aquatic environment in the entire Songhua
River Basin.

Conclusion

This study focused on assessing the concentration, source, and
ecological risk in the main streams of the Songhua River
Basin in Northeast China. Both the water and SPM contained
mostly low molecular weight PAHs. The average PAH in the
tributaries of the TSHR, TSSHR, and TNR was higher than in
the main streams of the SHR, SSHR, and NR. Compared with
PAH river pollution levels reported in the literature, the PAH
concentration in the Songhua River Basin was lower than
other rivers around the world. The diagnostic ratios and
PCA confirmed that the PAHs in the Songhua River Basin
came from combined petrogenic and pyrogenic sources, and
the pyrogenic source made a greater contribution. The ecosys-
tem risk assessment indicated the PAH in the aquatic environ-
ment of the Songhua River Basin posed a low ecosystem risk,
while some individual PAHs presented moderate risks. The
flood events had a significant impact on the concentrations
of PAHs in the rivers of the Songhua River Basin. It is sug-
gested that researchers should pay close attention to the effect
of these unpredictable events on the quality of rivers in the
area in the future research.
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