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Abstract The present study investigated the comprehensive
chemical composition [organic carbon (OC), elemental car-
bon (EC), water-soluble inorganic ionic components
(WSICs), and major & trace elements] of particulate matter
(PM2.5) and scrutinized their emission sources for urban re-
gion of Delhi. The 135 PM2.5 samples were collected from
January 2013 to December 2014 and analyzed for chemical
constituents for source apportionment study. The average con-
centration of PM2.5 was recorded as 121.9 ± 93.2 μg m−3

(range 25.1–429.8 μg m−3), whereas the total concentration
of trace elements (Na, Ca, Mg, Al, S, Cl, K, Cr, Si, Ti, As, Br,
Pb, Fe, Zn, and Mn) was accounted for ∼17% of PM2.5.
Strong seasonal variation was observed in PM2.5 mass con-
centration and its chemical composition with maxima during
winter and minima during monsoon seasons. The chemical
composition of the PM2.5 was reconstructed using
IMPROVE equation, which was observed to be in good agree-
ment with the gravimetric mass. Source apportionment of

PM2.5 was carried out using the following three different re-
ceptor models: principal component analysis with absolute
principal component scores (PCA/APCS), which identified
five major sources; UNMIX which identified four major
sources; and positive matrix factorization (PMF), which ex-
plored seven major sources. The applied models were able to
identify the major sources contributing to the PM2.5 and re-
confirmed that secondary aerosols (SAs), soil/road dust (SD),
vehicular emissions (VEs), biomass burning (BB), fossil fuel
combustion (FFC), and industrial emission (IE) were domi-
nant contributors to PM2.5 in Delhi. The influences of local
and regional sources were also explored using 5-day back-
ward air mass trajectory analysis, cluster analysis, and poten-
tial source contribution function (PSCF). Cluster and PSCF
results indicated that local as well as long-transported PM2.5

from the north-west India and Pakistan were mostly pertinent.
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Introduction

Delhi, the capital of India, has ranked as one of the megacities
with the worst air quality in the world (WHO 2016). Grave air
pollution and its allied health impacts have grown to be one of
the major and foremost perturb in India. According to World
Health Organization report (2015), India’s air quality is among
the worst in the world, almost equivalent to China in respect of
the population’s share susceptible to average air pollution
levels exceeding World Health Organization thresholds.
Particulate matter (PM) is crucial urban ambient air pollutant,
especially fine mode particles (PM2.5), which are mainly pro-
duced by combustion processes, transformation of gaseous
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species, and forest fires (Sharma et al. 2007; Kong et al. 2011;
Zheng et al. 2013; Sharma et al. 2016a, b). Finemode particles
have been reported to cause extensive detrimental effects on
human health, environment, and climate (Schwartz and
Dockery 1992; Buseck and Posfai 1999; Davidson et al.
2005; Ito et al. 2006; WHO 2009; Seinfeld and Pandis
2016). Several epidemiological studies conducted in recent
years have revealed fine particulates to be causative of broad
range of health effects, ranging from allergies, respiratory,
cardiopulmonary, and cardiovascular diseases to premature
mortality in severe cases (Ozkaynak and Thurston 1987;
Pope and Dockery 2006; Mauderly and Chow 2008; Russell
and Brunekreef 2009; Tie et al. 2009; Yan et al. 2009; Habre
et al. 2011; Vernile et al. 2013), since fine particles have the
ability to penetrate much deeper into the lungs and enter into
bloodstream through human respiratory tract (Pope et al.
2002; Pope and Dockery 2006; Brauer et al. 2015; Van
Donkelaar et al. 2015).

Particulate matter also plays an important role in climate
change (IPCC 2013), and it tends to influence global climate
change by absorption and scattering of solar radiation (Buseck
and Posfai 1999; Seinfled and Pandis 2016). Furthermore, PM
has other several pernicious influences on our environment
like formation of smog/haze, material corrosion and damage,
and ecosystem damage and visibility impairment (Reddy and
Venkatraman 2000; Zhang et al. 2002). The small particle size
of PM2.5 leads to a greater atmospheric residence time and a
propensity to spread over a much larger geographic region
(Wolff et al. 1985; Eldred and Cahill 1994; Wilson and Suh
1995). Since, the physical and chemical properties of these
fine particles vary significantly with time, region, meteorolo-
gy, and source category (Chow et al. 1994; Malm et al. 1994;
Chow et al. 1996; Watson and Chow 2002; Chu 2004). Thus,
the exigency to comprehend the potential source categories
and their contributions (source apportionment) has become
imperative to reduce the PM pollution (Zheng et al. 2005;
Sharma et al. 2014b, c; Sharma et al. 2016a; Panda et al.
2016). Source apportionment results can furnish the scientific
auxiliary for air quality management resolutions.

To deal with this matter, many tools have been employed
for identification and quantification of PM sources (Paatero
and Tapper 1994; Paatero 1997; Ulbrich et al. 2009) including
receptor modeling that proffers a manner to complete the pro-
cess by evaluating the pollutant concentrations at a sampling
site. Receptor models have been globally accepted to quanti-
tatively apportion and identify the sources of PM in the atmo-
sphere (Watson and Chow 2005; Hopke et al. 2006; Mazzei
and Prati 2009; Kong et al. 2010; Pant and Harrison 2012;
Belis et al. 2013; Bove et al. 2014; Banerjee et al. 2015). Two
major classes of models that have been used worldwide are (i)
chemical mass balance (CMB) model and (ii) multivariate
factor analysis models (including principal component analy-
sis with absolute principal component scores (PCA/APCS),

UNMIX, and positive matrix factorization (PMF)) (Hopke
et al. 2003; Pandolfi et al. 2008; Alleman et al. 2010;
Amodio et al. 2013). Both receptor and source profile data
are required to be put in former class, whereas source profiles
and their contributions can be extracted using latter set of
models (Hopke 2003). The detailed principles and applica-
tions for PCA/APCS, UNMIX, and PMF models have been
documented in literature (Thurston and Spengler 1985;
Paatero 1997, 1999; Garcia et al. 2006; Song et al. 2006a;
Chen et al. 2007; Gildemeister et al. 2007; Zheng et al.
2007; Olson and Norris 2008; Begum et al. 2010; Harrison
et al. 2011; Gugamesetty et al. 2012; Wang et al. 2012; Lelpo
et al. 2014; Shi et al. 2014) and our previous publications
(Sharma et al. 2014b, c; Sharma et al. 2015; Sharma et al.
2016a, b). The detailed analysis of source apportionment of
PM2.5 using PMF model is also available in our previous
paper and reference therein (Sharma et al. 2016b).

The strengths and weaknesses for these models have been
recapitulated in literature (Callen et al. 2009; Pant and
Harrison 2012; Banerjee et al. 2015). Briefly, PCA/APCS
is an exploratory tool for investigating structure in multivar-
iate data sets by combining factor analysis with multilinear
regression which aids in quantifying particulate source con-
tribution (Viana et al. 2008). It identifies individual compo-
nents’ group (PCs) using orthogonal decomposition, and
loading factors connect these PCs with variables. PCs further
connect with Varimax rotation to connect individual variables
to different components (Chanand Mozurkewich 2007; Belis
et al. 2013), whereas the UNMIX estimates the source num-
ber by minimizing the dimensionality of data by using sin-
gular value decomposition (SVD) method. High correlation
exists within each component, while least or no correlation
exists between individual components. PCA/APCS is consid-
erably the most common model for source apportionment
studies possibly because of its simplistic analytic procedure
and have been frequently employed in the past for various
source apportioning studies, but recently, a shift from PCA
and classic factor analysis to PMF was observed mainly due
to the ability of the model to provide better and more accu-
rate results than PCA as PMF takes into account the uncer-
tainty in the experimental data. PMF uses least squares ap-
proach and integrate non-negativity constraints in the optimi-
zation process in attempt to unravel the problem arising in
factor analysis and utilize estimates of error for each data
value as a point-by-point weight (Begum et al. 2004; Belis
et al. 2013).

The present work aims to perform the comprehensive char-
acterization of PM2.5 for an urban site of Delhi, India, during
the period of January 2013 to December 2014. The inter-
comparison of PM2.5 source apportionment results achieved
using three receptor models (PCA/APCS, UNMIX, and PMF)
to study their performances in source identification and in the
quantification of source contributions are performed.
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Furthermore, the trajectory analysis and potential source con-
tribution function (PSCF) are incorporated with secondary
aerosol (SA) results to qualify the contribution of each identi-
fied local and long-range transport sources in a more accurate
way (Kim et al. 2003; Kang et al. 2006; Lee and Hopke 2006;
Heo et al. 2009).

Material and methods

Site description

Delhi, the capital of India, is surrounded by four different
climatic zones (Himalayas in the north, central hot plains in
the south, the Thar desert in the west, and the Indo-Gangetic
Plain in the east), which influence its semi-arid climate and
considered as one of the most polluted megacities in the
world. PM2.5 samples were collected at CSIR-National
Physical Laboratory, New Delhi (28° 38′ N, 77° 10′ E;
216 m amsl) (Fig. 1), India. The sampling site represents a
typical urban environment surrounded by a heavy roadside
traffic and agricultural fields in the southwest direction. The
area is under the influence of air mass flow from north-east to
north-west in winter, south-east to south-west in summer, and
south-east to south-west in monsoon (Goyal and Sidhartha
2002). Although the traffic could be one of the major sources
of PM in Delhi, significant contributions from other sources,
i.e., roadside dust, secondary aerosol, biomass burning, and
industrial emissions, have also been observed (Sharma et al.
2014b, c). It also observes the alarming vehicular growth rate
with around 8.29 million of registered vehicles in 2013–2014
(Statistical Abstract of Delhi 2014). The ambient temperature
of sampling site varies from minimum (∼3 °C) in winter
(November to February) to maximum (∼47 °C) in summer
(March to June). The average rainfall in Delhi during mon-
soon (July to September) was of the order of ∼900 mm. The
detailed descriptions of sampling site including meteorology
are available in Sharma et al. (2016a).

Sampling method

PM2.5 samples were collected (n = 135) periodically on pre-
combusted (∼550 °C for at least 5 h to eradicate organic im-
purities) quartz micro-fiber filters (QM-A) during January
2013 to December 2014, using fine particle sampler (model
APM 550, M/s. Envirotech, India), which was operated at an
average flow rate of 1 m3 h−1 (accuracy ±2%) at a height of
10 m (above ground level) for 24 h. The flowmeter of the
sampler was calibrated (with the accuracy of ±2% of full
scale) with Air Flow Calibrator traceable to National
Standard. The pre-combusted filters were desiccated for 24 h
before measuring the initial and final weight by a micro-
balance (M/s. Sartorius, resolution ±10 μg). After collecting

samples, filters were stored under dry conditions in the deep
freezer at −20 °C prior to analysis.

Chemical analysis

The quantitative elemental analyses of PM2.5 filters were car-
ried out first by a non-destructive method using Rigaku ZSX
Primus wavelength dispersive X-ray fluorescence spectrome-
ter (WD-XRF). Then, ∼6.92 cm2 (size ½ of the filter) of QM-
A filters was used for analysis of water-soluble inorganic ionic
component (WSIC) using ion chromatograph, and rest of the
filter was used for organic carbon (OC)/elemental carbon (EC)
analysis using OC/EC carbon analyzer. Details of the PM2.5

filters analysis are given below.
WD-XRF (Rigaku ZSX Primus) was used for quantitative

analysis of major and trace elements in PM2.5 (Al, Mg, S, Si,
Cl, K, Ca, Ti, Cu, Mn, Fe, Zn, Br, Cr, As, and Pb). The
spectrometer consists of scintillation counter (SC) and flow
proportional counter (F-PC), detectors for heavy and light
elements, respectively, sealed X-ray tube for excitation, end
window, and an Rh target. The readings were taken in vacuum
conditions at a temperature of 36 °C and a tube rating of
2.4 kW. The scan was made to identify all elements in the
loaded filter except Si. The k–α X-spectral lines identify ele-
ments (Al, Mg, S, K, Cl, Ca, Ti, Si, Cr, Zn, Fe, and Mn) under
particular conditions, i.e., F-PC detector for Mg, Al, P, S, Cl,
K, and Ca; RX25 analyzer crystal for Mg; PET analyzer crys-
tal for Al; Ge analyzer crystal for P, Cl, and S; LiF (200)
analyzer crystal for Ca and K; and SC detector and LiF(200)
analyzer crystal for Ti, Cr, Mn, Fe, and Zn. Measurements on
blank filter were also taken, and correction in the intensities
was done for loaded filters. Quantitative analysis was carried
out using parameter method through ZSX software (Rigaku
Corporation, Japan).

The EC and OC of PM2.5 were analyzed using OC/EC
carbon analyzer (model DRI 2001A; Atmoslytic Inc.,
Calabasas, CA, USA) following the USEPA BIMPROVE
protocol^ with negative pyrolysis areas zeroed (Chow et al.
2004). The OC/EC carbon analyzer (DRI 2001A) works on
the principle of the preferential oxidation of OC and EC, in
which the sample heated at four different temperatures (140,
280, 480, and 580 °C) in pure helium and at three different
temperatures (580, 740, and 840 °C) in 98% helium and 2%
oxygen, since OC can be volatilized from the sample in a non-
oxidizing helium atmosphere and EC is volatilized through
combustion by an oxidizer. Correction for pyrolysis and char-
ring of OC compounds into EC are predominantly carried by
the optical component (laser reflectance and transmittance) of
the analyzer (Chow et al. 2004). Approximately 0.536-cm2

area of QM-A filter was taken, cutting though the proper
punch, and the values are given in μg cm−2 by the analysis
software (CarbonNet). Each filter was analyzed triplicate with
blank filters to get the concentrations of OC and EC in PM2.5
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mass. The OC/EC analyzer was calibrated every day before
analysis of the samples using mixture of 5% CH4 + balance
helium standard gases (for OC/EC peak verification). The
process was repeated after every five-sample analysis. A mix-
ture of 4.8% CO2 + balance helium standard gases were used
periodically for calibration of OC/EC analyzer in addition to
calibration with KHP and sucrose. Details of OC and EC
analysis of PM have been given in Sharma et al. (2014b).

For estimation of WSIC (Li+, Na+, NH4
+, K+, Ca2+, Mg2+,

F−, Cl−, NO3−, and SO4
2−) of PM2.5, filters (∼6.92 cm2) were

extracted in de-ionized water (resistivity 18.2 MΩ cm) for
90min in ultrasonic extractor. The extract was filtered through

0.22-μm nylon membrane filters and transferred to polypro-
pylene sample bottles and analyzed by ion chromatograph
(model DIONEX-ICS-3000, Sunnyvale, CA, USA). The con-
centrations of F−, Cl−, NO3

−, and SO4
2− were determined by

using an Ion Pac-AS11-HC analytical column with a guard
column, ASRS-300 4-mm anionmicro-membrane suppressor,
20 mM sodium hydroxide (NaOH; 50% w/w) as eluent, and
de-ionized water as regenerator. Li+, Na+, NH4

+, K+, Ca2+,
and Mg2+ were evaluated by using a guard column with a
separation column, suppressor CSRS-300, and 5mMmethane
sulfonic acid (MSA) as eluent. Chromeleon® software was
used to process the chromatograms, and data of

Fig. 1 Map of the study site (Source: Google maps)
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chromatography was collected at 5 Hz. Calibration standards
have been prepared by National Institute of Standards and
Technology (NIST, USA), traceable certified standards for
calibration of ion chromatograph (Sharma et al. 2014a). The
blank filters were also analyzed for cations (Li+, Na+, NH4

+,
K+, Ca2+, and Mg2+) and anions (F−, Cl−, NO3−, and SO4

2−).
The analytical error (repeatability) was approximated to be 3–
5% based on triplicate analysis of each filter. Detailed princi-
ple and analytical procedure of WSIC of PM are described in
Sharma et al. (2012a, b).

Descriptions of PCA/APCS, UNMIX, and PMF

Principal component analysis (PCA) is a statistical tool that
identifies patterns in data, revealing their differences and sim-
ilarities. It was performed to identify the possible sources of
PM2.5 mass over the selected site. Orthogonal transformation
method with Varimax rotation in PCAwas employed in present
study. The lowest eigenvalue for extracted factors was restrict-
ed to more than 1. Total 22 constituents/species of PM2.5 were
used as variable in the data set. In PCA, dimensionless stan-
dardized form has been transformed from the chemical data:

Zij ¼ Cij−Cj
σ j

ð1Þ

where i = 1, …, n samples; j = 1, …m elements; Cij is the
concentration of element j in sample i; and Cj and σj are the
arithmetic mean concentration and the standard deviation for
element j, respectively. The PCA model is expressed as

Zij ¼ ∑p
k¼1 gikhkj ð2Þ

where k = 1, …, p sources and gik and hkj are the factor load-
ings and the factor scores, respectively. Eigenvector decom-
position helps in solving this equation (Song et al. 2006).

Source profiles and source contributions are then estimated
quantitatively based on factor loading scores of PCA by using
APCS method (Thurston and Spengler 1985; Henry and Hidy
1979). Since the data for PCA results are normalized, thus for
each factor score, the true zero is derived as

Z0ð Þ j ¼
0−C j

σ j
¼ −

C j

σ j
ð3Þ

The re-scale scores are known as APCS and further source
contribution is obtained by linear regression using the follow-
ing equation:

Mi ¼ ζ0 þ ∑p
k¼1ζkAPCSki ð4Þ

where Mi is the measured mass concentrations in sample i
and ζ0 is the mass contribution made by sources unac-
counted for in the PCA. APCSki is the rotated absolute

component score for source k in sample i, and ζkAPCSki is
the mass contribution in the sample i made by the source
k. It follows the regression of the sample concentrations
on these APCS to get each identified source’s estimated
mass contribution, i.e., regression between Cij and APCSki
(Song et al. 2006).

UNMIX is a multivariate model with non-negativity
constraints. It evaluates the source number by means of
reducing data space dimensionality m to p through the
SVD method (Henry 2003). The UNMIX model can be
represented as

Cij ¼ ∑p
l¼1 ∑p

k¼1U ikDkl

� �
V lj þ εij ð5Þ

where V, U, and D are the p × m matrices and n × p and
p × p diagonal, respectively. Εij is the error term compris-
ing Cij variability, which is not accounted for by the first
principal component (p). UNMIX uses self-modeling
curve resolution to make sure that the results follow
(within error) the non-negative constraints on source com-
positions and contributions. It ensures that all the species
are on the same scale with a mean of 1 by normalizing the
data set and then projected it perpendicular to the first
axis of p-dimensional space. UNMIX finds edges in m-
dimensional space using principal component analysis
which are then used to compute vertices, where m is the
number of ambient species. These vertices with the SVD
decomposed matrices are used to find source profiles. The
UNMIX version used for this study was the stand-alone
EPA UNMIX 6.0.

PMF is a multivariate factor analysis receptor model
that distributed the speciated sample data matrix into
two matrices, which are factor contributions and factor
profiles. The PMF in detail has been described in
Paatero and Tapper (1994) and Paatero (1997). A
speciated data set can be considered as a data matrix X
of i by j dimensions, in which the number of samples (i)
and chemical species (j) are measured. The purpose of
PMF is to recognize the species profile ( f ) of each
source, factors (p), and the amount of mass (g) contribut-
ed to each individual sample by each factor which is giv-
en as

X ij ¼ ∑p
k¼1gik f kj þ eij ð6Þ

where eij is the residual for each sample/species.
For samples to have no negative contribution, the results

are constrained accordingly. PMF weighs each data point in-
dividually, which permits the adjustment of the influence of
each data point. Perhaps, below detection limit data can be
taken in the model for use, with the associated uncertainty
adjusted so these data points have less influence on the solu-
tion than the above detection limit measurements. The object
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function (Q) gets minimized by the PMF solution, based upon
these uncertainties (u) as follows:

Q ¼ ∑n
i¼1∑

m
j¼1

X ij−∑p
k ¼ 1gik f kj

uij

� �2
ð7Þ

where Xij are the measured concentration (in μg m−3), uij are
the estimated uncertainty (in μg m−3), n is the number of
samples, m is the number of species, and p is the number of
sources included in the analysis. The detail descriptions of
EPA PMF v3.0 are described in Gugamsetty et al. (2012)
and EPA PMF User Guide (2008).

In this study, information on chemical properties of 135
PM2.5 samples has been used as input to the PMF model for
the total of 22 parameters. The method detection limit (MDL)
of each chemical species (OC, EC,WSIC, and major and trace
elements) is calculated as 3 times of the average standard
deviation of 10 replicates of filter blanks analysis. Overall,
MDL were reported in Table 1. The signal-to-noise ratio
(S/N ratio) is calculated by PMF model as per EPA PMF
User Guide (2008), wherein species which have S/N ≥ 2 were

categorized as strong in data quality. Species with S/N be-
tween 0.2 and 2 indicate weak data quality and are improbable
to provide enough variation in concentration and consequent-
ly contribute to the noise in the results (if the S/N ratio of
species are below 0.2, then they are classified as bad values
and are thus excluded from further analysis). In the present
case, S/N ratios of the species are estimated as >0.6 (Pb and
Cu were estimated as 0.62 and 0.78, respectively).

In the present study, the model performance in a base run
showed determination coefficient (R2) between the modeled
and experimental concentrations of PM2.5, OC, EC, NH4

+,
SO4

2−, and NO3
− of 0.87, 0.86, 0.87, 0.97, 0.76, and 0.83,

respectively (Table 1). Most of the other chemical species
are also well reconstructed, except for some trace elements
like Cr (R2 = 0.55), Cu (R2 = 0.57), and Al (R2 = 0.54)
(Table 1). These results are within the range of those presented
in many PMF studies, with for example, values 0.71 reported
for a study in Spain (Cusack et al. 2013) and of 0.96 for a
study in Germany (Beuck et al. 2011) for PM2.5 mass recon-
struction. Scaled residuals between −3 and +3 are obtained for
all of the major components, and the value of Q robust is
strictly identical to the value of Q true, all of these showing
that no specific event is affecting the results and that the base
run can be regarded as stable.

Air mass back trajectory and cluster analysis

In order to identify and trace the trans-boundary movement of
PM2.5 from their potential source of origin to the receptor site,
24-h backward air mass trajectories for each experimental day
(sampling was performed at 1030 h IST), starting at 0500 h
Universal Coordinated Time (UTC) at height of 500 m above
ground level (agl) at the sampling site, were plotted employing
the National Oceanic and Atmospheric Administration
(NOAA) Air Resource Laboratory’s (ARL) Hybrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) model
(http://ready.arl.noaa.gov/HYSPLIT.php) with the Global
Data Assimilation System (GDAS) data as input (Draxler
and Rolph 2003; Wang et al. 2015).

Cluster analysis aids in classifying trajectories with similar
pathways, differentiating the mean transport pathway from the
numerous existent trajectories to the receptor site, thereby de-
marcating trajectories into the clusters carrying maximum ho-
mogeneity within and maximum heterogeneity between them-
selves (Brankov et al. 1998; Wang et al. 2009). The groups of
trajectories have been clustered together to represent the four
major directions of trans-boundary migration of polluted air
mass and to present an enhanced visualization for recognition
of source regions. It must be taken into consideration that
cluster analysis can only depict the general directions in which
the potential sources may lie, but fall short in indicating the
precise locations of the sources.

Table 1 The average concentrations of constituents of PM2.5 (μg m
−3)

in Delhi and coefficient of correlation (R2) between measured and
modeled concentrations along with S/N ratio in the base run of PM2.5

and MDL

Species Average R2 S/N MDL

PM2.5 121.9 ± 93.2 0.874 1.17 –

OC 17.6 ± 14.1 0.861 1.57 0.94

EC 10.2 ± 7.54 0.869 2.95 0.35

F− 0.89 ± 0.59 0.964 4.61 0.28

Cl− 7.70 ± 5.71 0.851 3.07 0.25

SO4
2− 12.75 ± 8.01 0.761 2.66 0.21

NO3
− 9.70 ± 7.82 0.826 2.79 0.28

NH4
+ 9.35 ± 8.23 0.973 10.21 0.20

Na+ 5.01 ± 3.12 0.801 9.95 0.42

K+ 4.08 ± 2.71 0.873 5.77 0.46

Mg 0.94 ± 0.81 0.859 6.01 0.17

Ca 2.84 ± 2.23 0.834 4.54 0.29

Al 2.80 ± 0.92 0.539 1.66 0.16

Si 1.70 ± 0.62 0.858 7.15 0.12

Cr 0.04 ± 0.13 0.554 3.62 0.01

Ti 0.11 ± 0.21 0.935 5.15 0.03

Fe 0.26 ± 0.42 0.758 2.29 0.06

Zn 0.12 ± 0.21 0.948 5.00 0.07

Mn 0.02 ± 0.02 0.895 2.52 0.01

Cu 0.04 ± 0.06 0.571 0.78 0.01

As 0.06 ± 0.16 0.829 9.65 0.02

Br 0.04 ± 0.11 0.698 3.02 0.01

Pb 0.02 ± 0.03 0.598 0.62 0.01

± Standard deviation
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PSCF analysis

To identify the potential source regions contributing to PM2.5

mass over the observational site, the PSCF was employed for
the study period, using air mass trajectory statistics software,
TrajStat (version 1.2.2.6). PSCF is a hybrid receptor model
applied to estimate the air parcel carrying the certain level of
pollutant concentration advancing through explicit upwind
source area (Ashbaugh et al. 1985; Hwang and Hopke
2007). The probable source area is divided into a gridded i
by j array. PSCF follows the following equation:

PSCFij ¼ mij

nij
ð8Þ

where PSCFij is the probability that air mass originates in the
ijth cell on days with high species concentrations, m(ij) is the
number of times that the concentration is higher than the pre-
determined criterion value (75th percentile of PM2.5 is taken in
the present study) at the receptor site, and n(ij) is the number
of times that the trajectories passed through the cell (i, j). A
cell with PSCF value close to 1 indicates probable source
location.

Results and discussions

Elemental concentration and reconstructed PM2.5

The mass concentration of PM2.5 has ranged from 25.1 to
429.8 μg m−3 with an average value of 121.9 ± 93.3 μg m−3

during January 2013 to December 2014. The seasonal
variation and average concentrations of OC, EC, WSIC, and
major and trace elements of PM2.5 with maxima and minima
are listed in Table 2. Mandal et al. (2014) also reported the
s i m i l a r a v e r a g e c o n c e n t r a t i o n o f P M 2 . 5

(142.50 ± 23.57 μg m−3) for an industrial area of Delhi,
whereas Panda et al. () reported higher concentration of
PM2.5 (186.25 ± 47.46 μg m−3) at Delhi. Other studies have
also reported higher ambient PM2.5 concentrations in New
Delhi (Singh et al. 2011; Tiwari et al. 2014; Trivedi et al.
2014), and most of them exceed the National Ambient Air
Quality Standards (60 μg m−3 for 24-h average and
40 μg m−3 for annual average).

The average concentrations of OC and EC of PM2.5 were
17.6 ± 14.1 μg m−3 (∼14.4% of PM2.5 mass) and
10.2 ± 7.5 μg m−3 (∼8.4% of PM2.5 mass), respectively.
Whereas the contribution of total carbon (TC = OC + EC)
was ∼22.8% of PM2.5 mass during the study. Panda et al.
(2016) have reported the lower values of percentage contri-
bution of TC in PM2.5 (∼15.0% of PM2.5 mass) at Delhi while
higher values were obtained at Bhubaneswar (∼30.4% of
PM2.5 mass), whereas Mandal et al. (2014) reported the

higher percentage of TC in PM2.5 (37.3% of PM2.5 mass) in
an industrial area of Delhi. Ram and Sarin (2011) observed
higher percent contribution of TC in PM2.5 at Kanpur (∼50%
of PM2.5 mass). The emissions from vehicles and biomass
burning (agricultural waste burning and wood burning) sig-
nificantly contribute to the atmospheric concentrations of OC
and EC (Ram and Sarin 2011; Sharma et al. 2016a). The
concentrations of OC and EC of PM2.5 varied significantly
during winter, summer, and monsoon seasons (Table 2).
During winter, the concentrations of OC and EC of PM2.5

were recorded more than twice of the concentrations of OC
and EC during summer and monsoon seasons. The scatter
plots between OC vs. EC, OC vs. PM2.5, and EC vs. PM2.5

for the winter, summer, and monsoon seasons are depicted in
Fig. 2. A significant positive linear trend between OC and EC
have been observed during winter (R2 = 0.81; p < 0.05), sum-
mer (R2 = 0.75; p < 0.05), and monsoon (R2 = 0.96; p < 0.05)
seasons, which is indicative of their common sources, i.e.,
vehicular emissions and biomass burning (Salma et al.
2004; Sharma et al. 2014c). While weakly correlated values
of OC and EC signify the formation of secondary aerosols in
the atmosphere through a photochemical reaction under con-
ditions favorable for gas to particle conversion of VOCs
(Begum et al. 2010).

The average concentration of major and trace elements in
PM2.5 was recorded as 20.2 ± 2.4 μg m−3 which accounts for
∼17% of PM2.5, whereas the WSIC accounts for ∼38% of
PM2.5 mass concentration. The average concentrations of
NH4

+, SO4
2−, and NO3

− of PM2.5 were recorded as
9.4 ± 8.2, 12.8 ± 8.0, and 9.7 ± 7.8 μg m−3, respectively
(Table 2). Figure 3 shows the charge balance between NH4

+

and SO4
2−, NO3

−, and Cl− of PM2.5 during winter (R
2 = 0.68),

summer (R2 = 0.12), and monsoon (R2 = 0.07) seasons.
During winter, the molar mass of SO4

2−, NO3
−, and Cl− are

significantly correlated with molar mass of NH4
+, which indi-

cates the possible formation of secondary aerosols
[(NH4)2SO4, NH4NO3, and NH4Cl] (Sharma et al. 2012b;
Sharma et al. 2015), whereas during summer and monsoon
seasons, molar mass of SO4

2−, NO3
−, and Cl− are non-

significantly correlated with molar mass of NH4
+ ions. In

(NH4)2SO4, the molar ratio of NH4
+ to SO4

2− is 2:1. The
molar ratio of greater than 2 signifies the abundance of
NH4

+, which has potential to combine with NO3
− or other

ions (Sharma et al. 2012b; Sharma et al. 2014a, c). In the
present study, the equivalent molar ratio of NH4

+/SO4
2− is

>2, which shows the complete neutralization of atmospheric
acid gas H2SO4 and predominant to aerosol formation during
winter season. Meteorological conditions (temperature and
RH) play an important role in the formation of secondary
aerosols (NH4NO3, NH4HSO4, and (NH4)2SO4). The reaction
of H2SO4 with NH3 is favored leading to the formation of
(NH4)2SO4 and NH4HSO4, left over NH3, then react with
HNO3 to form NH4NO3 (Meng et al. 2011; Li et al. 2013;
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Sharma et al. 2014b). In summer and monsoon, NH4
+ was not

significantly correlated with anions; this particular observa-
tion alludes towards the active role of NH4

+ in particulate
formation during winter seasons (Saxena et al. 2017).

Reconstructed mass of PM2.5

Chemical constituents/species of PM2.5 mass were re-
constructed (RCPM2.5) to determine the relative contribution
of measured chemical species to the measured PM2.5 mass and
their respective relationships using IMPROVE equation
(Chan et al. 1997; Malm et al. 2007). In the present study,
RCPM2.5 was calculated using Eq. 9.

RCPM2:5 ¼ AS½ � þ AN½ � þ POM½ � þ LAC½ � þ SS½ � þ soil½ � ð9Þ

where AS is the ammonium sulfate, AN is the ammonium
nitrate, POM is the particulate organic matter, LAC is the
light-absorbing carbon, and SS is the sea salt. The concentra-
tions of the respective factors in Eq. 9 are calculated by

multiplying their individual concentration with their conver-
sion factors as described in Table S-1 (in supplementary infor-
mation). The mass difference (dM = PM2.5 − RCPM2.5) of
PM2.5 was calculated by subtracting RCPM2.5 from measured
PM2.5 (Chan et al. 1997; Malm et al. 2007; Sharma et al.
2014c). The average mass difference between PM2.5 and
RCPM2.5 was recorded as 18.0 μg m

−3 (∼15% of PM2.5 mass)
during the study period which may be attributable to uniden-
tified mass (UM) of PM2.5. The mass difference (UM) could
be due to carbonate-rich minerals, calcium sulfate, and
alumino-silicates (Zhang et al. 2010; Ram et al. 2012). The
observed average re-constructed concentration of all factors
and their percent contributions to PM2.5 are given in
Table S-1 and Fig. 4, respectively. The result showed that
the contributions of AN and AS to PM2.5 were ∼10 and
∼15%, respectively. Majorly, AS is produced in the atmo-
sphere through the chemical reactions of SO2, which emits
from combustion of fossil fuels (coal and diesel) and AN is
produced through reversible reactions of gas-phase NH3 and
HNO3, aided by the formation of oxidized nitrogen through

Table 2 The average
concentrations of particulate
matter (PM2.5), OC, EC, WSIC,
and trace elements of PM2.5

(μg m−3) in Delhi

Seasons

Species Average (n = 135) Range Winter (n = 47) Summer (n = 44) Monsoon (n = 44)

PM2.5 121.9 ± 93.2 25.1–429.8 215.7a ± 93.2 81.5a ± 25.2 68.6a ± 57.1

OC 17.6 ± 14.1 3.25–69.1 30.9a ± 15.1 11.5a ± 3.76 10.2a ± 9.27

EC 10.2 ± 7.54 0.85–35.3 17.9a ± 7.78 7.09a ± 3.06 5.65a ± 5.54

F− 0.89 ± 0.59 0.25–3.72 1.06b ± 0.80 0.87b ± 0.50 0.73b ± 0.71

Cl− 7.70 ± 5.71 0.89–31.3 10.9a ± 6.67 5.66a ± 3.04 6.53a ± 5.26

SO4
2− 12.75 ± 8.01 1.97–56.2 16.8b ± 11.3 10.0b ± 3.53 11.4b ± 5.21

NO3
− 9.70 ± 7.82 0.21–52.2 19.0a ± 11.3 5.82a ± 2.05 4.31a ± 3.19

NH4
+ 9.35 ± 8.23 0.17–45.3 16.1a ± 10.4 8.43a ± 2.95 3.44a ± 3.82

Na+ 5.01 ± 3.12 0.94–18. 7 5.11b ± 2.83 3.80b ± 1.74 6.13b ± 3.88

K+ 4.08 ± 2.71 0.41–16.8 5.21b ± 2.51 4.02b ± 2.46 3.02b ± 2.63

Mg 0.94 ± 0.81 0.11–4.28 1.33b ± 1.61 0.44b ± 0.25 1.05b ± 0.63

Ca 2.84 ± 2.23 0.35–13.7 3.41b ± 2.76 3.04b ± 1.72 2.08b ± 1.73

Al 2.80 ± 0.92 0.27–5.29 3.51b ± 0.80 2.39b ± 0.81 2.40b ± 1.04

S 2.83 ± 1.65 0.13–5.62 3.39a ± 1.56 1.27a ± 0.97 1.48a ± 0.89

Si 1.70 ± 0.62 0.42–4.64 2.18a ± 0.53 1.52a ± 0.59 1.40a ± 0.50

Cr 0.04 ± 0.13 0.03–0.93 0.12b ± 0.22 0.02b ± 0.01 0.01b ± 0.01

Ti 0.11 ± 0.21 0.01–0.98 0.23b ± 0.30 0.05b ± 0.04 0.05b ± 0.10

Fe 0.26 ± 0.42 0.08–2.02 0.60b ± 0.57 0.11b ± 0.17 0.07b ± 0.15

Zn 0.12 ± 0.21 0.02–1.36 0.30b ± 0.28 0.03b ± 0.02 0.04b ± 0.07

Mn 0.02 ± 0.02 0.002–0.12 0.02b ± 0.02 0.02b ± 0.02 0.01b ± 0.02

Cu 0.04 ± 0.06 0.002–0.13 0.10b ± 0.22 0.02b ± 0.02 0.01b ± 0.02

As 0.06 ± 0.16 0.002–0.68 0.17b ± 0.25 0.01b ± 0.02 0.01b ± 0.02

Br 0.04 ± 0.11 0.003–0.42 0.08b ± 0.17 0.01b ± 0.01 0.03b ± 0.05

Pb 0.02 ± 0.03 0.001–0.15 0.05b ± 0.03 0.01b ± 0.01 0.01b ± 0.02

± Standard deviation
a Significantly different (p < 0.05)
b Not significantly different (p > 0.05)
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Fig. 2 Scatter plots between OC and EC, OC and PM2.5, and EC and PM2.5 during winter, summer, and monsoon seasons at Delhi

Fig. 3 Charge balance between NH4
+, NO3

−, Cl−, and NH4
+ of PM2.5 during winter, summer, and monsoon seasons
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combustion of fossil fuels and vehicular emissions (Ram et al.
2012; Sharma et al. 2015, 2016a). The POM (1.6 [OC]) con-
tributed 23% of RCPM2.5. The sources of POM in the atmo-
sphere are both primary (combustion of fossil fuel or biomass)
and secondary (secondary organic aerosols formed through
oxidation of gas phase precursors) formation. POMwas found
to be the most abundant species in PM2.5, which is similar
with other urban or roadside measurements (Phuleria et al.
2007; Chen et al. 2010; Gugamsetty et al. 2012; Sharma
et al. 2014c). The annual average LAC was estimated as
10.2 μg m−3 (∼8% of RCPM2.5). LAC (black carbon, elemen-
tal carbon, or graphite carbon) is largely emitted through in-
complete combustion of fossil fuels and biomass burning. The
observed contribution of soil dust was 13%, which is expected
to be higher at sampling location due to impact of local as well
as trans-boundary transport from the Thar desert and other
Asian regions. The sequence of percentage contribution of
t h e s e c o m p o n e n t s t o P M 2 . 5 m a s s i s
POM > SS > AS > soil > AN > LAC (Fig. 3).

Source apportionment

In the present study, PCA, UNMIX, and PMF analyses have
been done to estimate source profiles and contributions to
PM2.5 and results have been inter-compared. PCA/APCS,
UNMIX, and PMF extracted sources and their source contri-
butions are summarized in Tables 3 and 4, respectively.
Summary of the average percent contribution of major source
types of PM2.5 mass at Delhi, India, and other countries are
summarized in Table 5.

PCA/APCS

In total, 22 variables (constituents of PM2.5) with 135 PM2.5

samples have been analyzed through PCA coupled with
APCS using software package SPSS version 11.5 and
Varimax rotation has been employed. All variables were

typified and transformed into a dimensionless standardized
form prior to statistical analysis, and the lowest eigenvalue
for extracted factors was restricted to more than 1 that ex-
plained the 72.4% of the variance of the data. PCA/APCS
analysis identified five different sources of PM2.5 based on
the loading of the variables in the factor (Table 3).

The first factor was dominated by high nitrate, sulfate, and
ammonium, which marks the presence of secondary sulfate
and secondary nitrate mixture. These secondary products are
formed in the atmosphere, being emitted either by natural or
anthropogenic sources. This source has explained about
23.4% variance and contributed to about 27.2% for PM2.5

mass concentration. Also, the abundances of elements like
As, Zn, Fe, Cu, Cr, Pb, and S indicate the emissions arriving
from the industrial source, thus making this factor to be a
mixed type source (SA + industrial emission (IE)). The sec-
ondary nitrate is formed by the oxidation of NOx and is fa-
vored by low temperature (Li et al. 2004), while high temper-
ature and strong solar radiations favor the formation of sec-
ondary sulfates through photochemical reactions (Seinfield
and Pandis 2016). The presence of secondary aerosols over
Delhi is in agreement with the studies done on trace gases, i.e.,
NH3, SO2, and NOx by Sharma et al. (2012b) and Sharma
et al. (2014b). NH4

+ and SO4
2− have also been used as a

marker for biomass burning and coal combustion, respectively
(Pant and Harrison 2012). Kumar et al. (2001) used Cu, Mn,
and Ni as tracers for industrial emissions in Mumbai; Sharma
et al. (2014b) used Cu, Cr, Mn, Ni, Co, and Zn as industrial
emission tracers for metal manufacturing plants in Delhi;
Kulshrestha et al. (2009) used a combination of Ni, Cu, Fe,
and Cr as a marker for construction activities in Agra; and Kar
et al. (2010) used Zn, Cu, and Ni as tracers of galvanizing,
metallurgy, and electroplating industries while Cr from tan-
nery industry in Kolkata.

The second factor was associated to vehicular emission and
it explained 22.4% of the variance. The high loading of OC,
EC, Zn, Fe, Mn, and Pb attributed to vehicular emissions
contributes ∼23.5% to PM2.5 mass. EC is used extensively
as marker for diesel exhaust (Song et al. 2006; Yin et al.
2010) and it is predominantly emitted from combustion
sources and shows limited chemical transformations, while
OC can be contributed directly by primary emission sources
(vaporization and combustion of solvents and fuel) and
through chemical reactions among primary gaseous OC in
the atmosphere (Turpin et al. 1991; Ho et al. 2003; Behera
and Sharma 2010). The source represents the abundances of
Pb, Zn, Fe,Mn, Cu, and Al, which are also related to the traffic
source profiles. Zn comes from two stroke engines as it is used
as a fuel additive and tire wear (Kothai et al. 2008), Fe from
wear and tear of break and wear of metal in the exhaust system
(Gupta et al. 2007; Karar and Gupta 2007), and Pb from gas-
oline additives, brake pads, and road dust re-suspensions (Pant
and Harrison 2012). Mn is used as an additive in unleaded

Fig. 4 Reconstructed PM2.5 mass (AS ammonium sulfate, AN
ammonium nitrate, POM particulate organic matter, LAC light
absorbing carbon, SS sea salts, soil, and dM) by using IMPROVE
equation
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gasoline (Kulshrestha et al. 2009), and combinations of Cu
and Al signify emissions from brake lining wearing
(Srimuruganandam and Nagendra 2012a, 2012b).

Third factor is rich in Na+, Cl−, Mg2+, and K+, representing
the sea salt source, and it explained 12.2% of variance. None
of the less, the use of some markers is rather perplexing and

may be influenced by different sources like K+ from biomass
and wood burning, Cl− from coal burning, andMg from crust-
al emissions. The presence of NO3

− in this source concurs
with the possibility of its marine origin through condensation
of HNO3 (Srimuruganandam and Nagendra 2012a, 2012b).
PCA analysis reveals that sea salt has contributed 15.4% to
PM2.5 concentration.

Fourth factor represents the soil-related sources with crustal
elements, i.e., Al, Si, Ca, Mn, Mg, and Fe. It explained 8.4%
variance and 21.5% contribution to PM2.5 concentration.
Wide range of elements (Al, Ca, Si, Ti, Mg, Pb, Cu, Cr, Ni,
Co, Na, K, and Zn) have been used as tracer species for crustal
elements in India (Balachandran et al. 2000; Khillare et al.
2004; Chelani et al. 2008; Chakrobarty and Gupta 2010;
Shridhar et al. 2010). The presence of Cl− and SO4

2− with
OC and TC signifies the soil dust emissions, while occurrence
of Fe with OC and TC marked for road dust (Gupta et al.
2007; Banerjee et al. 2015). Hence, the presence of both com-
binations in the present study manifests the mixed emissions
from road and soil dust.

Fifth factor is dominated by K+ and NH4
+, signifying the

source of biomass burning emissions, and it explained 7.4%
variance. In India, biomass burning commonly alludes to

Table 3 PCA factor loading, UNMIX source composition (mass fraction), and PMF percent contribution for PM2.5

PCA factor loading UNMIX source composition PMF percent contribution

F1 F2 F3 F4 F5 S1 S2 S3 S4 P1 P2 P3 P4 P5 P6 P7

OC 0.277 0.822 0.119 0.241 0.147 0.154 0.155 0.151 0.103 6.61 34.05 4.24 1.58 49.74 4.99 2.58

EC 0.311 0.809 0.115 0.196 0.145 0.079 0.093 0.088 0.052 1.58 51.36 3.64 1.5 40.32 2.08 1.42

SO4
2− 0.700 0.268 0.217 0.373 0.000 0.068 0.105 0.120 0.047 1.33 2.36 5.11 41.76 35.31 1.34 26.47

NO3
− 0.653 0.542 0.136 0.270 0.000 0.078 0.087 0.144 0.041 1.45 17.34 13.47 49.5 10.09 2.35 9.54

NH4
+ 0.702 0.431 0.262 0.125 0.387 0.066 0.093 0.117 0.021 5.1 5.14 15.13 54.5 3.62 5.49 11.79

Al 0.205 0.275 0.249 0.533 0.176 0.026 0.013 0.013 0.006 29.83 15.82 1.55 5.09 6.1 3.46 41.32

Ti 0.269 0.398 0.000 0.535 0.088 0.003 0.000 0.002 0.002 45.03 14.78 1.33 17.87 0.46 16.6 4.26

Si 0.144 0.069 0.258 0.690 0.182 – – – – 45.85 18.94 1.54 11.02 15.23 0.79 5.84

Fe 0.467 0.558 0.027 0.510 0.049 0.006 0.004 0.001 0.004 32.61 11.79 0.37 1.28 1.18 38.9 23.45

Cu 0.729 0.148 0.040 0.399 0.116 0.000 0.000 0.000 0.003 19.36 32.71 1.82 2.88 7.8 45.82 5.88

Zn 0.605 0.549 0.052 0.397 0.142 0.001 0.004 0.000 0.002 0.51 42.61 0.53 1.42 0.62 39.93 23.94

As 0.750 0.373 0.134 0.344 0.066 0.000 0.000 0.001 0.003 11.51 13.16 11.15 0.98 16.3 13.58 21.5

Br 0.682 0.188 0.054 0.597 0.128 0.000 0.000 0.002 0.001 9.17 39.85 1.32 21.45 0.7 16.96 9.78

Pb 0.286 0.657 0.099 0.413 0.000 0.000 0.000 0.000 0.000 10.63 43.52 0.42 23.48 3.71 13.06 4.97

Cr 0.829 0.215 0.142 0.094 0.038 0.000 0.000 0.000 0.004 21.62 29.42 0.74 2.5 2.37 32.09 25.56

F− 0.090 0.111 0.000 0.065 0.681 0.005 0.009 0.004 0.001 7.54 5.49 4.92 9.4 5.58 13.23 10.91

Cl− 0.185 0.122 0.636 0.175 0.516 0.059 0.086 0.059 0.011 2.04 5.91 47.69 13.84 2.96 2.51 32.86

Na+ 0.000 0.203 0.610 0.321 0.178 0.014 0.045 0.006 0.019 5.83 1.4 52.27 23.46 13.79 2.7 1.98

K+ 0.079 0.252 0.412 0.068 0.707 0.022 0.046 0.019 0.005 6.45 12.16 22.06 2.02 57.91 1.47 8.08

Mg 0.124 0.176 0.771 0.089 0.000 0.004 0.013 0.003 0.000 2.83 39.83 27.23 15.27 3.58 3.94 10.12

Ca 0.000 0.000 0.605 0.427 0.217 0.011 0.037 0.007 0.005 47 1.74 11.63 4.53 10.37 3.22 24.29

Mn 0.619 0.354 0.000 0.000 0.163 0.000 0.000 0.000 0.000 31.34 26.92 4.3 7.2 2.62 33.75 1.47

SA VE SS SD BB SD VE + BB + SS SA IE SD VE SS SA BB IE FFC

Table 4 Sources and source contributions (%) calculated by the three
receptor models

Identified sources PCA/APCS UNMIX PMF

Soil dust 21.5 24.3 20.5

Vehicular emissions 22.4 – 19.7

Industrial emissions 13.4 6.2

Secondary aerosols – 30.0 20.5

Biomass burning 12.3 – 14.3

Sea salt 12.2 – 4.3

Fossil fuel combustion – – 13.7

Secondary aerosols + industrial
emissions

27.2 – –

Vehicular emissions + biomass
burning + sea salt

– 32.2 –
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combination of cow dung and fuel wood burning, agricultural
burning, and wildfire. K+ is used in many source apportion-
ment studies conducted in Asia and Europe as a marker of
biomass burning (Rodriguez et al. 2004; Andersen et al.
2007; Pant and Harrison 2012). Also, NH4

+ with K+ has been
used as a marker combination to identify the burning emis-
sions (Khare and Baruah 2010; Sharma et al. 2014c), which
justifies the presence of NH4

+ with K+ in the present study and
thus representing this source to be of biomass burning emis-
sion. Biomass burning contributes 12.3% to PM2.5 mass con-
centration in the present study.

UNMIX

The 22 species were taken into account and PM2.5 was con-
sidered as the total mass in UNMIX model, which identified
four sources. Silicon (Si) was discarded by the model accord-
ing to suggested exclusion. Numerical values for the solu-
tion’s diagnostic indicators (R2 = 0.76 and S/N ratio = 2.07)
were consistent with recommendations. UNMIX re-samples
the data 100 times and uses the bootstrap method to calculate
uncertainties.

Source 1: This source was inferred as soil/road dust (SD)
due to high composition of crustal elements (Al, Ti, Fe, Ca,
andMg) in the UNMIX results, and the results are comparable
with PCA and PMF output. UNMIX analysis showed that soil
dust has contributed 24.3% to PM2.5 mass. Crustal elements
are major constituents of airborne soil and road dust and gen-
erally contribute to coarse aerosols, including Al, Si, Ca, Ti,
Mg, Fe, and Na that are used as tracers for soil dust and/or
crustal re-suspension (Lough et al. 2005; Begum et al. 2011;
Yin et al. 2010; Pant et al. 2012).

Source 2: Higher concentrations of OC, EC, Zn, Fe, K+,
Na+, Cl−, Ca, Mg, and SO4

2− indicate that this source may
have been a mixture of vehicular emissions, biomass burning,
coal combustion, and aged sea salt and contributed to about

32.2% for PM2.5 mass concentration. Higher concentrations
of OC, EC, Zn, and Fe indicate the possible contribution of
vehicular emission (Yin et al. 2010; Sharma et al. 2016b).
Biomass burning and coal combustion are characterized by
the high concentrations of K+, Cl−, and SO4

2− (Pant and
Harrison 2012; Banerjee et al. 2015), since the results of
UNMIX showed the high concentrations of Na+ and Mg2+

along with K+ and Cl−. Hence, it is considered as a mixed
source, whereas PCA and PMF results well differentiated
the two sources (biomass burning and sea salt).

Source 3: This source corresponds to secondary aerosols
due to the presence of high concentrations of nitrate, sulfate,
and ammonium. Thus, this source was identified as a mixture
of secondary nitrate and secondary sulfate in UNMIX analy-
sis. UNMIX analysis shows 30% contribution of secondary
aerosols to PM2.5 in the present study.

Source 4: It is observed as IE source as UNMIX analysis
results show high-factor loading by the heavy metal elements
like Cr, Zn, As, Fe, and Cu, which were also dominant in the
PMF industry source. Some industrial sources such as metal
manufacturing plants and storage are located near the sam-
pling site, and these could probably affect it. Largely, Zn,
Cu, As, Fe, Cr, Cd, Mo, Ni, and S have been used as marker
species for industrial emanations (Sharma et al., 2016a, b).
Present UNMIX analysis recognizes that IE have contributed
to about 13.4% for PM2.5 mass concentration.

PMF

The PMF model identified 7 sources (secondary aerosol, soil
dust, vehicular emission, biomass burning, fossil fuel combus-
tion, industrial emissions, and sea salt) using 22 chemical
species of 135 PM2.5 samples collected during the study peri-
od (Fig. 5 and Table 4). In order to diminish the influence of
extreme values in the PMF solution, model was made to run in
the default robust mode and different numbers of sources were

Table 5 Summary of average contribution (%) of major source types of PM2.5 mass at megacities of India and other countries

Location PM
(μg m−3)

No. of
factors

Sea salt
(%)

Crustal/soil
dust (%)

Vehicle
emission (%)

Secondary
aerosol (%)

Other combustion/industrial
emission (%)

Reference

Delhi, India 121.9 7 4.3 20.5 19.7 20.5 34.2 (FFC, BB, IE) Present study

Delhi, India – 6 – 6.0 22.0 21.0 45.5 (other) CPCB Report (2010)

Beijing, China 57.4 5 – 15.4 26.3 – 58.4 (other) Jin et al. (2016)

Beijing, China 135 6 – 15 4 26 55 (FFC, BB, IE) Zhang et al. (2013)

Ile-Ife, Nigeria 216.3 4 – 12 22 – 66 (other) Ogundele et al. (2016)

Salamanca, Mexico 45.0 6 – 19.9 12.8 14.2 1.82 Murillo et al. (2012)

Ordos, China 51.8 4 – 35.81 22.67 32.35 4.57 Wang et al. (2012)

Athens, Greece 41.0 5 24.0 30.0 50.0 – – Karanasiou et al. (2009)

Shinjung, Taiwan 21.8 5 1.12 20.14 33.03 22.27 23.42 (IE) Gugamsetty et al. (2012)

Seattle, Washington 8.86 9 3 14 22 18 43 (BB, FFC, IE, other) Maykut et al. (2003)
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identified using a trial-and-error method to find the optimal
number of sources. Further, the data sets using factors were
entered into the PMFmodel for final analysis and the resultant
change in the Q values was examined. In this study, the theo-
retical Q value was estimated to be approximately 2970 (i.e.,
135 × 22). RobustQ value was the value for which the impact
of outlier was minimized, while trueQ value was the value for
which the influence of extreme values was not controlled. The
robust Q values were close to the true Q values in this study,
which entails the reasonable fitness of the model with the
outlier. Also, it is imperative that the range ofQ values should
be adequately small from the random runs (100 runs in the
present study) to corroborate the attainment of a similar global
minimum and thus confirms the fitness of outliers equally well
for each random run. At the 7% of the error constant, over

95% of Q values were nearly to 2970 for seven-factor solu-
tion, indicating the global minimum of the Q value. Based on
the estimation of the model results, the Q value variations in
the model, the seven-factor solution delivered the most viable
results. The descriptions of the PMF model and source
apportionment of PM2.5 have been discussed in detail in our
previous paper Sharma et al. (2016b) and reference therein.

Source 1: PMF analysis shows that secondary aerosols
have contributed to about 21.3% for PM2.5 mass concentra-
tions with the dominated key markers of NO3

−, SO4
2−, and

NH4
+ (Fig. 5). The secondary aerosols are mainly composed

of (NH4)2SO4 and NH4NO3 deriving from the gaseous pre-
cursors NH3, SO2, and NOx. The study evidenced the abun-
dances of ambient NH3, NOx, and SO2 over Delhi (Sharma
et al. 2014a).
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Fig. 5 PMF source profile of secondary aerosol, soil dust, vehicular emissions, biomass burning, fossil fuel combustion, industrial emissions, and sea
salt in Delhi for PM2.5 mass

Environ Sci Pollut Res (2017) 24:14637–14656 14649



Source 2: Soil dust includes most of the crustal elements
and has high concentrations of Fe, Si, Ca, Na, Cu, Mg, and Al.
PMF analysis showed that soil dust has contributed 20.5% to
PM2.5 mass. Many other researchers cite these elements (Fe,
Si, Ca, Na, Mg, Cu, Ni, and Al) as a soil dust source (Moreno
et al. 2013;Mustaffa et al. 2014; Shen et al. 2010;Waked et al.
2014). Awhole array of marker elements that have been used
in India for identification of soil dust include Al, Si, Ca, Ti, Fe,
Pb, Cu, Cr, Ni, Co, and Mn (Killare et al. 2004; Chelani et al.
2008; Gupta et al. 2012; Sharma et al. 2016a). Cu, Zn, and Ba
are associated with road dust due to the release of these marker
elements from cars and from non-exhaust sources.

Source 3: In this source, Cu, Zn, Mn, Pb, and EC contrib-
uted significantly, which have been considered as an indicator
of vehicle emission. PMF analysis indicates that vehicle emis-
sions have contributed 19.7% in PM2.5 at sampling site of
Delhi. Vehicular emissions are a major source of the PM,
and research indicates that they contribute 10 to 80% to PM
in cities across India (Sharma et al. 2014c; Banerjee et al.
2015; Sharma et al. 2016b). But various studies have comput-
ed different vehicular sources (exhausts, re-suspension, abra-
sion, etc.) which make their comparison more complicated. A
study by Begum et al. (2010) conducted in Dhaka and by
Santoso et al. (2013) at roadside in Jakarta defined Pb in
PM2.5 releasing from the pre-existing road dust by PMF.
Choi et al. (2013) also introduced Pb in PM2.5 as a tracer for
motor vehicle source. Further, Zn in PM2.5 appeared to have a
motor vehicle as resolved by PMF (Brown et al. 2007).

Source 4: Emission from biomass burning, wood burning,
and vegetative burning have been characterized as presence of
high concentration of K+ (Ram et al. 2010; Pant and Harison.
2012). The K+ ion has been widely cited in the literature as an
excellent tracer representing a wood or biomass burning source
(Mustaffa et al. 2014). In India, K+ has also been used as a key
marker of biomass burning for PM (Ram et al. 2010), whereas
levoglucosan is the key organic marker (Chowdhury et al.
2007). PMF analysis reveals that biomass burning has contrib-
uted 14.3% for PM2.5 mass in the present study. Depending on
the season and location, biomass burning has been assessed to
contribute in the range of 7–20% (Chowdhury et al. 2007),
which has been reported to be one of the major sources in
Delhi, predominantly in winter due to combustion of wood
(Sharma et al. 2003; Srivastava and Jain 2007).

Source 5: Abundance of marker elements Al, Cl, Fe, Zn,
Cr, and SO4

2− at the sampling site indicate the source of fossil
fuel combustion to PM2.5 mass. Zn and Se are marker species
for coal combustion and oil-fired power plants, respectively
(Lee et al. 2002), whereas Ni and V are tracer species for the
combustion of heating oils (Vallius et al. 2005). PMF analysis
shows that fossil fuel combustion has contributed 13.7% for
PM2.5 mass in the present study. Gupta et al. (2007) used As,
Se, Te, and SO4

2− as markers for coal combustion and report-
ed the contribution of 6–30% to PM mass.

Source 6: The industrial emissions are characterized by
high concentrations of Cr, Mn, Zn, and S, possibly emanates
from metal manufacturing plants and storage which are locat-
ed near the sampling location. An array of tracer species (Ni,
Cr, Co, Cd, Zn, As, Fe, Cu, Mn, S, and Mo) have been used in
India to identify specific industrial emissions (Banerjee et al.
2015; Sharma et al. 2014c). In this study, PMF resolved 6.2%
contribution to industrial emissions for PM2.5 mass.

Source 7: The higher concentrations of Na+, K+, and Cl− in
PM2.5 mass indicate the contribution of sea salt. The present
study shows that sea salt contributed to about 4.3% for PM2.5.
The presence of K+ along with Na+ and Cl− in PM2.5 offers
possible confusion with wood/biomass/coal burning, but a
combination of four elements (Na, K, Cl, and Mg) should
provide a reliable signature (Sharma et al. 2016a). Begum
et al. (2010) identified sea salt in PM2.5 by PMF in Dhaka
based on the presence of Na+ and Cl−. Choi et al. (2013)
defined sea salt source in Seoul, Korea, due to the high con-
tribution of Na+ and Cl− in PM2.5 concentration. Several other
studies in East, Southeast, and South Asia assigned a sea salt
source in PM2.5 considering Na+ and Cl− from the model
output of PMF (Lee et al., 1999; Santoso et al. 2013;
Senevirante et al. 2011).

Model comparison

The present study depicts the analysis by three different recep-
tor models of same PM2.5 data set which provides an opportu-
nity to shape the decision about evaluation of the degree to
which these models concur, differ, or complement one another.
The PMF analysis identified seven sources (SD, vehicular
emission (VE), SA, biomass burning (BB), SS, IE, fossil fuel
combustion (FFC)), whereas UNMIX and PCA showed four
sources [SD, mixed type (VE +BB + SS), SA, and IE] and five
sources (SD, mixed type (SA + IE), VE, SS, BB), respectively.
The UNMIX analysis resulted in one mixed type source, com-
bining traffic, biomass burning, and sea salt precursors
together and PCA resulted in mixed secondary aerosol and
industrial emission markers, whereas in PMF results, these
sources were well differentiated by their corresponding
tracers. Each receptor model identifies sources differently,
majorly based on the considerations of the models to choose
the species selected as variables. PCA and PMF extracted
similar sources; however, the former was unable to
differentiate the fossil fuel factor from the vehicular factor.
Comparable study was also done by Callen et al. (2009) and
similar results were observed (Cesari et al. 2016). It is note-
worthy that the primary disparity between PCA and PMF lies
in the non-negativity of loadings and score factors (built in
PMF) and inclusion of individual data uncertainties. In many
ways, PMF resembles PCA except in exclusion of all the neg-
ative entries (Paatero and Tappert 1994). Additionally, it has an
edge over PCA in handling missing or below detection level
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data. UNMIX can be easily used in data sets which do not have
comprehensive source profile information. It is helpful in
distinguishing the most influential sources, whereas it
underperforms to make agreement between expected and esti-
mated contributions for weaker sources (Henry 2003).
UNMIX differs from PCA; in that, it uses a new conversion
method to derive significant factors based on the self-modeling
curve resolution technique. The UNMIX solution is greatly
reliant on the selected species, and on the other hand, this
model showed problem in identifying the sources with low
percentage to the total mass corroborating the weakness of
UNMIX related to identify infrequent and relatively small
sources. Moreover, it does not account uncertainties in ambient
measurements and is unable to process samples with missing
data (Banerjee et al. 2015), whereas PMF analyzes individual
data points separately, normalizing the influences of each data
points on the basis of measurement confidence (USEPA 2008).

Since, PMF employs a point-by-point least squares mini-
mization scheme and not the correlation matrix information.
Thus, the resulting profiles can be compared directly to the
input matrix without transformation. However, PMF requires
a large data set, preferably much more than the numbers of
concerned factors, and allocation of weighing factor associat-
ed with each measurement is to be done. Contrastingly in
PCA, the load matrix is non-dimensional and has to be com-
bined with multilinear regression analysis to procure the
source profiles. PCA tends to generalize the information that
the data set originally have, as it depends on statistical associ-
ation of data and not on chemical nature of particulates. PCA
does not account a non-negativity constraint which makes it
different from UNMIX and PMF. Another drawback of PCA
is the use of single marker for multiple sources or availability
of specific tracers (Belis et al. 2013). Furthermore, the model
assumes the normal distribution of data set which may not be
effective for all the cases, but error on the reconstructed con-
centration matrix is less when the APCS is used (Cesari et al.
2016). UNMIX provides a relatively coarse means of down-
weighting outliers and PMF employs point-by-point error es-
timation in the data, allowing down-weighting of missing ob-
servations and outliers. This limitation is related to the models
(PCA and UNMIX) because they do not take into account the
uncertainty in the experimental data. That could be one of the
reasons why PMFmodel provided better results than PCA and
UNMIX model (Banerjee et al. 2015; Sharma et al. 2015).

Backward air mass trajectory and cluster analysis

It has become evident from Fig. 6 that majority of the air mass
parcel during the study period is approaching to receptor site
from arid landscapes of Rajasthan (Thar desert), Pakistan,
Afghanistan, Indo-Gangetic Plain (IGP) region, and its sur-
rounding areas during winter and summer seasons, whereas
during monsoon season, the approaching air mass is

transported from IGP region, Bay of Bengal, and Arabian
Sea through Thar desert. The trajectories have been plotted
to trace the origin and transport pathways of air masses as they
are ascribed to letting influx of pollutants and their precursors
in the city. These groups of trajectories have been clustered
together (Fig. 6) to evince the major transport pathways of the
polluted air mass flow, so as to provide an envisage of dom-
inant source regions precisely. It can be discerned that the
source regions are both trans-boundary and locally originated
from continental landmass, which is also supported by the
chemical composition of the pollutants found at the observa-
tional site. Sharma et al. (2014a) had also observed the similar
trajectories at Delhi.

PSCF

To delineate the probable source regions which could be caus-
ative of augmenting PM2.5 concentration at the receptor site, a
PSCF analysis was done (Fig. 6) for the study period. In the
present study, the pollution criterion value was considered to
be 75th percentile of PM2.5 concentration. The grids with a
probability of <0.1 are transparent, and different colors (as
shown in the PSCF map) denote the lowest to highest proba-
bility grids. Delhi was observed to have a significant amount
of potential source areas within highly polluted and populated
regions of north-western India such as Punjab, Haryana,
Rajasthan, Uttar Pradesh, and parts of Pakistan and
Afghanistan which contain key oil fields, refineries, and major
thermal power plants (Naja et al. 2014) during winter and
summer seasons and IGP region including coastal areas of
Bay of Bengal and Arabian Sea during monsoon season.
Therefore, the air mass parcels traveling from these regions
are inevitably carry pollutant-laden air masses to the receptor
site.

Conclusion

This study attempts to investigate the comprehensive charac-
terization, and source apportionment of PM2.5 at an urban site
of Delhi, India, from January 2013 to December 2014 pro-
vides the following points:

& During the study, the average concentration of PM2.5 was
121.9 ± 93.2 μg m−3 with a range of 25.1–429.8 μg m−3.
The average concentrations of OC and EC of PM2.5 were
recorded as 17.6 ± 14.1 and 10.2 ± 7.5 μg m−3, respec-
tively. Strong seasonal variation was recorded in PM2.5

concentration and its chemical composition with maxima
during winter and minima during monsoon season.

& The chemical composition of the PM2.5 was reconstructed
using IMPROVE equation from the analyzed chemical
composition. The highest contribution comes from
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particulate organic matter (23%), followed by sea salt
(16%), ammonium sulfate (15%), soil/crustal matter
(13%), ammonium nitrate (10%), and light-absorbing car-
bon (8%).

& All the three models (PCA/APCS, UNMIX, and PMF)
agreed on the sources of PM2.5 and majority to be soil
dust, secondary aerosols, vehicle emissions, industrial
emissions, and biomass burning. PCA/APCS extracted
five sources of PM2.5 (soil dust, vehicle exhaust, second-
ary aerosols + industrial emissions, biomass burning, and
sea salt), whereas PMF model identified seven sources of
PM2.5 (secondary aerosol, soil dust, vehicular emission,
fossil fuel combustion, biomass burning, industrial emis-
sion, and sea salt). UNMIX model revealed four sources
of PM2.5 (soil dust, secondary aerosols, vehicle exhaust +
biomass burning + sea salt, and industrial emission).

& The 24-h backward trajectories were traced and cluster
analysis was performed on a seasonal basis to trace the
air mass flow pathways, and PSCF was also done to iden-
tify the potential source regions. North-west India, regions

of Pakistan, and Afghanistan were found to be more dom-
inant during summer and winter seasons, and IGP region,
coastal areas of Bay of Bengal, and Arabian Sea were
more prevailing during monsoon season.

& This study can help the stakeholders and policymakers to
know more about the attributes of PM2.5, the influence of
regional and local sources, and their effect on air quality of
the region. A definitive objective is to upgrade emanation
control strategies, enhance general well-being, and to im-
prove the overall quality of ambient air.
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