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Abstract Studying dietary metal transfer kinetics is essential
to gain a better understanding in global metal accumulation
rates and its impacts in marine fish. While there exists a solid
understanding on the influence of various biotic factors on this
transfer, metal assimilation in fish might be also affected by
abiotic factors, as has been observed in marine invertebrates.
The present study therefore aims to understand the potential
effects of two climate-related master variables, temperature
and pH, on the assimilation efficiency (AE) of essential (Co
and Zn) and non-essential (Ag) metals in the turbot
Scophthalmus maximus using radiotracer tools. Juvenile tur-
bots were acclimated for 8 weeks at two temperatures (17
and 20 °C) and pH (7.5 and 8.0) regimes, under controlled
laboratory conditions, and then fed with radiolabelled shrimp
(57Co, 65Zn and 110mAg). Assimilation efficiencies of Co and
Ag in juvenile turbot, determined after a 21-day depuration
period, were not affected by pre-exposition to the different
environmental conditions. In contrast, temperature did signifi-
cantly influence Zn AE (p < 0.05), while pH variations did not
affect the assimilation of any of the metals studied. In fact,
temperature is known to affect gut physiology, specifically
the membrane properties of anterior intestine cells where Zn
is adsorbed and assimilated from the ingested food. These
results are relevant to accurately assess the influence of abiotic

factors in AEs of metals in fish as they are highly element-
dependent and also modulated by metabolic processes.
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Introduction

Metals are typically found in the marine environment at low
concentrations. Some metals are metabolically required at the
correct amount for organisms, such as Co and Zn (i.e. essential
metals), and others can be toxic even at very low concentra-
tions, such as Ag (i.e. non-essential metals). Anthropogenic
activities tend to increase metal concentrations in coastal en-
vironments, which can cause detrimental effects to the organ-
isms living in these areas. This is particularly problematic due
to the emergence of new emission sources, especially for Ag,
including cloud seeding nanoparticles or electronic compo-
nent manufacturing (Lanceleur et al. 2011). Fish are exposed
to these metals from both the dissolved and the particulate
phases (Warnau and Bustamante 2007). Since food has been
recognized as a pathway of major importance for metal intake
in fish (Xu and Wang 2002; Mathews and Fisher 2009), in-
vestigating the factors influencing the trophic transfer of
metals in fish is of paramount importance.

A key parameter for understanding metal trophic transfer in
fish is the assimilation efficiency (AE; Wang and Fisher
1999). Numerous studies have focused on the determination
of factors that influence metal AE in several aquatic species,
including fish (e.g. Xu and Wang 2002; Zhang and Wang
2005; Pouil et al. 2016). For example, the importance of the
composition and nature of the food source, both qualitatively
and quantitatively, on metal AE has been determined in dif-
ferent species of marine fish (e.g. Wang and Wong 2003;
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Wang et al. 2012; Pouil et al. 2016). Similarly, the influence of
the physiological state and life stage of the organism on metal
AE has also been studied in several fish species (e.g. Zhang
and Wang 2005; Zhang and Wang 2007; Pouil et al. 2017).
These different studies have shown that biological, physiolog-
ical and ecological factors can importantly influence AE of
trace metals. Nevertheless, the trophic transfer of metals can
also be impacted by environmental variables (abiotic factors)
as it has been shown in marine invertebrates (Lee and Lee
2005) or in freshwater fish (Van Campenhout et al. 2007).
Surprisingly, such an influence is poorly documented in the
literature on marine fish.

Temperature and pH are two key environmental variables
influencing marine fish physiology. For example, temperature,
one of themain abiotic drivers of fish physiology (Beitinger and
Fitzpatrick 1979), was shown to affect gut transit time or the
activity of the enzymes involved in the digestion process when
fish are chronically exposed to temperatures away from their
thermic preferences (Edwards 1971; Miegel et al. 2010).
Effects of environmental pH on fish physiology seem to be,
on the other hand, more limited (Kroeker et al. 2010).
However, few studies indicated that pH can alter the structure
and functioning of the digestive tract (e.g. Frommel et al. 2014)
and even the digestive enzyme activities (Pimentel et al. 2015;
Rosa et al. 2016) of early stages of marine fish. The variation of
temperature and pH may occur simultaneously, and organisms
can be affected differently by them. Indeed, interactions of tem-
perature with pH could theoretically generate a simple sum of
the effect of each individual factor (additive effect) or more
complex situations (antagonistic or synergistic effects) as ex-
plained by Flynn et al. (2015). In their natural environment,
marine fish are most probably facing these possible complex
interactions.

In this context, the present study aims to assess the possible
effects of two environmental variables (temperature and pH) on
the assimilation of two essential (Co and Zn) and one non-
essential (Ag) metals in the juvenile turbot Scophthalmus
maximus. Radiotracer techniques were used to determine
depuration parameters in controlled conditions of juvenile turbot
previously acclimated at two temperatures (17 and 20 °C) and
pH (7.5 and 8.0) after a single feeding with radiolabelled shrimp.

Materials and methods

Origin and acclimation of fish

Juvenile turbot S. maximus were purchased from a fish farm
(France Turbot, www.france-turbot.com) and shipped to the
International Atomic Energy Agency premises in the
Principality of Monaco. Fish were randomly placed in four
20-L aquaria (n = 8) and acclimated for minimum of 1 month
to laboratory conditions (open circuit, water renewal 60 L h−1;
0.45μm filtered seawater; salinity 38; light/dark 12/12 h; tem-
perature 17 °C; pH 8.00). During this period, the fish were fed
one time per day (as described by Pouil et al. 2015 and Pouil
et al. 2016) with a ration of 1.5% of their biomass with 1.1-
mm pellets (proteins 55% and lipids 12%; Le Gouessant,
www.legouessant.com). After this period, fish were
acclimated to the target temperature and pH values (see
Table 1) for 8 weeks prior to a unique radiotracer exposure
(i.e. one single feeding using radiolallebed shrimp following
by 21 days of depuration as described in the BExposure of
turbot via radiolabelled shrimp^ section).

Juveniles were exposed under controlled temperature and
pH conditions in a crossed experimental design (two tempera-
tures × two pH levels). The two temperatures were 17 and
20 °C, and the two pH values were 8.00 (pCO2 of approx.
450 μatm) and 7.50 (pCO2 of approx. 1800 μatm). These
values were chosen based on the optimal food conversion effi-
ciency (FCE) ratio of juvenile turbot at 17.4 ± 0.5 °C at normal
pH (Imsland et al. 2001) and the current projections provided
by the literature for the next two centuries (ΔT°C +3 °C and
ΔpH −0.5; Orr et al. 2005; IPCC 2013).

Concerning the method used to regulate the seawater pH, we
followed the recommendations of the Guide to best Practices
for Ocean Acidification Research and Data Reporting
(Riebesell et al. 2010). The pHNBS was monitored every
15 min in each aquarium to within ±0.05 pHNBS units using a
pH probe connected to a multi-probe aquaristic computer (IKS
ComputerSysteme, www.iks-aqua.com) that bubbled pure CO2

into the aquaria. Temperature in each aquarium was also
monitored, using a dedicated probe connected to the same
computer. The pH probes were calibrated weekly using

Table 1 Summary of seawater
parameters during the different
phases (acclimation and
depuration) of the experiment on
the assimilation of metals in
juvenile turbot exposed to
different conditions of
temperature and pH

Experimental phase Temperature (°C) pHNBS Total alkalinity (μmol kg−1) pCO2 (μatm)

Acclimation 16.94 ± 0.22 7.98 ± 0.07 2539 ± 4 513 ± 67

19.76 ± 0.08 7.98 ± 0.04 2540 ± 3 525 ± 33

16.96 ± 0.18 7.48 ± 0.06 2536 ± 6 1843 ± 134

19.77 ± 0.12 7.48 ± 0.04 2534 ± 6 1896 ± 45

Depuration 16.79 ± 0.05 7.97 ± 0.05 2541 ± 8 563 ± 75

19.62 ± 0.43 7.95 ± 0.04 2537 ± 4 550 ± 25

16.79 ± 0.06 7.47 ± 0.05 2540 ± 4 1867 ± 111

19.57 ± 0.42 7.50 ± 0.08 2537 ± 2 1879 ± 82
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Tris-HCl and NBS buffer solutions (Dickson et al. 2007). Total
alkalinity was measured by titration using Metrohm 809
Titrando calibrated with NBS buffers, Tris-HCl (Batch 150,
Dickson 2016) and reference materials (Batch 137, Dickson
2016). pCO2 was determined from pH, temperature and total
alkalinity measurements using the R package seacarb (Lavigne
et al. 2011).

Experimental procedures

Shrimp radiolabelling

Since crustaceans dominated the natural diet of turbot
(Sparrevohn and Støttrup 2008; Florin and Lavados 2010), we
used shrimp as radiolabelled prey. Preparation of the 80
radiolabelled shrimp Palaemon sp. (approx. 1 to 2 cm in total
length) was carried out by exposing them for 7 days to dissolved
radiotracers in an aerated 20-L aquarium (closed circuit; shrimp
density 4 shrimps L−1, 0.45 μm filtered seawater; salinity 38;
light/dark 12/12 h; temperature 17 °C; pH 8.00). Radiotracers
of high specific activity were purchased from Polatom, Poland
(57Co as CoCl2 in 0.1 M HCl, t1/2 = 272 days; 65Zn as ZnCl2 in
0.1 M HCl, t1/2 = 244 days and 110mAg as AgNO3 in 0.1 M
HNO3, t1/2 = 252 days). Seawater was spikedwith small volumes
(>0.2mL) of radiotracers (nominal activity of 2 kBqL−1 for 57Co
and 8 kBq L−1 for 65Zn and 110mAg). No change in pH was
detectable in the aquarium (close circuit) after the tracer addi-
tions. During the 7-day exposure, seawater was renewed and
spiked four times to eliminate ammonia generated by shrimp
excretion and keep the radiotracer activity constant. The activity
of the radiolabelled metal tracers in seawater was checked before
and after each seawater renewal, to determine time-integrated
activities (Warnau et al. 1996; Rodriguez y Baena et al. 2006).
Each organism was kept isolated during the duration of the ex-
periment in a buoyant cylindrical polystyrene container (drilled
to allow for free water circulation) in order to avoid cannibalism.
The shrimps were fed with non-contaminated minced mussels
one time between each water renewal.

Exposure of turbot via radiolabelled shrimp

A total of eight acclimatized turbot were randomly selected for
each experimental treatment (viz. 4 × 20-L tanks with each time
eight organisms; wet weights were 22.4 ± 3.4, 22.1 ± 3.8,
22.3 ± 5.4 and 23.7 ± 4.2 g respectively for the turbot exposed
to pH 8.0 at 17 °C, pH 8.0 at 20 °C, pH 7.5 at 17 °C and
pH 7.5 at 20 °C). Slits cut into the fins were performed on
anaesthetised fish to facilitate individual recognition, ensuring
at the same time the welfare of the fish (see e.g. Pouil et al.
2016). For the last three feedings before the exposure to
radiolabelled shrimp, fish, previously fed with pellets, were
fed with non-labelled shrimp. The experiment consisted of a
single feeding of fish in the different experimental conditions

with radiolabelled shrimp. To facilitate ingestion, radiolabelled
shrimp were cut into pieces (Pouil et al. 2016). During and after
the 5-min radiolabelled feeding, an additional turbot was placed
in each aquarium to assess any possible radiotracer recycling
from seawater due to leaching from the radiolabelled food or,
later on, from fish depuration. Two hours after the
radiolabelling feeding, all the fish (including control individual
of each condition) were whole-body γ-counted alive (Pouil
et al. 2016). They were then replaced in the same open-circuit
aquarium and were regularly radioanalysed to follow the radio-
tracer depuration kinetics over 21 days. During the first week of
depuration, turbot were fed using non-labelled shrimp and then
fed daily with non-labelled pellets (1.5% of their biomass) to
cover their nutritional needs.

Radioanalysis

The radioactivity of the tracers was measured using a high-reso-
lution γ-spectrometer system composed of four germanium—N
or P type— detectors (EGNC 33-195-R, Canberra® and
Eurysis®) connected to a multi-channel analyser and a computer
equipped with a spectra analysis software (Interwinner 6,
Intertechnique®). The radioactivity in living organisms and sam-
ples was determined by comparison with standards of known
activity and of appropriate geometry (calibration and counting).
Measurements were corrected for background and physical ra-
dioactive decay. Living organisms were placed in counting tubes
(diameter 160 mm, height 80 mm) filled with clean seawater (at
the appropriated conditions of pH and temperature) during the
counting period. The counting period was adjusted to obtain a
propagated counting error less than 5% (e.g. Rodriguez y Baena
et al. 2006) and varied between 15 and 60 min in order to main-
tain fish health and ensure normal behaviour. Variations of tem-
perature and pH during the counting have not exceeded +2 °C
and −0.2 respectively. These recorded values were the extreme
variation measured at the end of long counting times which
occurred at the last days of depuration; at the beginning, average
increase temperature and decrease of pH were negligible.

Data treatment and statistical analysis

Depuration of radiotracers was expressed as the percentage of
remaining radioactivity [(radioactivity at time t divided by the
initial radioactivity measured in the organism at the beginning
of the depuration period, following methods developed in
Warnau et al. (1996)]. The depuration kinetics of of the three
studied elements were best fitted using a two-component ex-
ponential model:

At ¼ A0s:e−kest þ A0l:e−kelt

where At and A0 are the remaining activities (%) at time t
(days) and 0 respectively; ke is the depuration rate constant
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(day−1). Bs^ and Bl^ subscripts are related to the short-lived
and long-lived components respectively. The s component
represents the depuration of the radiotracer fraction that is
weakly associated with the organisms and rapidly eliminated
(i.e. proportion associated with the faeces). The l component
describes the depuration of the radiotracer fraction that is actu-
ally absorbed by the organism and eliminated slowly. The long-
lived component allows estimating the assimilation efficiency
(AE) of the radiotracer ingested with food (AE = A0l). Because
depuration of the assimilated fraction of the three studied ele-
ments was extremely slow, the long-term depuration rate con-
stant (kel) might not be significantly different from 0, then Tb1/2l
tends towards +∞ and thus the l component of the model could
therefore be simplified and replaced by a constant (as shown by
Pouil et al. 2016). The equation becomes

At ¼ A0s:e−kest þ A0l withA0l ¼ AE

For the short-lived component, a biological half-life can be
calculated (Tb1/2) from the corresponding depuration rate con-
stant according to the relation Tb1/2s = ln2/kes. Model constants
and their statistics were estimated by iterative adjustment of the
model and Hessian matrix computation respectively using the
non-linear curve-fitting routines in the Statistica® software 7.0.

Comparison of assimilation of metals among the different
experimental conditions was performed using two-way
ANOVA on kes and AE calculated for each individual turbot
(the best fitting model obtained for the entire set of turbots was
applied to individuals; Zar 1996). For Co, two individuals per
condition with an insufficient initial activity (i.e. activity mea-
sured 2 h after the radiolabelled feeding) have been excluded
from statistical analysis. The level of significance for statisti-
cal analyses was always set at α = 0.05. All the statistical
analyses were performed using R software 3.0.1 (R Core
Team 2014).

Results

In order to evaluate whether different abiotic factors (i.e.
temperature and pH) affect metal assimilation in the juve-
nile turbot S. maximus, depuration kinetics of two essential
(Co and Zn) and one non-essential metals (Ag) were
followed after a pulse-chase feeding, using radiolabelled
shrimp. During the whole experimental period (i.e. 8 weeks
of acclimation to the targeted temperature and pH values
and 3 weeks of depuration) where the fish were exposed to
four different conditions (combinations of two tempera-
tures and two pH; see the BMaterials and methods^ sec-
tion), only a limited growth of the individuals was mea-
sured and no mortality was recorded. Before the pulse-
chase feeding of the fish, the activity level of each metal
in the shrimps was measured: The average activities

(Bq g-1 wwt) were 20 ± 5 Bq 57Co g−1, 213 ± 65 Bq
65Zn g−1 and 134 ± 62 Bq 110mAg g−1. During the entire
experiment, no activity was measured in the control turbot.

Whole-body depuration kinetics of 57Co, 65Zn and 110mAg
in turbot were best fitted by a two-phase model (simple expo-
nential model and a constant; Fig. 1; R2 0.89–0.99). A large
proportion (71–96%) of the ingested radiotracers was associ-
ated with the short-term component for all the studied ele-
ments. This component was characterized by a very rapid loss
(Tb1/2s ranged from 0.3 to 0.7 days). Comparison of kes deter-
mined for each individual turbot indicated that, for all the
elements (Co, Zn and Ag), there is no significant difference
(pANOVA >0.05, Fig. 2) independently of the pH and tempera-
ture conditions.

Estimated AEs in turbot ranged from 19 to 29% for Zn
whereas Co and Ag were very poorly assimilated by turbot

Fig. 1 Influence of temperature and pH (see details of experimental
conditions in Table 1) on whole-body depuration of 110mAg, 57Co and
65Zn in juvenile turbot (n = 6–8; percent remaining activities,
means ± SD)
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(AE <9% for Co and AE <5% for Ag; Fig. 2). Statistical
analyses carried out on individual estimated AEs revealed that
neither temperature nor pH significantly affected the trophic
transfer of Ag and Co in turbots (p > 0.05; Fig. 2). In contrast,
a significant effect of the temperature was observed between
the two treatments at pH 8.0 for Zn (pANOVA = 0.03; Fig. 2)
but not at the lower pH.

Discussion

Scientists increasingly realize that single-stressor experiments
may not be appropriate to assess the realistic effects of envi-
ronmental variables in marine habitats (Wernberg et al. 2012).

In this context, the present study analysed the combined ef-
fects of two abiotic factors on the assimilation efficiency of
three metals in a coastal marine fish, turbot. Temperature and
pH are important drivers of fish physiology and are subject to
important fluctuations at various temporal scales, especially in
coastal environments; therefore, it is important to better un-
derstand the influence of such environmental factors on the
assimilation of metals in marine fish.

The main result of this study is that temperature and pH
together have limited influence on the AE of Ag and Co, while
the Zn AE appears to be only influenced by temperature. At
optimal pH for the turbot (pH = 8.0), increasing the seawater
temperature resulted in a significantly increase of Zn AE,
which could be due to either from the following: (1) the gut
passage of Zn reduced at lower temperature, and/or (2) less Zn
was strongly retained by the body at lower temperature.
In some flatfish species (i .e. the winter flounder
Pseudopleuronectes americanus and the European plaice
Pleuronectes platessa), anterior intestine is the most important
body compartment involved in Zn assimilation (Pentreath
1976; Shears and Fletcher 1983). For this element, although
the mechanisms of transfer from the gut lumen to the intern
compartment (adsorption) are not completely elucidated yet, it
seems dominated by active processes involving specific trans-
porters (Bury et al. 2003). Temperature variations have been
shown to provoke changes in the structure and the protein
status of the gut cell membranes (Hazel 1995; Zehmer and
Hazel 2005) or in digestive enzyme kinetics (Smit 1967;
Brett and Higgs 1970) which can, in turn, possibly influence
the active transport mechanisms of Zn and lead to the increase
of Zn AE observed in this study at the highest temperature.

In the current experimental setup, AE of Zn was much
higher (AE >19%) compared to the AEs for Ag and Co, both
being poorly assimilated by the turbot (AE <9%). These re-
sults are in accordance with the literature (Zn AE 17–32%, Ag
AE 0.3–3%, Co AE 5–43%; see Mathews et al. 2008; Pouil
et al. 2015; Pouil et al. 2016) and could explain why temper-
ature only influenced Zn AE. Indeed, for these other metals
(Co and Ag), a poor assimilation makes difficult to high-
light any significant effect. A temperature-dependent effect
on Zn assimilation has been already shown in freshwater
fish: the common carp Cyprinus carpio (fed with Zn-
contaminated prey; Van Campenhout et al. 2007).
However, in marine fish, although a temperature-
dependent effect on metal assimilation was not identified
yet, Pouil et al. (2017) have also shown, using the concen-
tration index defined by Rouleau et al. (2000), that the
intestine is involved in the absorption process of Zn in
the silver moony Monodactylus argenteus. As discussed
by Van Campenhout et al. (2007), one of the possible ex-
planations for the observed differences might be possibly
explained by the higher concentration of Zn transporters in
the intestine of fish exposed to higher temperatures.

Ag

Co

Zn

*

pH 8.0 at 17°C pH 8.0 at 20°C pH 7.5 at 17°C pH 7.5 at 20°C

Fig. 2 Comparison of assimilation efficiencies (AEs) calculated for each
individual turbot from the four experimental treatments. The best fitting
model obtained for the entire set of turbots (see Fig. 1) was applied to
individuals. *p < 0.05
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In contrast to temperature, fewer studies investigated the in-
fluence of pH on the assimilation of metals by marine biota
(Lacoue-Labarthe et al. 2011; Götze et al. 2014; Ivanina et al.
2015), and to the best of our knowledge, even none has investi-
gated the influence of pH on metal trophic transfer in fish.
However, in the context of the current ocean acidification, some
authors have recently highlighted the effects of the partial pres-
sure of CO2 (pCO2) on the digestion of fish (Pimentel et al. 2015;
Rosa et al. 2016). Indeed, these authors have shown that the
activity of the digestive enzymes in marine fish is dependent of
pCO2. Usually, pH values were converted in pCO2 from seawa-
ter carbonate chemistry. In the present study, in addition to the
constant monitoring of pH, the total alkalinity has also been
regularly monitored (see the BMaterials and methods^ section).
Thus, pH values were converted in pCO2. In the present paper,
we have used an integrated approach for assessing the effect of
pH on fish physiology using assimilation efficiency as an end-
point, but no effect of pHwas found on the trophic transfer of the
three studied metals in turbot.

Temperature and pH can interact in different ways on the
physiology of marine organisms (Boyd and Hutchins 2012;
Gunderson et al. 2016). In the present study, we did not find
any combined effect of temperature and pH on metal assimi-
lation. Contrasting responses regarding the bioaccumulation
of metal in marine organisms have been reported in the scien-
tific literature. Temperature can affect the bioconcentration of
essential (Co, Mn, Se and Zn) and non-essential (Cd and Ag)
metals with similar patterns at different pH (7.60, 7.85 and
8.10) as already demonstrated in cuttlefish eggs (Lacoue-
Labarthe et al. 2009; Lacoue-Labarthe et al. 2012).
However, Belivermiş et al. (2015) have shown, in Pacific
oyster Crassostrea gigas, that the effects of temperature on
the bioaccumulation of Cd, Co and Mn were dependent of the
pH conditions (7.5, 7.8 and 8.1). Even if the relations between
temperature and pH effects can be complex to interpret, the
absence of effect of the temperature at the lower pH (i.e. 7.5)
observed in our study could be related to antagonistic effects
of these abiotic factors. Thus, further studies investigating a
wider range of exposure of temperature and pH and based on a
mechanistic approach will be needed to support this
assumption.

Conclusions

This study provides new information on the assimilation effi-
ciency of two essential (Co and Zn) and one non-essential
(Ag) metals in marine fish (turbot). Our results suggest that
two abiotic factors (temperature and pH) do not have a signif-
icant role in the assimilation efficiency of Co and Ag; howev-
er, temperature has a slight effect on Zn assimilation in the
juvenile turbot S. maximus. Based on these results, further
studies should be carried out in order to cover a wider range

of exposure of temperature and pH to assess precisely its effect
on Zn assimilation in fish, taking into account the high vari-
ability of the responses between marine organism (Parker
et al. 2011) and the adaptive capacities of organisms, especial-
ly in the context of global change where organisms are facing
long-term modifications of the environmental conditions.
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