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Abstract The distribution of heavy metals in agricultural
soils is affected by various anthropogenic activities and envi-
ronmental factors occurring at different spatial scales. This
paper introduced the two-dimensional empirical mode decom-
position (2D-EMD) to separate the spatial variability in soil
heavy metals into different scales. Geostatistics and multivar-
iate analysis were also utilized to quantify their spatial struc-
ture and identify their potential influencing factors. The study
was conducted in an arable land in southeastern China where
260 surface soil samples were collected and measured for total
contents of cadmium (Cdtotal), mercury (Hgtotal), and sulfur
(TS); pH; and soil organic carbon content (SOC). The results
showed that both Cdtotal and Hgtotal had high coefficients of
variation. The overall variation in all five soil variables was
separated into three intrinsic mode functions (IMFs) and spa-
tial residues. All three IMFs had short-range spatial correla-
tions (1–8 km), while the spatial residues had moderate–large
spatial ranges (13–39 km). IMF1 of Cdtotal was strongly cor-
related with IMF1 of SOC and TS, which was consistent with
the principal component analysis. This indicated that IMF1 of
Cdtotal represented local variations which were influenced by
agricultural activities. IMFs of Hgtotal showed clustered

distributions in the study area, with IMF1 and IMF2 of
Hgtotal correlated in one principal component, and IMF3 of
Hgtotal and IMF3 of soil pH in another component. This indi-
cated that all three IMFs of Hgtotal might be influenced by
different industrial activities or different pathways of the same
industrial activities. The residues of Cdtotal and Hgtotal,
representing the regional trends, only accounted for 26% of
the total variance, whereas IMF1 contributed about half of the
total variance. It can be concluded that agricultural activities
and industrial activities were the dominant contributors of the
overall variations in Cdtotal and Hgtotal in the study area,
respectively.
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RSD Relative standard deviation
MDL Method detection limit
rS Spearman’s nonparametric correlation coefficients
PCA Principle component analysis
PC1 The first principal component
PC3 The third principal component
PC5 The fifth principal component
PC6 The sixth principal component
PC7 The seventh principal component

Introduction

Heavy metals are natural components of the soil, and their
background concentrations primarily depend on the parent
material composition and pedogenesis (Baize and
Sterckeman 2001; De Temmerman et al. 2003; Rawlins
et al. 2003; Rodríguez Martín et al. 2008). However, many
studies have reported that in the last decade, anthropogenic
influence has contributed to the rapid increase of heavy metals
in soils (Facchinelli et al. 2001; Franco-Uria et al. 2009
Qishlaqi et al. 2009; Rodríguez Martín et al. 2013; Horta
et al. 2015). As the most frequent soil contaminants, heavy
metals are toxic, bio-accumulative, and resistant to biochem-
ical degradation and can be readily transferred into the human
body (Cui et al. 2005; Lim et al. 2008; Wei and Yang 2010;
Wu et al. 2015). In the recent years, soil contamination by
heavy metals has become a serious problem in many parts of
the world, especially in developing countries like China (Saby
et al. 2006; Fabietti et al. 2010; Xia et al. 2011; Li et al. 2014;
Chen et al. 2015). In China, about 10 million ha of arable land
has been polluted, and about 12 million tons of grains is con-
taminated each year by heavy metals in soils (Teng et al.
2010). As soil is a fundamental resource for food, feed, and
fiber that provides a livelihood for the majority of people in
developing countries, it is essential to understand and control
the spatial distribution of soil heavy metals to ensure food
safety.

Heavy metals in soils often come from multiple sources
(Romic and Romic 2003; Zarcinas et al. 2004; Saby et al.
2006; Micó et al. 2006; Schneider et al. 2016), which are scale
dependent (Lin et al. 2002; Zhao et al. 2010; Nanos and
Rodríguez Martín 2012; Lv et al. 2013). The complexity of
the multi-scale variations in heavy metals makes it difficult to
fit a spatial model that is universally valid (Saby et al. 2006;
Rodríguez Martín et al. 2008; Marchant et al. 2010). It is
necessary to separate the variations in soil heavy metals into
different scales and identify their potential sources and
influencing factors.

To study the scale-specific variations in soil heavy metal
concentrations, several techniques have been explored, in-
cluding multi-scale kriging nested model (Huo et al. 2009;
Tóth et al. 2016) and factorial kriging (Nanos and Rodríguez

Martín 2012; Lv et al. 2014).Multi-scale kriging nestedmodel
has advantages in revealing the spatial structure of a given
variable effectively and improves the estimation accuracy
compared with the single-scale model, but it assumes station-
arity. Factorial kriging, as a multivariate geostatistical ap-
proach, using the nested combination of two or more individ-
ual auto-variograms called co-regionalization analysis, allows
decomposition of the given variables set into different com-
ponents of spatial variability related to different scales, which
can be mapped separately. However, it can only estimate and
map the variables at some preselected scale intervals (Bocchi
et al. 2000; Castrignanó et al. 2000; Alary and Demougeot-
Renard 2010).

Empirical mode decomposition (EMD) is a highly adaptive
decomposition method that is known to deal with different
types of spatial series including those that are nonstationary
and nonlinear. It decomposes the original data into a series of
modes without prior information (Huang et al. 1998, 2003a).
In recent years, it has been widely used in soil science to
separate the spatial variability at multiple scales (Biswas
et al. 2009; Biswas and Si 2011; Hu and Si 2013; Zhou
et al. 2016). EMD separates data into a number of intrinsic
mode functions (IMFs) with different spatial scales and a res-
idue (Huang et al. 1998, 2003b; Huang andWu 2008; Rao and
Hsu 2008). Each IMF represents the realizations of underlying
soil processes and the controlling factors at similar scales.
Therefore, the overall variability in soil properties can be vi-
sualized at different spatial resolutions.

While a spatial variation of heavy metals in agricultural
soils has been studied extensively at various scales (Cheng
et al. 2007; Marchant et al. 2010; Rodríguez Martín et al.
2013; Duan et al. 2015; Horta et al. 2015; Tóth et al. 2016),
to our knowledge, few studies considered the spatial multi-
scale variations in heavy metals. In this study, a typical mod-
ern agricultural zone in southeastern China was chosen as our
study area. The main objectives of this study are (1) to explore
the spatial multi-scale variations of soil cadmium (Cd) and
mercury (Hg) contents using a two-dimensional EMD algo-
rithm, (2) to calculate the scale-specific correlations between
the two metal contents and selected soil properties, and (3) to
identify the potential influencing factors of Cd and Hg in the
study area.

Materials and methods

Study area

The study area is located in the Hang-Jia-Hu Plain, the north-
eastern region of Zhejiang Province, China. The study area is
bounded by longitude 120° 17′–120° 39′ E and latitude 30°
28′–30° 47′ N with a total area of about 727 km2. The study
area is in the northern subtropical zone of monsoonal climate
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with a temperate and humid climate throughout the year with
four distinct seasons. The average annual temperature is
16.0 °C, and the mean annual precipitation is approximately
1233.9 mm. The dominant wind direction is southeast in sum-
mer and northwest in winter, respectively. Gleysols and
Gleyic Cambisols are two major soil types in the study area,
and they accounts for about 81.99 and 12.01%, respectively.
Paddy field was the main land use of arable land, accounting
for about 81%.

Sampling design and soil analysis

A total of 260 surface soil samples (0–15 cm) were collected
from the arable land in November 2005 with consideration of
land use uniformity and soil types to ensure all samples were
located in arable land and each soil subtype at least had one
observation (Fig. 1). During sampling, soil samples from the
top layer of 6∼8 points at each site of an area of about
0.1~0.2 ha were collected and then composited and finally
divided into subsamples of 1∼2 kg each for laboratory analy-
ses. All sample locations were georeferenced using a handheld
Global Positioning System (GPS). All samples were air-dried
at a room temperature (20–25 °C), stones or other debris were
removed, and then the samples were sieved to pass a 2-mm
polyethylene sieve. Portions of soil samples (about 100 g)
were ground in an agate grinder and sieved through
0.149 mm. The prepared soil samples were then stored in
polyethylene bottles for analysis.

Soil pH was measured by a pH meter (Sartorius Basic pH
Meter PB-10) with a soil-to-water ratio of 1:2.5. In this study,
soil organic carbon content (SOC) was determined by wet

oxidation at 180 °C with a mixture of potassium dichromate
and sulfuric acid (H2SO4), and total sulfur content (TS) was
determined with an X-ray fluorescence spectrometer after being
extracted by amixture of phosphate and acetic acid (Agricultural
Chemistry Committee of China 1983). Total Cd content (Cdtotal)
wasmeasured by inductively coupled plasmamass spectrometry
(ICP-MS) after soil samples had been digested with a mixture of
nitric acid (HNO3) and perchloric acid (HClO4) (Agricultural
Chemistry Committee of China 1983), and total Hg content
(Hgtotal) was determined by cold vapor atomic fluorescence
spectrometry (CV-AFS) after soil samples had been digested
with a mixture of H2SO4, HNO3, and potassium permanganate
(KMnO4) (Wang et al. 2003).

The validity of the whole analytical procedures was
checked using the certified reference materials (CRMs)
GSS1, GSS2, GSS3, and GSS8. Analyses of CRMs, replicate
samples, and blanks were performed after every ten samples
and were carried throughout the entire sample preparation and
analytical process. The precision of the measurements, esti-
mated by carrying out 26 replicates, was in the range of 3.2–
5.9% relative standard deviation (RSD). The average recovery
rates of certified elements were between 83 and 112%. The
method detection limit (MDL)was 50μg g−1 for TS, 20 ng g−1

for Cdtotal, and 2 ng g−1 for Hgtotal.

Dimensional empirical mode decomposition analysis

EMD was originally developed for analysis of one-dimensional
nonstationary and nonlinear signals (Huang et al. 1998). In this
study, we introduced the two-dimensional EMD (2D-EMD)
which can be used to analyze two-dimensional spatial data.

Fig. 1 Locations of sampling sites and study area
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We used a Bspemd^ package (Roudier 2016) implemented in R
(R Core Team 2014). The main decomposition process of 2D-
EMD is expressed as follows:

z x; yð Þ ¼ ∑
N

i¼1
ci x; yð Þ þ r x; yð Þ

where z(x, y) is the original two-dimensional dataset, ci(x, y) is
theN − 1 IMFs, and r(x, y) is the spatial residue. The algorithm
of the two-dimensional EMD analysis can be summarized as
follows:

1. Determine the neighborhood of each observation point
(z(x, y)) using its k-nearest neighbor (here, we chose
k = 4);

2. Find local extremum (minimum (min1) and maximum
(max1)) points for the input dataset. A local extremum is
defined as a point whose value is either smaller or larger
to all of its neighbors;

3. Interpolate the minimum and maximum points for each
location in the input dataset using multi-level B-splines as
implemented in the MBA package for R (Finley and
Banerjee 2014);

4. Calculate the envelope (e), defined as the mean values of
the interpolated minimum and maximum points;

5. Extract the details, d(x, y) = (z(x, y) − e);
6. Replace z(x, y) with d(x, y) and repeat steps 2–5 until c(x,

y) satisfied the IMF criteria (i.e., ci(x, y) = d(x, y));
7. Replace z(x, y) with z x; yð Þ− ∑

N

i¼1
ci x; yð Þ and go to step 2

until a monotonic residue is obtained.
In this study, the original data of the twometals and three

soil properties were decomposed into three IMFs with their
corresponding spatial residues. The number of maximum
IMFswas selected empirically based on the observation that
an increase in this value will not produce additional IMFs.
Afterwards, the percentage contribution of each of the com-
ponent of the overall variance was calculated.

Scale analysis using geostatistics

Geostatistics have been successfully used to investigate the
spatial variation in soil metal contents and soil properties
(Saby et al. 2006; Li et al. 2008; Sun et al. 2012; De Souza
et al. 2015). The variogram is an effective tool for evaluating
spatial variability and structure (Guo et al. 2001; Iqbal et al.
2005) and could provide a clear description of the spatial
structure of variables and some insight into possible processes
affecting variable distribution (Wang and Tao 1998; Paz
González et al. 2001).

To explore the spatial multi-scale variations in soil metal
contents across the study area, the variogram was calculated
for each EMD component of measured soil properties.

Anisotropy of variogram was not observed in the data. All
variograms in isotropic form were fitted using the spherical,
exponential, Gaussian, or linear models, and the best-fit model
was applied to kriging interpolation. Ordinary kriging was
chosen to create the spatial distribution maps of the heavy
metals and three soil properties, using the nearest 16 observa-
tions and a maximum search distance equal to the range of the
variogram of the variable. The software GS+ Geostatistics for
the Environmental Sciences, version 10.0 (Gamma Design
Software, Plainwell, MI, USA) was used to fit the variograms
and perform ordinary kriging. More technical descriptions of
kriging and the semivariogram are available in the literature
(see Webster and Oliver 2001).

Multivariate analysis

Multivariate statistical solutions are mathematical hypotheses,
and their interpretation requires environmental knowledge.
These techniques have been widely used to assist the interpre-
tation of environmental data and to distinguish between natu-
ral and anthropogenic inputs of heavy metals (e.g., Yu et al.
2000; Boruvka et al. 2005; Lucho-Constantino et al. 2005;
Zhou et al. 2008; Schneider et al. 2016). Inter-element rela-
tionships can provide valuable information on the sources and
pathways of the soil heavy metals (Manta et al. 2002).
However, classical correlation analysis does not reveal the real
relationships among variables since it averages out distinct
changes in the correlation structures occurring at different
spatial scales (Liu et al. 2013). To study the scale-specific
correlations between the two metal contents and three soil
properties, correlation analysis was applied to identify the re-
lationships between the EMD components (soil pH, SOC, and
TS). Also, correlation analysis was performed, considering the
EMD components of the two soil heavy metal (HM) contents
to check relationships among them. Spearman correlation co-
efficient used for most of the variables in this study was pos-
itively skewed.

Principal component analysis (PCA) was used to interpret
EMD transformed components (IMFs and residues) of Cdtotal,
Hgtotal, pH, SOC, and TS with approximately the same or
similar source. In order to facilitate the interpretation of re-
sults, varimax rotation was applied because orthogonal rota-
tion minimized the number of variables with a high loading
(Gallego et al. 2002). Multivariate analysis was performed
using SPSS Statistics 22.0 (SPSS Inc., Chicago, IL, USA).

Results and discussion

Soil heavy metal concentration and soil properties

The descriptive statistics of Cd and Hg concentrations and
three soil properties are shown in Table 1. The results showed
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that both Cdtotal and Hgtotal had a wide data range, suggesting
that extrinsic factors affect Cdtotal and Hgtotal in soils of the
study area. Previous studies showed that the background con-
centrations in Zhejiang at a provincial scale for Cd and Hg
were 170 and 150 μg kg−1, respectively (Zhejiang Soil Survey
Office 1994; Cheng et al. 2006). There were 70 (26.9%) soil
samples for Cdtotal and 123 (47.3%) for Hgtotal that exceeded
the local background concentration. This indicated that Cd
and Hg were enriched in some areas. The soil pH in the area
was in the range of 3.66–7.96 with a mean of 6.42, the SOC
was in the range of 0.19–3.27%with a mean of 1.20%, and the
TS was in the range of 97–682 mg kg−1with a mean of

295.7 mg kg−1. The coefficients of variation for Cdtotal,
Hgtotal, pH, SOC, and TS were 41.6, 88.4, 11.7, 50.0, and
43.1%, respectively. It showed that Cdtotal, Hgtotal, SOC, and
TS in the study area were highly variable compared to soil pH.

Characteristics of IMFs and residues

In this study, all the original data of heavy metal concentra-
tions and soil properties were decomposed into three IMFs
and a spatial residue. The descriptive statistics of the EMD
components for the metals and soil properties are listed in
Table 1. The results showed that all the IMFs had mean values

Table 1 Descriptive statistics of
the soil properties and their
empirical model decomposition
components (i.e., IMFs and
residues) in the study area
(N = 260)

Variable Min Max Median Std. Dev. Skewness Kurtosis % of variance

Cdtotal (μg kg−1)

Original 74 777 149 64.91 5.24 41.6 100

IMF1 −297 287 1.86 58.74 −0.80 7.72 52.77

IMF2 −166 182 0.37 35.26 −0.17 6.85 19.02

IMF3 −31 36 0.56 11.13 0.09 0.70 1.89

Residue 117 292 146 41.48 1.55 1.63 26.32

Hgtotal (μg kg−1)

Original 35 2430 182 199.6 5.75 57.4 100

IMF1 −807 856 −3.31 157.9 −0.59 8.91 44.99

IMF2 −448 816 8.06 117.8 0.62 10.59 25.04

IMF3 −154 155 −0.83 41.8 −0.43 2.28 3.15

Residue 94 656 231 121.9 0.94 0.73 26.81

pH

Original 3.66 7.96 6.47 0.75 −0.40 1.86 100

IMF1 −1.31 1.37 0.09 0.61 −0.05 −0.73 53.32

IMF2 −0.74 0.69 0.01 0.28 −0.06 −0.43 11.23

IMF3 −0.59 0.59 0.08 0.25 −0.42 −0.64 8.96

Residue 5.58 7.26 6.33 0.43 −0.03 −1.21 26.49

SOC (%)

Original 0.19 3.27 1.14 0.60 0.56 −0.19 100

IMF1 −1.02 1.10 −0.05 0.50 0.08 −1.15 72.91

IMF2 −0.75 0.74 0.00 0.23 0.24 0.26 15.43

IMF3 −0.52 0.36 0.00 0.16 −0.32 1.16 7.47

Residue 0.84 1.52 1.20 0.12 −0.66 0.88 4.20

TS (mg kg−1)

Original 97 682 277 127.5 0.50 −0.54 100

IMF1 −210 268 −20.63 108.9 0.24 −0.99 81.59

IMF2 −59 54 0.15 24.68 −0.02 −0.96 4.19

IMF3 −43 48 −0.60 16.63 0.35 0.10 1.90

Residue 233 443 290 42.33 1.67 2.57 12.32

Cdtotal total concentration of cadmium,Hgtotal total concentration ofmercury, SOC soil organic carbon content, TS
soil total sulfur content, Min minimum, Max maximum, Std. Dev. standard deviation
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close to 0 and approximately followed a normal distribution,
which was the nature of EMD analysis. The variance percent-
age was largest in IMF1 and decreased at subsequent levels.
For Cd and Hg concentration, IMF1 contributed about half of

the total variance while the residue only contributed about
25% of the total variance. The variance contribution of
IMF3 was almost negligible compared to other IMFs. The
results also showed that the residues had a mean value almost

Fig. 2 Spatial distributions of the two heavy metal contents, the three soil properties (a1, b1, c1, d1, e1), and their residues (a2, b2, c2, d2, e2) in the study
area

Fig. 3 Experimental semivariograms of the two soil heavy metal contents, three soil properties, and their empirical mode decomposition components
with fitted models
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equal to those of the corresponding original data, although the
residues had a relatively narrow range. From Fig. 2, it was
found that the residue only contained a regional trend. Note
that all EMD analyses were performed on the actual sampling
points and are presented here as a grid (1.5 km × 1.5 km) for
visualization purpose. We conducted EMD analysis on the
point-based datasets rather than interpolated grids because
we tried to avoid the smoothing effects generated during the
interpolation process which may potentially eliminate the
small-scale variations in the soil properties.

Spatial structure of soil HM contents and soil properties

Variograms and the fitted models for Cd and Hg concentra-
tion, TS, pH, SOC, and their EMD components are presented
in Fig. 3. The parameters of the variograms are summarized in
Table 2. The variograms showed that all EMD components of
all soil properties were fitted with models with a high coeffi-
cient of determination (R2 = 0.874~0.997) except for IMF1.
This indicated that IMF1 presented a local-scale variation,

while other components and the residues presented a regional
trend which varied smoothly in the area and were fitted nicely
by the models.

IMF1–IMF3 for Cd showed increasing spatial values
ranged from 1.69, 3.64, to 5.27 km. A spherical model fitted
IMF1 well, while the other IMFs were better modeled using a
Gaussian model. This implied that IMF1 mainly characterized
a local variation, while IMF2, IMF3, and the spatial residue
represent trends that vary smoothly over larger scales.

Meanwhile, the range values of IMF1–IMF3 of Hg were
around 4 km. From Fig. 3, it was found that the residues had a
relatively stronger spatial dependence than those of the corre-
sponding original data. This may be due to the fact that resi-
dues of the EMD analysis eliminated the local oscillations
(variations). Thus, the residues alleviated the dominant nugget
effect (nugget variance) caused by the fine-scale spatial vari-
ability that cannot be characterized by the sampling scheme
(Webster and Oliver 2001). In terms of the residues, it was
noted that Cdtotal had the largest range (~39.0 km), followed
by Hgtotal (~17.0 km), pH (~15.9 km), TS (~15.8 km), and

Table 2 Best-fitted variogram models of the two heavy metal contents, three soil properties, and their empirical mode decomposition components

Variable Model type Nugget (c0) Sill-Nugget (c1) c0
c0þc1

Range (km) R2

CdIMF1 Spherical 1.00 2.62 × 103 0.0004 1.69 0.600

CdIMF2 Gaussian 1.00 1.03 × 103 0.001 3.64 0.901

CdIMF3 Gaussian 0.20 1.18 × 102 0.002 5.27 0.979

Cdresidue Gaussian 1.60 × 102 4.27 × 103 0.036 39.0 0.991

Cdoriginal Gaussian 2.43 × 103 2.35 × 104 0.094 96.7 0.848

HgIMF1 Exponential 5.33 × 103 2.67 × 104 0.164 3.39 0.666

HgIMF2 Gaussian 10 1.74 × 104 0.001 3.22 0.890

HgIMF3 Gaussian 1.00 2.31 × 103 0.0004 4.56 0.957

Hgresidue Gaussian 9.80 × 102 2.09 × 104 0.045 17.0 0.987

Hgoriginal Gaussian 8.10 × 103 3.50 × 104 0.188 2.51 0.552

pHIMF1 Linear 0.389 0.389 1.00 7.80 0.518

pHIMF2 Spherical 1.00 × 10−4 7.28 × 10−2 0.001 2.69 0.874

pHIMF3 Gaussian 1.00 × 10−4 6.86 × 10−2 0.001 3.95 0.962

pHresidue Gaussian 1.25 × 10−2 0.229 0.052 15.9 0.987

pHoriginal Linear 0.461 0.192 0.706 19.5 0.698

SOCIMF1 Spherical 1.44 × 10−2 0.233 0.058 0.65 0.282

SOCIMF2 Gaussian 1.00 × 10−4 5.61 × 10−2 0.002 3.38 0.995

SOCIMF3 Gaussian 6.70 × 10−4 2.32 × 10−2 0.028 8.47 0.985

SOCresidue Gaussian 2.80 × 10−4 1.79 × 10−2 0.015 13.2 0.997

SOCoriginal Exponential 0.173 0.174 0.499 7.71 0.839

TSIMF1 Spherical 8.10 × 102 1.10 × 104 0.069 0.55 0.302

TSIMF2 Gaussian 1.00 6.55 × 102 0.002 3.55 0.981

TSIMF3 Gaussian 1.00 3.57 × 102 0.003 7.15 0.991

TSresidue Gaussian 31 1.52 × 103 0.020 15.8 0.986

TSoriginal Exponential 1.26 × 104 1.82 × 104 0.410 213.3 0.792

Cd total concentration of cadmium, Hg total concentration of mercury, SOC soil organic carbon content, TS soil total sulfur content
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SOC (~13.2 km). Based on these results, it was expected that
variations in the two soil metal contents and the three soil
properties may be found at different spatial scales.

Scale- and location-specific variations in soil HM contents

Figure 4 shows the spatial distribution of IMFs and its residue
for Cd and Hg. For IMF1 of Cdtotal, high values were only
presented in the north and southwest parts of the area. This
pattern can be also found in IMF2 and IMF3 and the residue.
All three IMFs had most of the variations at the small scales
(1.7~5.3 km). However, the residue of Cdtotal only contained
variations at the large scales (39.0 km). The residue character-
ized areas which have naturally high Cd concentrations.

Figure 4(b1–b4) shows the spatial distribution of IMFs and
the residue of Hgtotal. Most of the variations in IMFs of Hgtotal
were located in the northwest area with small scales
(3.2~4.6 km), whereas most of the variations in the residue
of Hgtotal were in the northwest area with intermediate scales.
The large residue of Hgtotal had a spatial distribution trend with
the high concentration in the northwest area and low concen-
tration in the southeast area. From the figure, it was found that
the residue of Hgtotal had an obvious hot spot in the northwest
area, which may be due to a point pollution source of Hg.

Scale-specific correlations between the two soil HM
contents and three soil properties

SOC was significantly correlated with Cdtotal and Hgtotal
(rS = 0.47–0.79), possibly as a consequence of external

sources. This was consistent with well-established studies in
the literature that SOC plays a fundamental role in the control
of metal sorption by soils (Séguin et al. 2004; Rattan et al.
2005; Kashem et al. 2007). Significant correlations were also
found between Cdtotal, Hgtotal, and TS, indicating the main
sources of these elements were similar or the same (Table 3).
However, soil pH had poor correlations with the Cdtotal and
Hgtotal.

From Table 4, we found that each component of Cd and Hg
was significantly correlated with several different components
of the three soil properties, indicating each EMD component
of the two metals had different influencing factors. IMF1 of
Cdtotal representing a more local variation was significantly
correlated with IMF1 of SOC and IMF1 of TS with relatively
moderate correlation coefficients (rS = 0.60–0.62).
Meanwhile, the residue of Cdtotal was significantly correlated

Fig. 4 Spatial distributions of the empirical mode decomposition components of the two soil heavy metal contents in the study area (a1–a4, b1–b4)

Table 3 The nonparametric correlations between the two heavy metal
contents and three soil properties in the study area (N = 260)

Cdtotal Hgtotal pH SOC TS

Cdtotal 1.00 0.45** −0.06 0.79** 0.73**

Hgtotal 1.00 −0.06 0.47** 0.44**

pH 1.00 −0.25** −0.28**
SOC 1.00 0.96**

TS 1.00

Cdtotal total concentration of cadmium, Hgtotal total concentration of mer-
cury, SOC soil organic carbon content, TS soil total sulfur content

*Significant at the 0.05 probability level (two-tailed); **significant at the
0.01 probability level (two-tailed)
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with the residue of Hgtotal and the residues of SOC and TS
with moderate–high correlation coefficients (rS = 0.53–0.84).
Moreover, moderate correlations were also found between the
residue of soil total Hg contents and the residues of the three
soil properties. The significant correlations indicated these
EMD components had the same or similar influencing factors.

Potent factors affecting Cd and Hg in agricultural soils

To reduce the high dimensionality of the variable space and
better understand the relationships among the EMD compo-
nents of the metals and soil properties, PCAwas applied to the
data (Fig. 5). According to the results of the eigenvalues listed
in Table 5, eight factors accounted for over 74% of the total
variation of the 20 EMD components. The largest loadings or
contributors for the first principal component (PC1) which
accounted for about 14% of the total variance were the resi-
dues of Cdtotal, Hgtotal, SOC, and TS (loadings greater than
±0.5 were considered). It indicated that the residues of Cdtotal,
Hgtotal, SOC, and TS in the study area had similar influencing
factors. It is well known that the spatial residues represent the
overall trends of data, and soil properties exhibit variability as
a result of dynamic interactions between parent material, cli-
mate, and geological history, on the regional scale (Wang et al.
2001; Liu et al. 2006). Therefore, the residues of Cdtotal and
Hgtotal, to some extent, reflected their natural concentration.

This was in agreement with the previous studies that the nat-
ural concentration of heavy metals in agricultural soils
depended primarily on the geological parent material

Table 4 The nonparametric
correlations between the
empirical mode decomposition
(EMD) components (IMF1,
IMF2, IMF3, and residues) of the
two soil heavy metal contents and
the EMD components of the three
soil properties in the study area
(N = 260)

CdIMF1 CdIMF2 CdIMF3 Cdresidue HgIMF1 HgIMF2 HgIMF3 Hgresidue

CdIMF1 1.00 −0.09 −0.17** −0.17** 0.12 0.04 −0.02 −0.07
CdIMF2 −0.09 1.00 0.17** −0.11 −0.01 0.07 0.06 0.10

CdIMF3 −0.17** 0.17** 1.00 0.15* 0.06 −0.01 −0.06 −0.03
Cdresidue −0.17** −0.11 0.15* 1.000 −0.04 0.18** −0.04 0.57**

HgIMF1 0.12 −0.01 0.06 −0.04 1.00 −0.32** −0.19 −0.05
HgIMF2 0.04 0.07 −0.01 0.18** −0.32** 1.00 0.07 0.06

HgIMF3 −0.02 0.06 −0.06 −0.04 −0.19** 0.07 1.00 −0.24**
Hgresidue −0.07 0.10 −0.03 0.57** −0.05 0.06 −0.24** 1.00

pHIMF1 0.04 −0.14* −0.09 −0.01 −0.17** 0.01 0.04 −0.02
pHIMF2 0.09 0.02 −0.03 −0.01 0.03 −0.10 −0.02 0.02

pHIMF3 0.05 −0.06 0.20** 0.05 0.03 0.04 −0.17** 0.08

pHresidue 0.01 0.13* −0.14* 0.04 0.01 −0.05 −0.22** 0.36**

SOCIMF1 0.62** 0.00 0.03 0.06 0.15* 0.05 −0.02 0.06

SOCIMF2 −0.07 0.27** 0.14* 0.14* 0.09 0.09 0.02 0.06

SOCIMF3 −0.02 −0.05 0.23** 0.34** 0.01 0.31** 0.09 0.03

SOCresidue −0.14* −0.17 0.13* 0.84** −0.04 0.13* −0.09 0.54**

TSIMF1 0.60** 0.04 0.05 0.08 0.18** 0.09 −0.02 0.04

TSIMF2 −0.05 0.38** 0.29** 0.08 0.07 0.10 −0.09 0.02

TSIMF3 −0.01 −0.13* 0.36** 0.24** 0.02 0.20** −0.06 0.02

TSresidue −0.10 −0.06 0.06 0.53** 0.00 0.12 0.06 0.40**

Cd total concentration of cadmium, Hg total concentration of mercury, SOC soil organic carbon content, TS soil
total sulfur content

*Significant at p < 0.05; **significant at p < 0.01

Fig. 5 Summary plots of principal components on correlations of the
empirical mode decomposition components (IMFs and residues) of the
two soil heavy metal contents and the three soil properties
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composition and pedogenesis (De Temmerman et al. 2003;
Rodríguez Martín et al. 2006).

The third principal component (PC3) was responsible for
10.85% of the total variance and was dominated by IMF1 of
Cdtotal, IMF1 of SOC, and IMF1 of TS. IMF1 of Cdtotal had a
moderate positive association in PC3, and IMF1 of SOC and
IMF1 of TS had strong positive associations in PC3, suggest-
ing the three components had similar or same influencing
factors. IMF1 of SOC and IMF1of TS separately contributed
to the majority of the total variance. They also had short-range
spatial correlations (0.65 and 0.55 km), suggesting the two
IMF1 components represented themajority of local variations,
i.e., field-scale variations in SOC and TS. It is well known that
the field-scale variations in soil nutrient contents in Chinese
agricultural soils were mainly attributed to the fertilizer history
of individual farmers and varieties used in relatively small-
scale field management (Jin and Jiang 2002). Based on the
above results, it was reasonable to conclude that a large pro-
portion of variations in Cdtotal were mainly due to agricultural
activities such as fertilization. This result was consistent with
previous studies that agricultural activity was one of the main

sources of Cd entering agricultural soils (Mann et al. 2002;
Huang et al. 2007; Atafar et al. 2010).

Both IMF2 and IMF3 of Cdtotal were positively associated
with the fifth principal component (PC5). It indicated that the
two IMFs had similar influencing factors. The two IMFs of
Cdtotal had short-range spatial correlations (3.64–5.27 km),
and they had a similar spatial variation that was more variable
in the north and the southwest areas. Previous studies showed
that sewage irrigation and atmospheric deposition were two of
the main sources of Cd entering agricultural soils (Nicholson
et al. 2003; Liu et al. 2005; Luo et al. 2009;Wu et al. 2011). To
our knowledge, there were a large number of rural enterprises
distributed in the study area, and water pollution from small
rural industries was often a serious problem throughout China
(Wang et al. 2008). Based on the above discussions, we can
attribute the IMF2 and IMF3 of Cdtotal might represent the
influence of industry activities.

IMF1 and IMF2 of Hgtotal were shown in the sixth principal
component (PC6), and IMF3 of Hgtotal and IMF3 of soil pH
were shown in the seventh principal component (PC7). PC6
and PC7 account for about 6.99 and 6.67% of the total

Table 5 Principal component
(PC) analysis of the empirical
mode decomposition components
(IMFs and residues) of the two
soil heavy metal contents and the
three soil properties

Eigenvectors Rotated component matrix

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

CdIMF1 −0.236 −0.022 0.566 0.031 −0.532 0.038 0.129 −0.003
CdIMF2 −0.099 −0.208 0.001 0.158 0.774 0.062 −0.106 0.149

CdIMF3 0.097 0.347 0.018 0.121 0.748 −0.038 0.257 −0.047
Ln(Cdresidue) 0.855 0.277 0.002 0.024 0.123 0.026 −0.080 0.035

HgIMF1 −0.050 0.118 .124 0.176 −0.030 −0.731 −0.061 0.100

HgIMF2 0.023 0.162 0.051 0.085 −0.012 0.790 −0.065 −0.009
HgIMF3 −0.104 0.195 −0.013 0.133 −0.024 0.410 −0.664 0.145

Ln(Hgresidue) 0.785 −0.383 0.053 0.037 0.027 0.051 0.158 −0.060
pHIMF1 −0.008 0.070 −0.055 −0.053 −0.213 0.067 −0.027 −0.649
pHIMF2 0.043 0.024 0.041 −0.102 −0.116 −0.018 0.081 0.818

pHIMF3 −0.010 0.067 −0.044 0.103 0.012 0.165 0.777 0.240

Ln(pHresidue) 0.071 −0.805 0.036 0.082 0.016 0.007 0.191 −0.214
SOCIMF1 0.063 0.005 0.954 −0.064 0.009 −0.062 −0.022 0.071

SOCIMF2 0.085 0.034 0.016 0.924 0.031 −0.038 −0.072 −0.027
SOCIMF3 0.339 0.748 0.065 −0.002 0.131 0.148 −0.024 −0.153
SOCresidue 0.814 0.136 −0.005 0.103 −0.026 −0.010 0.125 0.068

TSIMF1 0.059 0.047 0.950 0.120 0.028 −0.026 −0.056 0.039

TSIMF2 0.001 −0.003 0.045 0.890 0.191 −0.024 0.105 −0.021
TSIMF3 0.215 0.706 0.044 0.181 −0.055 −0.009 0.232 −0.193
Ln(TSresidue) 0.713 0.460 0.007 −0.090 −0.079 0.027 −0.152 −0.001
Eigenvalue 3.490 2.282 2.130 1.905 1.445 1.369 1.165 1.077

% of variance 13.95 12.07 10.85 9.23 7.92 6.99 6.67 6.64

Cumulative % 13.95 26.02 36.87 46.01 54.02 61.01 67.68 74.32

Rotation method: varimax with Kaiser normalization

Ln natural logarithm transform
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variance, respectively. All the three IMFs of Hgtotal had short-
range spatial correlations (3.2–4.6 km), suggesting the three
IMFs represented the majority of the local variation of Hgtotal
in the study area. Previous studies showed that the anthropo-
genic sources of Hg in agricultural soils in China may be
mainly originated from pesticides, fertilizers, atmospheric de-
position, sewage irrigation, and so on (Wang et al. 2003;
Zheng et al. 2008; Wei and Yang 2010; Wu and Cao 2010).
It is well known that coal combustion is one source of Hg and
acid gas emission and therefore leads to Hg enrichment and
soil acidification synchronously (Xu et al. 2004). Based on the
above discussions, we can conclude that all three IMFs of
Hgtotal might represent the influence of industrial activities
such as coal combustion, whereas they might represent the
influence of different industrial activity or different pathways
of the same industrial activities. Short-distance atmospheric
deposition arising from the mini-scale coal-fired boiler of
small rural industries could explain the short-range spatial
correlation of the IMF3 of Hgtotal.

Conclusions

Cd and Hg were enriched in parts of the study area. Cdtotal in
agricultural soils had an overall trend with a high concentra-
tion in the north and southwest areas and low concentration in
the middle part. Meanwhile, Hgtotal had an overall trend of
high concentration in the northwest and low concentration in
the southeast, although they exhibited a complex spatial var-
iability at different scales.

A 2D-EMD was used to decompose the observations into
three IMFs and a residue. IMF1 had the highest contribution
to the total variance in the four EMD components, indicating
the dominant scales in terms of the explained variance of the
five variables were IMF1 and it might represent the variation
caused by major influencing factors, whereas the residue
representing the overall trend only accounts for a small pro-
portion of the total variance. Anthropogenic activities were the
dominant contributors of the variation in Cdtotal and Hgtotal in
the study area. IMF1 of both SOC and TS had short-range
spatial correlations, and they were strongly correlated with
IMF1 of Cdtotal, indicating the IMF1 of Cdtotal might represent
the influence of agricultural activities. Both IMF2 and IMF3
of Cdtotal were positively associated with the same principal
component, and they also had short-range spatial correlations,
indicating the two IMFs of Cdtotal may represent the influence
of industry activities. IMF1 and IMF2 of Hgtotal were shown
in the one PCA component, and IMF3 of Hgtotal and IMF3 of
soil pH were shown in another PCA component, indicating
IMF1 and IMF2 of Hgtotal and IMF3 of Hgtotal might represent
different industrial activities or different pathways of the same
industrial activities. Agricultural activities were the dominant
contributors of the overall variation in Cdtotal, while industrial

activities with concentrated sources may explain the variation
of Hgtotal in the study area. Using 2D-EMD has great potential
in identifying the potent factors of spatial multi-scale
variations.
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