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Abstract Carbon sequestration is an indispensable ecosys-
tem service provided by soil and vegetation, so mapping and
valuing the carbon budget by considering both ecological and
social factors is an important trend in evaluating ecosystem
services. In this work, we established multiple scenarios to
evaluate the impacts of land use change, population growth,
carbon emission per capita, and carbon markets on carbon
budget. We quantified carbon sinks (aboveground and below-
ground) under different scenarios, using the Carnegie-Ames-
Stanford Approach (CASA) model and an improved carbon
cycle process model, and studied carbon sources caused by
human activities by analyzing the spatial distribution of hu-
man population and carbon emission per capita. We also
assessed the net present value (NPV) for carbon budgets under
different carbon price and discount rate scenarios using NPV
model. Our results indicate that the carbon budget of
Guanzhong-Tianshui Economic Region is surplus: Carbon

sinks range from 1.50 × 1010 to 1.54 × 1010 t, while carbon
sources caused by human activities range from 2.76 × 105 to
7.60 × 105 t. And the NPV for carbon deficits range from
3.20 × 1011 RMB to 1.52 × 1012 RMB. From the perspective
of ecological management, deforestation, urban sprawl, pop-
ulation growth, and excessive carbon consumption are consid-
ered as the main challenges in balancing carbon sources and
sinks. Levying carbon tax would be a considerable option
when decisionmaker develops carbon emission reduction pol-
icies. Our results provide a scientific and credible reference for
harmonious and sustainable development in the Guanzhong-
Tianshui Economic Region of China.
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Introduction

The entry into force of Paris Agreement on climate change
means that 192 states and the European Union agreed that the
government can guide people to reduce carbon emissions
through suitable guidance or mandatory measures to ease the
pressure on climate change. The Chinese government pledges
to reach a peak of emissions no later than 2030 and to slash
CO2 emissions per unit of the gross domestic product (GDP)
by 60–65% from the 2005 level. Under this background, the
balance of the carbon exchanges (incomes and losses) among
the carbon reservoirs or in one specific loop of the carbon
cycle (e.g., the cycle of biosphere and atmosphere) is called
carbon budget, which takes the emissions of CO2 from defor-
estation and fossil fuel combustion, the absorption of CO2 into
oceans, and the buildup of CO2 into the atmosphere into ac-
count (Kauppi et al. 1992). And the spatial and temporal
changes of the carbon budget have an important influence
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on the ocean warming, the decrease of the Arctic sea ice area,
and the rise of the sea level (IPCC 2014). So, the quantifica-
tion of carbon budget for regions and globe can improve our
understanding of the relationships among carbon reservoirs in
the context of global change and facilitate carbon emission
reduction policy-making. However, these definitions of car-
bon budget are described from the term in biophysics, not in
ecological geography. Ecological geography researchers focus
more about how carbon cycle system effect in earth ecosystem
as a whole role. Furthermore, the impact of human activities
on the ecological environment is increasingly strengthened, so
it is necessary to take climate, land use, and social economy
synthetically into the estimation of carbon budget.

With the development of carbon cycle model in terrestrial
ecosystem, the understanding of carbon balance is promoting.
After the development of classic ecosystem productivity
models such as Miami, Thornthwaite, and Chikugo (Lieth
1972; Seino and Uchijima 1985), the parameter models of
primary production (Lieth 1975) have been widely adopted
as it can describe the ecological process. The biochemical
model of photosynthetic CO2 assimilation (Farquhar et al.
1980) and the model of stomatal conductance predicting rely
on photosynthesis (Ball et al. 1987) made it possible to devel-
op the process-based terrestrial models, such as the Farquhar
biochemical growth model (Farquhar et al. 1980). Based on
multiple-scale geography spatial database and the vegetation-
climate relationships, the process-based terrestrial models
were used to simulate the potential vegetation distribution
and to predict the impact of climate change on terrestrial car-
bon balance (Gao et al. 2003; Rosenzweig et al. 2014;
Vukicevic et al. 2001; Wang et al. 2013). Dynamic process-
based models have contributed much to the exploration of
biogeochemical cycle, especially the terrestrial carbon cycle
dynamic change due to vegetation composition change and
LUCC (land use and cover change) (Girardin et al. 2008;
Pan et al. 2014; Shen et al. 2013; Zhang et al. 2009).

Remote sensing technology has been considered as an ef-
fective tool to provide direct estimation of vegetation charac-
teristics. The remote sensing parameter models (e.g., GLO-
PEM, VPM, EC-LUE), which based on empirical models
and the remote sensing observation data, are more and more
widely used in the estimation of terrestrial biomass (Prince
and Goward 1995; Song et al. 2013; Xiao et al. 2004; Yan
et al. 2007). Compared with the process-based terrestrial
models, the input data and parameter of remote sensing pa-
rameter models can be obtained more easily. But research
studies in this field generally rely on empirical parameters
rather than observation data, which would influence the pre-
cision of the models. Therefore, the combination of process-
based terrestrial model and remote sensing can be considered
as a more effective method to simulate terrestrial ecosystem
carbon cycle (e.g., the boreal ecosystem productivity simula-
tor model, GLOPEM-CEVSA, and CI-LUE) (Wang et al.

2015; Yan et al. 2007; Zhang 2009). For example, Wang
et al. modeled carbon fluxes of different forests by coupling
a remote sensing model with an ecosystem process model
(Wang et al. 2011). Chen simulated the NEP of terrestrial
ecosystems using BEPS and explored the feasibility of opti-
mizing ecosystem photosynthetic and respiratory parameters
from the seasonal variation of the net carbon flux (Chen et al.
2015). The coupling of remote sensing, field campaign, and
mechanistic and empirical modeling is an effective method to
monitor spatiotemporal carbon dynamics (Berberoglu et al.
2015). Footprint is a frequently used method to study the
impact of human beings on ecosystems (Fang 2015).
Agricultural expansion impacts were evaluated by assessing
ecological and environmental footprints between 1960 and
2005 (Viglizzo et al. 2011). Changes in carbon stock were
quantified in Colombia by assessing oil palm cultivation ex-
pansion combined with offsetting factors that reduce carbon
emissions (Henson et al. 2012). Facing such a complex sys-
tem, it is necessary to predict the responses of ecosystems to
change environmental conditions and management practices
and to compare the estimated provided services in terms of
different scenarios (Laflower et al. 2016; Schaubroeck et al.
2016). In the recent few years, the response of carbon budget
to LUCC has attracted more andmore researchers’ attention to
the changes of energy balance, productivity, and supplies and
beneficiaries of ecosystem services. For example, the impacts
of three cities’ urbanization on ecosystem goods and services
are evaluated (Eigenbrod et al. 2011; Schneider et al. 2012);
the impacts of land use changes on ecosystem service value in
the Loess Plateau was estimated through land use monitoring
(Li and Ren 2011). However, until recently, there is some lack
of knowledge about taking consideration of climate, land use
change, and social economy to simulate the terrestrial carbon
budget (Cabello et al. 2012; Masek et al. 2015; Muraoka and
Koizumi 2009).

In this study, carbon budget is defined as the difference of
carbon sink and carbon source. The processes of carbon sink
and source are completely opposite: Carbon sink removes
carbon dioxide (CO2) from the atmosphere, while carbon
source puts CO2 into the atmosphere. Considering factors of
climate, land use, and social economy, this article establishes
multiple scenarios to measure and evaluate the net present
value (NPV) of carbon budgets synthetically and spatially.
Based on the Carnegie-Ames-Stanford Approach (CASA)
model, remote sensing, and carbon cycle process model, we
estimated carbon sequestration (aboveground and below-
ground) under different scenarios of climate and land use in
the Guanzhong-Tianshui Economic Region, China. At the
same time, we studied carbon sources caused by human ac-
tivities by analyzing the density and spatial distribution of
human population. We also assessed the economic value of
carbon budgets under different carbon price and discount rate
scenarios, using NPV. Based on these results, we analyzed the
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impacts of land use, climate change, population growth, car-
bon emissions, and carbon markets to carbon budgets in three
different scenarios. Our results may provide quantitative ref-
erences to support regional carbon accounting and support
policy decision-making that consider climate, land use, and
social economy.

Study area and data

Study area

The Guanzhong-Tianshui Economic Region (GTER) is locat-
ed in the center of the Asia-Europe continental bridge (longi-
tude 104° 34′ 47″ E–110° 48′ 38″ E, latitude 33° 21′ 37″ N–
35° 51′ 15″ N), including seven administrative regions across
the provinces Shaanxi and Tianshui of Gansu. This area is
moderately dry with a warm climate: The mean annual pre-
cipitation is 550 mm year−1, and the annual mean air temper-
ature is between 11 and 13 °C. The main soil types of this
region are brown soil, cinnamon soil, and Lou soil. The
Qinling Mountains is a major east-west mountain range with
a rich biodiversity and natural habitats for rare animals in
south of the study area. And the Loess Plateau is located in
the north of this area. Between these two mountain ranges, the
fertile land of the Guanzhong Plain supplies major grain pro-
duction for GTER (Fig. 1). Ecosystems such as the Qin
Mountains and Guanzhong Plain are important for water
yield, water interception, soil conservation, agricultural pro-
duction, and carbon sequestration for GTER (Qin et al. 2015).
As a hybrid system with multiple land use types, GTER is a

complex ecosystem with complicated and diverse carbon
budgets.

This region’s cultural landscape, formed over thousands of
years, is a valuable asset and provides a wealth of information
about human activities. At the end of 2014, the area had a
population of about 43 million, making it one of the most
crowded regions in western China. As an essential region for
western development, its social and economic development
has a far-reaching influence on China. The Guanzhong Plain
supplies fertile soil for agriculture and topographic conditions
conductive for city formation and development. Recent few
decades, urban expanded with a high speed, urban land use
area increase of 42.39% from the year of 2000 to 2014. In
2014, the area of cropland is 3,509,810 ha, forestland area is
1,868,680 ha, grassland area is 2,273,800 ha, water area is
81,645.3 ha, urban area is 200,867 ha, and unused land area
is 57,296 ha. The balance between ecological protection and
the high speed economic development face challenges.
Therefore, this study focuses on the relationship between car-
bon sequestration and carbon sources caused by human activ-
ities in this region.

Data sources

The data sources of this study are as follows: (1) basic geographic
information data of GTER (roads, rivers, administrative bound-
aries, and digital elevation model (DEM)), provided by the
National Basic Information Center; (2) meteorological data such
as solar radiation, precipitation, temperature, and evapotranspira-
tion, obtained from the China Meteorological Data Sharing
Servicing System; (3) remote sensing images (MODIS) with a

Fig. 1 Location of the study area
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resolution of 250 × 250 m, downloaded from the Geographical
Data Cloud; (4) land use in the year 2000, 2005, 2010, and 2014,
obtained by remote sensing image interpretation (accuracy 80%);
(5) populations. Population of 2014 derived from books of the
Statistical Yearbooks of the provinces of Shaanxi and Gansu
(Gansu Provincial Bureau of Statistics 2015; Shaanxi
Provincial Bureau of Statistics 2015). Population growth rate in
scenario A derived from the 2015 Revision of World Population
Prospects (United Nations, Department of Economic and Social
Affairs, Population Division 2015). Population growth rates in
scenarios B and C derived from the population in the 12th and
14th report of the 2050 China Energy and CO2 Emission Report,
respectively (2050 China Energy and CO2 Emission Research
Group 2009). (6) Carbon emission per capita. The carbon emis-
sion per capita of 2014 derived from China Energy Statistical
Yearbooks of 2015, and that of scenarios A, B and C derived
from the enhanced low-carbon scenario, low-carbon scenario,
and baseline scenario of the 14th report in the 2050 China
Energy and CO2 Emission Report, respectively (2050 China
Energy and CO2 Emission Research Group 2009). (7) Carbon
price derived from the prices of Chinese carbon trading pilots in
2014. (8) Discount rates in 2050 was set according to the lending
rate of 5 years or more of 2011 to 2014 (between 5.9 and 7.05%)
(The People’s Bank of China 2015).

Models

In this study, we estimated carbon budgets and their net pres-
ent values based on basic database (Fig. 2).

Most carbon sequestration studies originally rely on
biomass estimates, where prediction equations are pre-
sented for green and dry weights of aboveground tree
components (Field et al. 1995; Maia et al. 2010; Prince
and Goward 1995; Temesgen et al. 2015). Additionally,
many equations have been developed to estimate bio-
mass components of trees and shrubs in various ecosys-
tems. Tree biomass estimates generally rely on addition-
al properties (i.e., the total tree biomass should equal
the sum of the components); using parameter restrictions
and considering residual contemporaneous correlations
allow more efficient estimates and consistent prediction
intervals (Carvalho and Parresol 2003). Carbon seques-
tration is an ecosystem service that is usually classified
as a regulating service. Estimating terrestrial ecosystems,
carbon sequestration generally includes three compo-
nents: aboveground biomass, soil carbon, and the carbon
sequestered in litter and roots (Novara et al. 2015).

In contrast, social statistics are used to estimate
human-driven carbon emissions. The calculation
methods of carbon source mainly include measurement,
material balance algorithm, and discharge coefficient,
among which the last method is the most widely used.
The coefficients of carbon dioxide emission have a va-
riety of standards, such as Intergovernmental Panel on
Climate Change (IPCC), DOE/EIA, and ORNL. And
most researchers take the factors of population and eco-
logical development as main factors in the estimation of
carbon emission (Guo 2011). To better express carbon
consumption from a spatial perspective, this study takes

Fig. 2 Framework of study
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population density as a variable to describe carbon
sources caused by social and economic activities.
Policy instruments, such as conservation subsidies,
protected lands, land conversion taxes, and excise taxes,
are considered effective tools in protecting the ecologi-
cal environment (Mann et al. 2012).

Future scenarios

The carbon cycle system involves complex processes of
material circulation and energy flow (Zhang et al. 2016)
and hence the estimation of carbon budget. IPCC AR5
(the Fifth Assessment Report) provided multiple global
scenarios in 2100 following the representative concen-
tration pathways (RCPs). However, the spatial resolution
of this data is too large (1 × 1 km) for this study area.
In this study, we choose land use change, population
growth, and emission reduction policy to simulate the
future scenarios for carbon budget.

Land use change, as an important cause of human
greenhouse gas emissions, has a strong legacy effect
on carbon fluxes (Aragao et al. 2014; Köchy et al.
2015; Wasak and Drewnik 2015). Traditionally, land
use change includes slash and burn deforestation, culti-
vation and abandonment, and so on (Aragao et al.
2014). In GTER, the challenge is not slash and burn
deforestation, for most forest areas has been well
protected, but the high speed urban expansion. In this
study, land use in 2050 was predicted using IDRISI, a
software based on CA-Markov-based model. Land use
of 2014 was chosen as a baseline. In scenario A, urban
growth is excluded, agricultural land growth is limited,
and forest is well protected and developed. In scenario
B, the future landscape change follows the policies that
implemented during 2000 to 2010. In scenario C, a
loosening of current policies to allow free market forces
across all parts of the landscape, but still within the
range of what stakeholders think is feasible.

Population growth results in rising not only carbon dioxide
that human respiration evolves but also the combustion of
fossil fuels. In the past few decades, Chinese government
was committed to controlling population growth through the
family planning policy. However, the huge population base is
still a main reason for the huge total energy consumption. We
applied the Chinese population growth rates of 2014 to 2050
multiplied by population of GTER as the future populations.

We choose the carbon emission on future scenarios to sim-
ulate the effects of emission reduction policy on carbon bal-
ance. To combine the emission cuts and population, we used
carbon emission per capita in each scenario (Table 1).

As an effective emission reduction policy, carbon tax
policies were adopted by many developed countries.
China approved a series of pilot cities/provinces of

carbon emissions trading in 2013. This may be a signal
that China is starting to levy a carbon tax in the future.
Carbon prices used in this study are based on 2014
research results, at 29.6, 70.2, and 130.9 RMB,
representing the lowest, average, and highest carbon
prices in China. During 2011 to 2014, the lending rate
of 5 years or more was between 5.9 and 7.05% (The
People’s Bank of China 2015). Based on this condition
of China, we used 5, 6, and 7% as the discount rates
for this study.

Carbon budget

The difference in NPV of carbon sequestrations minus
carbon emissions indicates whether there are carbon def-
icits or profits. If the value is positive, then carbon
sequestrations in the area can satisfy local needs, with
a surplus remaining. This is defined as a carbon profit.
Conversely, if the value is negative, then the carbon
sequestrations provided by the area cannot satisfy local
needs and carbon must be imported. This reflects a car-
bon deficit.

Carbon sink

In this article, carbon sink is classified into aboveground and
belowground sequestration.

1. Aboveground carbon sequestration

Net primary production (NPP) refers to the rate at which all
plants in an ecosystem produce useful chemical net energy. In
this paper, NPP is calculated using the CASA model (Field
et al. 1995; Potter et al. 1993), generalized using the following
expressions:

NPPa x; tð Þ ¼ APAR x; tð Þ � ε x; tð Þ ð1Þ
Ca x; tð Þ ¼ NPPa x; tð Þ � σ ð2Þ

APAR (x,t) represents the amount of photosynthetic active
radiation (MJ m−2 month−1) absorbed by element x in month t,
and ε (x,t) is a factor that reflects the efficiency (gCMJ−1) with
which light energy is used to produce organic compounds in
grid x for month t. NPPa (x,t) represents the amount of net
primary production aboveground; Ca (x,t) represents the car-
bon aboveground, and σ is the carbon content of organic mat-
ter, σ = 0.4.

2. Belowground carbon sequestration

Belowground carbon consists of three parts: the soil organic
carbon (SOC), the carbon in litter, and the carbon in biological
roots. For the aboveground carbon cycle, the estimation of NPP
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was based on photosynthesis process. The differences among
cropland, woodland, and grassland are described by the remote
sensing images directly. As to the belowground biomass, we
consider the litter and roots of vegetation. Considering that the
biomass of litter and root varies from one biome to another, we
used the ratios of biomass belowground and aboveground
(Table 2) to estimate the carbon sequestration for the below-
ground biomass of different biome (cropping land, forest, and
grassland) refer from literature (Canga et al. 2013;Ma 2012; Ren
2012).

Cu ¼ SOCþ Clitter þ Croot ð3Þ

The parameters Cu, SOC, Clitter, and Croot describe
the amount of carbon belowground, SOC, litter carbon,
and root carbon, respectively. The theoretic relationship
of the litter part of net primary productivity (NPP) and
SOC stocks is well established (Abbasi et al. 2015;
Gumus and Seker 2015; Todd-Brown et al. 2013), but
the long-term effect of climate change on carbon sub-
mission is still unclear (Köchy et al. 2015).

Because of limited data sources, SOC is calculated indirect-
ly. Soil basic respiration (SBR) is an indispensable variable to
measure the rate of carbon dioxide (CO2) release from the soil
(Field et al. 1995). Previous studies have confirmed a signif-
icantly negative correlation between SBR and SOC (You
2012); as such, SOC can be quantified based on an SBR and
a regression model.

Calculations of belowground carbon assume that the
atmosphere-vegetation-soil system is in a balanced state. Based
on the physical process of soil respiration, organic carbon seques-
trated through NPP equates to the organic carbon decomposed
by soil respiration. This relationship is expressed as NPP = Rh +
RL = RH, where Rh represents soil humus decomposition, RL
represents deciduous carbon mineralization, and RH represents

total soil respiration. An improved carbon cycle process model
(Zhou et al. 2007) is chosen to invert SBR based on remote
sensing imagery, because this approach takes moisture factors
(annual precipitation and potential evapotranspiration) into con-
sideration, thereby aligning the model to real-world arid and
semiarid conditions.

Based on this discussion, soil basic respiration is calculated
using the following expressions:

Aij ¼ RH

exp b� Tð Þ � y
ð4Þ

y ¼ 1

1þ 30:0� exp −8:5� xð Þ ð5Þ

x ¼ PPT

PET
ð6Þ

RH ¼ NPP ð7Þ

The parameters Aij, PPT, and PET describe soil basic respi-
ration, annual precipitation, and potential evaporation, respec-
tively. The constant factor b reflects temperature sensitivity.

We used regression analysis to evaluate 60 samples of soil
basic respiration inversion results (from the year 2000) and the
second soil census data. These results are combined with soil
basic respiration data for the year 2014 to estimate SOC
(Figs. 3 and 4).

SOC ¼ f Aij
� � ð8Þ

Table 1 Scenarios of carbon
budget Year Urban growth Carbon emission per

capita (t C)
Population
growth rate

Carbon price (RMB
per ton)

Discount
rate

2014 Baseline 2.17 – – –

2050A Protection 0.95 −0.79% 130.9 7%

2050B Constrained
development

1.64 5.28% 70.2 6%

2050C Open
development

2.24 6.74% 29.6 5%

Table 2 Specific relations between carbon in root/litter and above-
ground of different land use

Specific relation Cropping land Forest Grassland

Root/aboveground 18.85% 28.3% 169%

Litter/aboveground 45.6% 14.39% 25.3%
Fig. 3 Relationship of SOC content and soil basal respiration
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where SOC is the amount of soil organic carbon and a linear
function with Aij as the independent variable.

3. Carbon source

In this study, the source of ecosystem services is considered
the area where carbon is sequestrated in vegetation and soil. In
carbon sources, vegetation and soil fix carbon as the following
expression:

Cs ¼ ∑
X

x¼1
Ca x; tð Þ þ ∑

Y

y¼1
Cu y; tð Þ ð9Þ

where Cs is the carbon sequestration aboveground and below-
ground and Ca (x,t) and Cu (y,t) correspond to aboveground and
belowground carbon, respectively, for grid x and y in year t.

Carbon source

In this study, we used carbon release figures based on land use
change, population, and carbon emission per capita. Potential
stored carbon releases due to fire and other vegetation and soil
disturbances are outside the scope of this study. Population
density and per capita carbon emissions are combined with
spatially express carbon released through social and economic
activities.

Ce ¼ ∑
X

x¼1
ρ xð Þ � φ xð Þ ð10Þ

where Ce is carbon emissions caused by human activities, ρ(x)
represents the population density of grid x, and φ(x) is carbon
emission per capita of grid x. The X is the number of grid in
study area. φ(x) is set to be different constant in the four
different scenarios (Table 1).

Population density is the population in a given unit area,
showing the level of development. There are differences between
urban and rural regions; as such, for calculation purposes, land
type is divided into urban and rural units based on land use and
administrative maps. For quantization purposes, population co-
efficient is defined as the weighted sum of factors after respec-
tively maximum normalization.

POPij ¼ Pir � Vjr

∑h
j¼1Vjr

þ Piu � Vju

∑k
j¼1Vju

ð11Þ

where POPij is the population of the jth pixel in the ith adminis-
trative district, Pir is the rural population of the ith administrative
district, Piu is the urban population of the ith administrative dis-
trict, h is the rural pixel number of the ith administrative district, k
is the urban grid number of the ith administrative district, Vjr is
the rural population coefficient of the jth pixel in the ith admin-
istrative district, and Vju is the urban population coefficient of the
jth pixel in the ith administrative district.

The urban population coefficient is based on urban area
and calculated using the expression below (Tian et al. 2004):

Vij ¼ Aj � lnAi � exp −
r jffiffiffiffiffiffiffi
Ai=π

p
 !σ" #

¼ Aj � lnAi � exp −1:9874r j1:06Ai
−0:6� � ð12Þ

where Vij is the population density coefficient of j grid in i
urban district, Aj is the urban area of j grid, Ai is the area of i
urban district, and rj is the Euclidean distance of the center of j
grid to the urban center. The parameter σ describes the differ-
ent state of urban development and is set at σ = 1.05, which is
calculated using economic statistical data (Zeng 2013).

Referring to argument evaluation of a previous study, land
use, DEM, distance from road, and distance from the river are
applied as factors that relate to rural population density. The
rural population coefficient is the weighted sum of these fac-
tors after respectively maximum normalization. The weight of
land use is calculated using an overlay analysis with land use
and housing estate distribution maps. The weights of roads
and rivers are calculated using buffer analysis and overlay
analysis, respectively, based on road and river vector data
and housing estate distribution maps.

Net present value

In economics, net cash flows in different periods are translated
into equivalent cash values using a benchmark yield or dis-
count rate, which is called NPV. NPV is widely used to esti-
mate the earnings of different programs or investments, in-
cluding air pollution control, soil fertility management, and
greenhouse gas emission reduction. In this study, we combine

Fig. 4 Relationship between measured SOC and estimation value with
model
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NPV with discount rate to analyze the NPVof carbon, leading
to more precise results than other methods can yield.

We established six situations based on three carbon prices
and two discount rates to estimate NPV values of carbon bud-
gets. Python programming was used to factually represent the
mode built by Polglase et al. (2013). The calculation formula
follows

NPVijs ¼ PVBij−PVCjs ð13Þ

where NPVijs represents the current benefits, PVBij the current
carbon sequestration value, and PVCij the cost of each situa-
tion.

PVBij ¼ ∑
T

t¼0

pi � qtj
1þ rð Þt ð14Þ

Further, Pi represents the carbon prices, qtj the annual car-
bon sequestration, r the annual discount rate, and t the time
periods.

PVCjs ¼ EC j þ ∑
T

t¼0

MC� PFEs

1þ rð Þt ð15Þ

Finally, PFEs represents the opportunity cost of afforesta-
tion, ECj the one-time expenses, and MC the cost of carbon
maintenance and trading, and ECj and MC are constant values
in a certain research area.

Results

Carbon budgets in different scenarios

As a whole, the carbon sinks are larger than carbon source.
The carbon budgets of GTER in all of four scenarios in this
study are surplus, ranging from 1.50 × 1010 to 1.54 × 1010 t
(Fig. 7). Among all the scenarios, the total amount of carbon
surplus of baseline scenario was the highest, and scenario C
was the lowest (Figs. 5, 6 and 7).

The dense carbon sink (>2.0 × 105 g m−2) areas concen-
trated in the Qinling Mountains, while the low carbon sink
(<2.0 × 105 g m−2) areas concentrated in the Guanzhong
Plain. The total carbon sinks of Qinling Mountains
(DEM > 1200 m) in all scenarios are 7.41 × 109 to
7.45 × 109 t, accounts for 49.41% (baseline), 48.35%

Fig. 5 Maps of carbon sink for baseline, scenario A, scenario B, and scenario C
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(scenario A), 48.43% (scenario B), and 48.19% (scenario C)
of GTER, respectively. The total carbon sinks of Guanzhong
Plain (DEM < 800 m) in all scenarios are 2.59 × 109 to
2.96 × 109 t, accounts for 19.63% (baseline), 19.25% (scenar-
io A), 18.36% (scenario B), and 16.76% (scenario C) of
GTER, respectively.

The land use and social economic change in GTER by
2050 will have a considerable impact on carbon budget.
However, the influence depends critically on the urban growth
and forest cover rate. Taking Xi’an City as an example, carbon
budgets in the three future scenarios have obvious differences.
The data in the following analysis are all relative to baseline.
In scenario A, the urban growth of Xi’an City is strictly con-
trolled, and its afforestation is improved effectively. What is
more, its grassland and unused land are fully utilized. As re-
sults, its urban area decreases 9.28%, forest cover rate in-
creases 11.50%, and farmland cover increases 4.87%.
Accompanying these changes of land use, the carbon sink of
Xi’an City increases 1.40%, carbon source decreases 38.08%,
and carbon surplus increases 1.41%. In scenario B, the urban
area of Xi’an increases 37.68%, forest cover rate decreases
6.17%, and farmland cover decreases 5.10%. Although the
carbon emission per capita decreases 24.42% (from 2.17 to
1.64 t C), carbon source only decreases 14.47%. And the

decrease of forest and farmland results in a considerable dec-
rement (6.47%) of carbon sink. The carbon surplus of scenario
B decreases 6.51%. In scenario C, free market forces across all
parts of the landscape, and urbanized area expands rapidly. As
results, its urban area increases 89.44%, forest cover rate de-
creases 6.62%, and farmland cover decreases 21.98%.
Accompanying these changes of land use, the carbon sink of
Xi’an City decreases 15.87%, carbon source increases
21.98%, and carbon surplus decreases 15.99%. However, for
GTER as a whole, these changes have a considerable impact
on carbon source, but not on carbon sink. Compared with
baseline, the carbon source of GTER decreases 55.37% (sce-
nario A), 14.29% (scenario B), and −23.06% (scenario C),
respectively, while carbon sink decreases 0.43% (scenario
A), 0.83% (scenario B), and 2.43% (scenario C), respectively.

Economic values of carbon budget

Changing carbon price and discount rate in GTER by 2050
could affect NPV of carbon budget obviously. In the three
future scenarios, the carbon budget NPVof scenario A is the
highest (1.52 × 1012 RMB); it is 1.91 times of scenario B
(7.97 × 1011 RMB) and 4.75 times of scenario C
(3.20 × 1011 RMB) (Fig. 8).

Fig. 6 Maps of population density for baseline, scenario A, scenario B, and scenario C
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The high carbon sink areas were found more sensitive to
changes in carbon price and discount rate. As the compara-
tively highest carbon sink area, Baoji is the most sensitive
area. Its carbon surplus NPV in scenario A is 4.06 × 1011

RMB, which is 1.92 × 1011 RMB higher than scenario B

and 3.19 × 1011 RMB higher than scenario C. Carbon surplus
NPVof Tianshui in scenario A is 2.78 × 1011 RMB, which is
1.30 × 1011 RMB higher than scenario B and 2.17 × 1011

RMB higher than scenario C, respectively. However, carbon
surplus NPV of Yangling in scenario A is 9.13 × 108 RMB,

Fig. 7 Maps of carbon budgets for baseline, scenario A, scenario B, and scenario C

Fig. 8 NPVof carbon budget in
scenario A, scenario B, and
scenario C
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which is only 4.37 × 108 RMB higher than scenario B and
7.27 × 108 RMB higher than scenario C, respectively.

In the best ecological environment management (scenario
A), Baoji’s carbon surplus of NPV can reach 4.06 × 1011

RMB; even in the relaxed ecological management, the carbon
surplus of NPV still can reach 8.69 × 1010 RMB (Fig. 9). In
Baoji and its subordinate administrative region, the carbon
source of Fengxiang County is the minimum, and the carbon
surplus is the maximum; its NPV is more than 8 × 1010 RMB
in scenario A. Jintai District of Baoji City, Fengxiang County
of Baoji, Taibai County of Baoji, and Zhashui County of
Shangluo are the typical regions of Bhigh sink and low source.^
The carbon balance in Beilin District, Lianhu District, and
Xincheng District of Xi’an City is negative. These areas’ deficit
of NPV is 5.37 × 107 RMB, 5.39 × 107 RMB, and 4.03 × 107

RMB. In addition to Changan District and Lintong District, in
the other urban areas of Xi’an, the surplus of NPV is not more
than 3.8 × 109 RMB in the scenario A. Xi’an and Xianyang are
typical regions of Bhigh source and low carbon sink.^ Pucheng
County of Weinan, Qian County of Xianyang, Linwei District
of Weinan, Wugong County of Xi’an, and Beilin District,
Lianhu District, and Xincheng District of Xi’an City are the
typical areas of Blow sink and high source.^ Meiji District of
Tianshui, Chengcang District of Baoji, Shangzhou District of
Shangluo, and Zhouzhi County of Xi’an are typical regions of
Bhigh sink and high source.^ The smaller area region ofWangyi
District of Tongchuan, Tongguan County of Weinan, and
Yangling District are the typical region of Blow sink and low
source.^

Discussion

Mapping and evaluating ecosystem services can result in spa-
tial and economic references for policy decision makers. This
study established multiple scenarios, using the CASA model,
carbon recycling process model, spatially defined population
densities, and NPV approach to estimate carbon budgets for
2014 and to predict future conditions. Urban growth, climate
change, population growth, carbon emission per capita, and
carbon markets were chosen as the five factors influencing the
scenarios.

Carbon budgets differ for many reasons: climate change,
land use type, and carbon emission per capita. High tempera-
tures negatively impact terrestrial carbon sequestration; in the
face of ongoing global warming, carbon sink is likely to con-
tinue to be reduced in future decades. Carbon sink in GTER
mainly relies on the QinMountains, where forest density is the
highest. This implies that protecting the Qinling Mountains is
essential to maintain the region’s carbon balance. Urban ex-
pansion is one driver of carbon deficits; in scenario C, signif-
icant urbanization combined with population growth and ex-
cess resource consumption resulted in carbon deficits across
almost the entire Guanzhong Plain.

Carbon budgets and land use change

In the six land types of this study, forests sequestrate the larg-
est amount of carbon for both unit area and total amount. This
means that the Qinling Mountains and surroundings are the

Fig. 9 Carbon source and the NPVof each district in scenario A, scenario B, and scenario C
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largest carbon sink in GTER. Croplands are not the second
largest carbon sink for unit area, but the second largest carbon
sink for total, because of its huge area. The carbon budgets for
unit area of grasslands are 3.43–3.77 t higher than croplands,
but the total amount of it is lower than cropland. Urban area is
the only carbon deficits in all six land types. High carbon
source, combined with low carbon sink level, leads to high
carbon source in the city area, exceeding sink.

Land use has a considerable impact on carbon budgets. In
the scenario A, the expansion of the sprawling metropolis is
strictly restricted, and returning farmland to forest (grass) pro-
ject is encouraged; these vmeasures make the carbon budget
about 3.75 × 107 t. In the scenario B, the expansion demand of
the cities and industries in Guanzhong Plain is stronger; at the
same time, the occupation of croplands is restricted, in which
land use policy makes the carbon budgets decreased about
1.21 × 108 t. In the scenario C, the development of the
sprawling metropolis requires huge urban expansion, carbon
source increases sharply, and carbon budgets decreased about
3.91 × 108 t.

As a key ecological protection area, the establishment of
national forest parks and national geological parks in Qinling
Mountains makes the primary forest well protected. At the
same time, the returning farmland to forest (grass) project
had been playing a promoting role in ecological protection
since 2003. Therefore, the carbon budget of GTER maintains
a surplus in all of the scenarios in this study. However, in the
Guanzhong Plain, which is dense with people, industry, and
expanding cities, carbon deficit area will increase sharply if
there is no scientific policy to limit urban expansion.

Carbon budgets and social economy

From the point of view of social justice, the carbon surplus of
one area can be transferred to the carbon deficit country or
districts in paid way. And inmost conditions, these transfers of
carbon emission rights have to be achieved at the expense of
economic benefits.

Since the first Assessment Report of the IPCC linked hu-
man greenhouse gas emissions to global warming (1990), new
policies to reduce carbon emission are constantly being raised.
As the representative of developed countries, Denmark and
Holland adopted strict carbon tax policies to carbon dioxide
products and services (Kerkhof et al. 2008; Sovacool 2013).
China, as a developing country, approved a series of pilot
cities/provinces of carbon emissions trading: Beijing,
Tianjin, Shanghai, Chongqing, Shenzhen, Guangdong
Province, and Hubei Province in 2013. This may be a signal
that China is starting to levy a carbon tax in the future. In this
study, we assessed the NPVof carbon budgets under different
social economic scenarios.

Population aging and population negative growth follow
the strict family planning. Carbon emission is strictly

controlled through energy policy, such as the purchase of high
carbon emission products or services has to pay high carbon
taxes.

Good ecological resource management can not only main-
tain and even restore the biodiversity of the region and in-
crease carbon sink but also increase the carbon surplus of
NPV. Compared with lax policies, carbon emissions need to
pay a much higher price under the strict ecological manage-
ment policy. Driven by net profit, the company’s policy
makers are more inclined to choose renewable resources and
energy-saving emission reduction measures, rather than pay
an expensive environmental tax. As a result of strict family
planning policy and discarding the concept of Bmore happi-
ness comes with more offsprings,^ Chinese population enters
a stage of aging and reduction. With the summation of human
being’s demand on resource and service decreased, the con-
sumption of social resource and energy has decreased and
further promotes the reduction of carbon emissions.

In scenario C, such as urban expansion, population explo-
sion, and rising energy demand, these factors make the con-
sumption of life energy soar. In pursuit of economic growth,
the government allows companies to emit carbon dioxide at a
very low economic cost. The total carbon surplus of NPV in
the study area is only 3.20 × 1011 RMB, which is about one
fifth of the scenario A. The simply pursuit of ecological envi-
ronmental protection or economic growth is not the best
choice for decision makers. Decision makers need to weigh
the pros and cons, looking for a suitable state between the two.
In this study, scenario B is studied and discussed as an inter-
mediate state.

Methodological issues associated with the integration
of agent-based approaches and ecosystem models

(Attempt and advantages) GTER is an important development
area of Northwest China. Several researchers have estimated
carbon sources and sinks in this area using different models.

Carbon sequestration in the Shaanxi section of the Han
River was estimated using InVEST; this ecosystem service
was valued by substituting the market method at
6.07 × 1.011 RMB (Wei et al. 2014). Carbon sequestration in
GTER was estimated using the CASA model; the economic
value of the sequestrated carbon was calculated using the re-
forestation cost approach. A study showed that the carbon
sequestrat ion per unit area in 2007 was 2.821 t
CO2 hm−2 a−1, with an economic value of 2.16 × 1011

RMB a−1 (Zhou et al. 2013). Carbon source (combined veg-
etation) and the carbon footprint of Shaanxi were evaluated
based on the guidelines of the IPCC; the 2009 carbon source
level and carbon footprint were identified as 3.55 × 109 and
2.60 × 108 t C, respectively (Zhao et al. 2013). A study in the
Guanzhong area using a CASAmodel and agricultural carbon
emission formula showed carbon sources and sinks of the
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agroecosystem using 2010 data, calculating source and sink as
6.44 × 104 and 1.41 × 106 t CO2, respectively (Wei et al.
2014). The experience method and market value approach
were used to evaluate carbon sequestration in the Shaanxi
forest ecological system, revealing a sequestration payment
of 3.28 × 1010 RMB (Ma et al. 2010).

The abovementioned studies assessed the carbon source/
sink or payment of the Shaanxi or Guanzhong areas from
various perspectives; however, they did not take into account
the combined effects of climate, land use, and social economy
changes (different carbon prices and discount rates). Carbon
sink payment at the baseline (2014) was at least 3.20 × 1011

RMB and may reach up to 1.52 × 1012 RMB.
This study established multiple scenarios (climate, land

use, and social economic changes) to measure carbon sink
(aboveground and belowground) in GTER using remote sens-
ing and a process model. Population density was introduced to
account for carbon sources caused by human beings. Using
these variables, carbon budgets for the four scenarios were
evaluated for the region using NPV; carbon budgets under
the different scenarios were analyzed to provide references
for regional carbon accounting.

(Uncertainties and limitations) Compared with statistical
data, this study increased spatial resolution. However, com-
bining multiple models also increases the uncertainty of the
results. Precipitation, air temperature, solar radiation, and re-
mote sensing data products were used in combination, with
multiple parameters involved. These methods may limit the
accuracy of estimates to a certain extent. The assumptions
about future such as land use changes, carbon prices, and
discount rate may have certain gaps with the real values in
the future, which also increase the uncertainties of results.

In the CASA model, parts of the parameters related to the
amount of photosynthetically active radiation (APAR) are
based on empirical values. If these parameters were measured
data instead, NPP results may be closer to reality. The inter-
pretation of mixed pixels (forestland and farmland, woodland,
and grassland) in remote sensing images may also limit the
exactness of calculations. For the SOC estimate, the result can
be verified through field sampling and soil analyses. More
effective verification would increase precision.

In addition to carbon sinks and sources, carbon markets
influence carbon budgets. The discount rate represents the
weight of future funds. The higher the discount rate, the more
emphasis of current people on the welfare of future genera-
tions. When studying soil carbon payment estimates, the rate
reflects a contemporary valuation of future generational inter-
ests. Higher discount rates indicate that more people put em-
phasis on the interests of future generations. Against the back-
ground of the current social economy, it is difficult to predict
the exact parameters of future economic development. For
example, the estimated carbon prices and discount rates may
differ from actual future NPV. Factors such as soil erosion,

slope, and elevation should also be included in the model.
Population policies must also be accounted for when consid-
ering future development.

Conclusion

Ecological factors (e.g., climate change) have been embedded
in decision-making, and human activities (e.g., LUCC and
economic development) also attracted more and more atten-
tion of ecologists. To clarify mechanisms related to the terres-
trial ecosystem carbon cycle and its outside pressures (ecolog-
ical and social), a more comprehensive model that embed both
ecological and social factors is needed.

The study considered the effects of five factors on carbon
sink and source: urban growth, climate change, population
growth, carbon emission per capita, and carbon market.
Deforestation, urban sprawl, population explosions, and an
excess carbon consumption are primary challenges in
balancing carbon source and sink. Carbon price and discount
rate positively impact the NPVof carbon budget. In this sense,
increasing carbon subsidies may encourage excess carbon
consumption.

Mapping and valuing carbon budget still face theoretical
and methodological challenges. Future research should focus
on increasing the number of studied scenarios and including
model factors such as soil erosion slope and elevation impact
factors. And how to define the area of carbon source, carbon
sink, and carbon use is also a research priority in this field.
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