
RESEARCH ARTICLE

Simultaneous decolorization and desalination of dye wastewater
through electrochemical process

Jiaxin Shi1 & Baogang Zhang1
& Shuai Liang1

& Jiaxin Li1 & Zhijun Wang1

Received: 2 October 2017 /Accepted: 26 December 2017 /Published online: 6 January 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Salt-containing dye wastewater discharged from textile industries causes serious environmental problems. Simultaneous decolor-
ization and desalination of dye wastewater in a laboratory scale electrochemical cell are realized for the first time with boron-doped
diamond anode. With initial methyl orange (MO) and NaCl of 50 and 3000 mg L−1, decolorization and desalination efficiencies of
70.2 and 88.7% were achieved after 6-h treatment with applied voltage of 6 V. Increasing applied voltages resulted in the
improvements of both color and salt removal, while higher MO concentrations suppressed decolorization and higher NaCl con-
centration accelerated desalination rate. MO dissociated into anions transferred through the anion exchange membrane into the
anode compartment and reacted with the active species as ·OH, H2O2, and ClO

− generated in anode compartment, leading to color
removal. Component analysis confirmed the destruction of MO, with generation of low molecular weight compounds such as
phenol and indole. Ions balance analysis indicated that Cl− and Na+ moved to the anode and the cathode compartments respectively
through the employed membranes driven by external voltage, realizing salt removal. This study has collectively demonstrated an
efficient alternative for satisfactory treatment of salt-containing dye wastewater based on electrochemical technology.
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Introduction

Among various industry types, textile industry is extremely
water intensive. Only 85% of coloring matters in textile dyeing
process get fixed to cloths, while the remaining 15% of dyes are
discarded from dye baths as effluent (Liang et al. 2012; Aravind
et al. 2016). This dye wastewater containing synthetic dyes
discharged from textile industry exhibits high chrominance
and salinity (Zhou et al. 2016; Sun et al. 2009), which would
do harm to the growth of aquatic lives and the self-cleaning of

waters when releases into water without treatment (Zhang et al.
2016; Bu et al. 2016). Thus, it should be properly treated before
discharge, especially for color and salt removal.

A large portion of processes has been devoted to the decol-
orization of synthetic dyes including physicochemical adsorp-
tion (Goel et al. 2011; Mohammadi et al. 2011) and microbi-
ological method (Toro et al. 2013). Adsorption can transfer
contaminants from water to another medium which may lead
to secondary pollution with difficulties of regenerating used
adsorbents (Mrinmoy and Sirshendu 2016), while biological
approaches are often limited by the microbial activity and the
low biodegradability of dye wastewater (Florêncio et al. 2016;
Zhang et al. 2015a, b). Though chemical oxidation processes
can realize dye decolorization efficiently (Ma et al. 2014),
they are liable to cause secondary pollution or need post-
treatment (Alventosa-deLara et al. 2012). Moreover, the gen-
eration of carcinogenic compounds and mutagens during
chemical oxidation and advanced oxidation processes un-
doubtedly restricts their application in dye wastewater treat-
ment (Migliorini et al. 2011). In comparison, electrochemical
degradation is regarded as a more efficient process to treat dye
wastewater with the advantages of simple setup, easy control,
ambient operation, and complete degradation (Panizza and
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Oturan 2011; Subba and Venkatarangaiah 2014). For exam-
ple, MO has been successfully handled in electrochemical
system on Pt-Bi/C nanostructured electrode by a square-
wave potential method (Li et al. 2013). Electro-Fenton and
electrocoagulation have also been utilized to treat dye waste-
water (Martínez-Huitle and Brillas 2009), while ion removal is
often ignored in decolorization processes.

The profile of the salt concentration in dye wastewater
always maintains higher level. The high salinity enhances
the mineralization degree of the receiving water and leads to
land salinization (Gabelich et al. 2002). Regarding salt remov-
al, reverse osmosis is frequently employed, while membrane
fouling has to be faced (Ghanbari et al. 2015). As an emerging
technique, capacitive deionization comes in researchers’ view,
but relatively lower efficiency restricts its practical applica-
tions (Porada et al. 2012). Electrodialysis has been proved to
be an efficient and versatile method for the applications of
drinking water production and wastewater purification be-
cause it has many advantages over other methods including
strong adaptability, low energy consumption, and easier and
low cost of operation and maintenance (Smith 2017). Since
NaCl is widely used in the textile industry, electrodialysis has
been proved to removeNaCl from textile wastewater efficient-
ly (Chandramowleeswaran and Palanivelu 2006). Azo dyes
can also migrate with salt as they can be ionized in electrodi-
alysis systems, and higher applied voltages can result in strong
oxidation environment, which facilitate dye decolorization.
Thus MO, one of the anionic azo dyes, can also be treated in
electrodialysis systems simultaneous with salt removal,
exhibiting economic and environmental benefits, while few
studies concern roles of oxidizing pollutants accompanied
with salt removal in these electrochemical treatments.

In this study, a laboratory scale electrochemical cell in
constant-voltage mode with three compartments was con-
structed and its performance of simultaneous color and salt
removal was evaluated. A representative azo dye MO was
selected as the target pollutant to simulate salt-containing
dye wastewater. Operation factors affecting the performance
of above cell were studied. Mechanisms were also investigat-
ed, especially for decolorization in aspects of generation and
functions of active substances and the degradation products of
MO. This study emphasizes the feasibility and effectiveness
of electrochemical process to treat dye wastewater for simul-
taneous color and salt removal satisfactorily.

Experimental section

Materials

A three-compartment laboratory scale electrochemical cell
was constructed (Fig. 1), which was divided by a pair of anion
and cation exchange membranes (AEM and CEM) purchased

from Shanghai Shanghua Water Treatment Materials Co.,
Ltd., China. Properties of membranes were listed in Table 1,
with membrane fluxes of 0.1 mL h−1 cm−2 MPa−1 for both
AEM and CEM. They were washed three times with deion-
ized water before use. Anodic and cathodic compartments
were in cuboid shape with an effective volume of 288 mL
(8 cm × 8 cm × 4.5 cm) and the middle compartment of
96 mL (8 cm × 8 cm × 1.5 cm). The boron-doped diamond
(BDD) anode (CONDIAS GmbH, German) with geometric
dimension of 2 cm × 2 cm was employed noting its unique
advantage in the complete mineralization of organic pollutants
(Nava et al. 2014), while cathode was made of carbon plate
(Beijing Evergrow Resources Co. Ltd., Beijing, China) with
geometric dimension of 4 cm × 4 cm. They were placed tight-
ly to membranes in anodic and cathodic compartments, re-
spectively, with electrode spacing of 2.0 cm and connected
by titanium wire with a DC power source during experiment.

Solutions containing 0.01 M Na2SO4 was introduced into
both anodic and cathodic compartments, while the middle
compartment was filled with simulated dye wastewater con-
taining MO (C14H14N3O3SNa) and salt in the form of NaCl
with the settled initial concentration. All chemicals used in this
study were analytical grade without further purification.

Experimental procedure

With initial concentrations of MO and NaCl at 50 and
3000mg L−1, respectively, feasibilities of simultaneous decol-
orization and desalination of dye wastewater were evaluated
in the middle compartment of the electrochemical cell in a 6-h
operation cycle with applied voltage of 6 V first. Its behaviors
with only MO or NaCl with the same concentration were also
evaluated for comparison. Then operation factors affecting
performance of the electrochemical cell were studied, includ-
ing applied voltage (2, 4, 6, and 8 V), initial MO concentration
(20, 50, 80, and 100 mg L−1), and initial salt concentration
(1000, 3000, and 5000 mg L−1). After that, concentrations of
total oxidizing species (TOS) were measured and different
scavengers were added respectively to confirm functions of
corresponding active species during theMOdecolorization pro-
cess. Isopropanol, 4-hydroxy-2, 2, 6, 6-tetramethylpiperidin 1-
oxyl (TEMPOL), and Fe (II)-EDTAwere used to remove dif-
fusing ·OH, ·O2

−, and H2O2, respectively (Guo et al. 2015;
Chen et al. 2011). Structural transformation and degradation
products of MO were also monitored in the end of typical
operation cycle, compared with initial samples. Desalination
mechanisms were also investigated by monitoring the distribu-
tion andmass balance of Na+ and Cl− in different compartments
during the operation. The whole experiment was conducted in
batch mode at room temperature (22 ± 2 °C). All tests were
repeated at least three times at the identical condition and aver-
age values were presented.
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Analytical methods

MO concentration was monitored by a UV-vis spectropho-
tometer (DR 6000, HACH, USA) at 464 nm (Guo et al.
2017). A conductometer (Seven Multi S40, Mettler Toledo,
Switzerland) was used to measure the conductivity of sim-
ulated dye wastewater to reflect the desalination. The con-
centrations of Na+ and Cl− were determined by Inductively
Coupled Plasma Mass Spectrometry (ICP-MS, X Series II,
Thermo Fisher Scientific, USA) and ion chromatography
(ICS-1100, Thermo Fisher Scientific, USA), respectively.
Total organic carbon (TOC) was measured by Multi N/C
3000 TOC analyzer (Analytik Jena AG, Germany) (Zhang
et al. 2009). Currents were recorded by a multimeter and
energy consumption (EC) was calculated. Current efficien-
cy (CE) was also calculated on the basis of measured TOC
(Liang et al. 2017). The concentrations of TOS were deter-
mined by N, N-diethyl-p-phenylenediamine (DPD) colori-
metric method using a UV-vis spectrophotometer (DR
6000, HACH, USA) (Li et al. 2010), where the added KI
was oxidized to I2 and meantime DPD was oxidized to
form a red-violet product by generated I2 (Reactions (1)

and (2)). This measure gave a global concentration of the
oxidants, including H2O2, O3, etc.

2KIþ H2O2→I2 þ 2KOH ð1Þ
I2 þ DPD→Red‐violet product ð2Þ

Awavelength scanning test from 200 to 800 nm was con-
ducted by a UV-visible spectrophotometer (DR 6000, HACH,
USA) to reveal the structural transformation ofMO during the
process. The degradation products were measured by Gas
Chromatography-Mass Spectrometric (GC-MS, Trace GC-
DSQ, Thermo Fisher, USA) according to (Wang et al. 2015).

Results and discussion

Electrochemical cell performance

With initial concentrations of MO and NaCl at 50 and
3000mg L−1, respectively, feasibilities of simultaneous decol-
orization and desalination of dye wastewater were evaluated
in the middle compartment of the electrochemical cell in a 6-h

Fig. 1 The laboratory scale
electrochemical cell with three
compartments employed in
present study

Table 1 Properties of ion
exchange membranes used in the
present study

Properties CEM specification AEM specification

Exchange capacity (mol kg−1) 2.0 1.8

Water content (%) 50 40

Resistance of membrane surface (Ω cm2) 14 18

Thickness (mm) 0.6 0.6

Chemistry stability (pH) 1~13 1~13

Selective penetration (%) 92 94

Permeability of water (mL h−1 cm−2 MPa−1) 0.1 0.1

Coefficient of salt diffusion (mL NaCl cm−2 h−1) 0.008 0.006
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operation cycle with applied voltage of 6 V first, gradual de-
colorization, and desalination in the middle compartment of
the electrochemical cell were simultaneously observed
(Fig. 2a). The removal efficiencies ofMO reached 70.2% after
6-h treatment, which was comparable to previous study
(Alejandra et al. 2017) and showed advantage to foregoing
MO degradation studies conducted by anaerobic-aerobic bio-
film reactor (Murali et al. 2013). 43.8% of TOC was removed
within 6-h operation (Fig. 2b), suggesting partial mineraliza-
tion of MO took place, which was higher than that realized by
peroxymonosulfate-induced reactive oxidants (Lou et al.
2013). Current gradually decreased during the operation
(Fig. 2b) and the calculated maximum instantaneous CE and
ECwere 9.1% and 11.5 kWh m−3, respectively, both of which
were comparable with results from undivided electrochemical
reactors (Li et al. 2016; Liang et al. 2017). Regarding desali-
nation, satisfactory results were also obtained in our proposed
system as the desalination efficiencies reached as high as
88.7% after 6-h operation, also better than previous desalina-
tion experiments conducted by electrodialysis (Turek 2003).

The electrochemical system behaviors with only MO or
NaCl with the same concentration were also evaluated for
comparison to further evaluate its performance. The decolor-
ization efficiencies significantly increased to 95.0% after 6-h
treatment when only MO of 50 mg L−1 was added into the
middle compartment (Fig. 2a). The suppression of decolori-
zation was probably due to the competitive consumption of
TOS by Cl− with MO when MO and NaCl were presented
together in simulated dye wastewater (Martinez-Huitle et al.
2016). Furthermore, desalination efficiencies decreased to
66.4% within 6-h operation with sole NaCl in the middle
compartment (Fig. 2a), suggesting that the ion migrations
were enhanced with the presentation of ionic dye MO due to
the improved solution conductivity. Similar phenomenon was
also observed that the presence of negatively charged gluta-
mate promoted the migration of Cl− in the nanofiltration sys-
tem (Luo and Wan 2006). Therefore, conclusions were drawn
that salt-containing dye wastewater could be treated efficiently
through this proposed electrochemical process.

Operation factors influences

Effects of applied voltage (2, 4, 6, and 8 V) were studied with
initial MO concentration of 50 mg L−1 and initial NaCl con-
centration of 3000 mg L−1, respectively. Both decolorization
and desalination efficiencies were improved with applied volt-
ages increasing from 2 to 8 V. Particularly, the decolorization
efficiencies increased significantly when applied voltages in-
creased from 4 to 6 V (Fig. 3a). The increased production of
TOS under higher applied voltage was responsible for the
increase of color removal as previous studies indicated (Ma
et al. 2007). More remarkable improvements in aspect of de-
salination were noted when applied voltage increased from 4

to 6 V (Fig. 3b). The electrical potential is the driving force
during ion transport through the membrane and this driving
force was strengthened at higher applied voltages as indicated
by previous reports (Barakat 2011).

Four gradients of initial MO concentration (20, 50, 80, and
100 mg L−1) were set with initial NaCl concentration of
3000 mg L−1 at voltage of 6 V. The decolorization efficiencies
decreased gradually during 6-h treatment with the increase of
initial MO concentration, from 71.3% with 1.4 mg MO re-
moval at 20 mg L−1 to 56.6% with 5.4 mg MO removal at
100 mg L−1 (Fig. 3c). The generated intermediate products
with MO decomposition could compete with the original
dye molecule for the TOS produced by the electrochemical
process, thus reducing the decolorization efficiency under
higher initial MO concentration (Panizza and Oturan 2011).
Desalination efficiencies were slightly affected by variations
of initial MO concentration with their values around 88.0%
with dialyzed approximate 253.4 mg NaCl in a 6-h operation
cycle (Fig. 3d).

Performance of the electrochemical cell was also evalu-
ated under different initial NaCl concentration (1000,
3000, and 5000 mg L−1) with initial MO concentration of
50 mg L−1 at applied voltage of 6 V. Similar tendencies of
color removal were also observed (Fig. 3e), with around
color removal of 70.0% (MO removal of 3.4 mg) under
tested conditions in the end of the 6-h operation, indicating
that the decolorization was rarely affected by salt profile,
similar to the existing report (Buscio et al. 2016). As to salt
removal, a significant higher desalination efficiency was
exhibited in the first 2 h with the initial NaCl of
5000 mg L−1 than that of 1000 and 3000 mg L−1 (Fig.
3f). This phenomenon could be attributed to a larger trans-
membrane concentration gradient that could enhance the
transport rate of ions across the membrane (Moya 2017),
while their final desalination efficiencies reached similar
level of about 88.0% after 6-h treatment, with dialyzed
NaCl of 84.8, 253.4, and 422.4 mg, respectively.

Mechanisms investigations

Regarding decolorization in electrochemical systems, indi-
rect electrochemical oxidation induced by the generated
active species played important roles (Kariyajjanavar
et al. 2011). Levels of TOS concentration in the three com-
partments of the electrochemical cell without MO addition
were monitored. TOS in anode compartment were gradu-
ally accumulated as expected, reaching maximum concen-
tration of 28.6 mg L−1 at 6 h (Fig. 4), which was measured
reflectometrically based on the relationship of absorbance
of generated red-violet product through DPD oxidation by
active species via I2/KI mediator. Previous study reported
that active species were mainly generated on the anode
surface (Li et al. 2010). Nevertheless, TOS in anode
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compartment showed nonlinear growth over time, indicat-
ing the concomitant consumption of active species as well
as the generation of new ones (Li et al. 2010). Few TOS
were detected in the middle compartment and cathode
compartment implied that the generated active species on
anode surface hardly transferred across membranes used in
this study. Therefore, it was elucidated that MO dissociated
into anions transferred through the anion exchange mem-
brane into the anode compartment and reacted with the
active species generated in anode compartment, leading
to color removal. These reactions took place so fast that
there were few MO that were accumulated as the anolyte
remained transparent during the operation.

Electrochemical processes can generate reactive species
such as ·OH, H2O2, ·O2

−, and so on; the following
Reactions (3)–(6) show their formation (Li et al. 2010).

Some of them may be responsible for the MO decoloriza-
tion during the electrochemical process.

H2O→ � OHþ Hþ ð3Þ
2 � OH→H2O2 ð4Þ
OHþ H2O2→HO2 � þH2O ð5Þ
HO2 �→ � Oþ Hþ ð6Þ

To determine the significance of each active specie on
the decolorization of MO in the proposed electrochemical
cell, different scavengers were added to remove the cor-
responding active species with initial MO concentration
of 50 mg L−1 at applied voltage of 6 V. MO decoloriza-
tion was nearly the same as that without any scavengers
when TEMPOL was introduced, indicating that ·O2

− was

Fig. 2 a Decolorization and
desalination of dye wastewater in
the proposed electrochemical cell
and control sets as well as b
variations of TOC and current in
the electrochemical cell during 6-
h operation
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Fig. 3 Effects of different operation factors on decolorization and
desalination efficiencies of the electrochemical cell. a, b applied voltage
with initial MO concentration of 50 mg L−1 and initial NaCl
concentration of 3000 mg L−1; c, d initial dye concentration with initial

NaCl concentration of 3000 mg L−1 at voltage of 6 V; e, f initial salt
concentration with initial MO concentration of 50 mg L−1 at applied
voltage of 6 V

Fig. 4 Decolorization of MO
with the presence of different
scavengers and accumulations of
TOS in three compartments of the
electrochemical cell during 6-h
operation
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not involved in the decolorization (Fig. 4). Adding
isopropanol caused the decrease of decolorization effi-
ciencies of MO to 59.7% in 6 h, which demonstrated that
·OH was definitely involved in this decolorization pro-
cess. Similar phenomenon was also observed in electro-
chemical oxidation of Tl(I) with BDD anode (Li et al.
2016). Only 52.1% of MO was decolorized with Fe (II)-
EDTA, suggesting that the generated H2O2 through
Reaction (4) also contributed to MO decolorization.
Though H2O2 was commonly produced in the cathode
of electrochemical systems through oxygen reduction
(Zhang et al. 2015a, b), it could also be generated in
anode compartments by the dimerization of ·OH and take
part in processes for pollutants removal (Yu et al. 2014).

Whereas, simultaneous addition of all scavengers did
not completely inhibit the decolorization, which indicated
that there were other active substances produced in the
anode compartment functioning during decolorization,
such as Cl2 and ClO− produced from electrochemical ox-
idation of Cl− presented in anolyte according to Reactions
(7) and (8) (Sala and Gutiérrez-Bouzán 2014). With aids
of this active chlorine, MO was further oxidized (Reaction
(9)). The positive effect of the generation of active chlo-
rine on the performance of electrochemical oxidation pro-
cess had been proved (Pereira et al. 2015), especially in
the electrochemical decolorization of Acid Red14 (Thiam
et al. 2015). Moreover, MO would be intercepted when it
went through the anion exchange membrane, causing
slight color removal, while the membrane fluxes rarely
changed after the whole experiment, further implying that
MO decolorization was realized by electrochemical

oxidation with the aids of generated active species.

2Cl‐→Cl2 aqð Þ þ 2e‐ ð7Þ
Cl2 aqð Þ þ H2O→ClO‐ þ Cl‐ þ 2Hþ ð8Þ
MOþ ClO‐→Intermediates→CO2 þ Cl‐ þ H2O ð9Þ

UV-vis spectra scan exhibited the peak at the wavelength of
464 nm decreased continuously with time for the simulated
dye wastewater (Fig. S1, Supporting Information), confirming
that azo bond was gradually destroyed (Riaz et al. 2014).
Meanwhile, the peak at 272 nm corresponding to aromatic
ring also declined considerably (Zhang et al. 2006), indicating
the simultaneous destructions of the MO molecular structure
(Devi et al. 2009). GC/MS was also performed after 6-h op-
eration and more organics with smaller molecule were detect-
ed in the exhausted anolyte such as phenol and indole, com-
pared with original simulated dye wastewater (Table S1,
Supporting information). Similar intermediate products were
also found previously (Li et al. 2013; Cai et al. 2017).
Additionally, some organics were also detected in the middle
compartment and even in the exhausted catholyte due to their
dispersions.

As to desalination, ion balances were monitored.
Concentrations of both Cl− and Na+ in the middle compart-
ment decreased with time (Fig. 5), thus realizing the satisfac-
tory desalination for the simulated dye wastewater. Driven by
external voltage, Cl− and Na+ moved to the anode and the
cathode compartments through the anion exchangemembrane
and the cation exchange membrane, respectively, with the
observed increase of Cl− in the anolyte and Na+ in the

Fig. 5 Concentrations of Na+ and
Cl− with time in three
compartments of the
electrochemical cell during 6-h
operation
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catholyte, respectively (Fig. 5). It was found that migration
kinetics of Cl− and Na+ followed linear correlation expressed
as follows:

Cl‐ : ln Ct=C0 ¼ ‐0:4696 t R2 ¼ 0:9669
� � ð10Þ

Naþ : ln Ct=C0 ¼ ‐0:4289 t R2 ¼ 0:9708
� � ð11Þ

where C0 and Ct are the initial and remaining concentrations
of Na+ and Cl−, respectively; k is the removal rate constant.

The desalination rates were undoubtedly reduced due to the
gradual decrease of conductivities in the middle compartment
(Shabbir et al. 2017). Unlike Na+, loss of Cl− was observed
(Fig. 5), probably due to the direct electrochemical oxidation
of Cl− on the anode surface (Reaction (7)), which were also
reported in the electrophoretic ion exchange desalination sys-
tem (Shkolnikov et al. 2012). The produced active substances
during Cl− oxidation in this desalination process could be
utilized efficiently for MO decolorization, thus achieving the
simultaneous decolorization and desalination in one step.
Further efforts could be made to combine the proposed elec-
trochemical cell with traditional/emerging techniques, for ex-
ample, microbial fuel cells as renewable power source and/or
for handling dye wastewater simultaneously (Zhang et al.
2009; Guo et al. 2014) to form hybrid systems for practical
applications in dye wastewater treatment by further improving
the efficiency and reducing the costs.

Conclusions

In this study, we constructed an effective electrochemical cell
for simultaneous decolorization and desalination of salt-
containing dye wastewater. The decolorization efficiencies
of 70.2% and the desalination efficiencies of 88.7% were ob-
tained with applied voltage of 6 V after 6-h electrochemical
treatment of solution containing 50 MO and 3000 mg L−1

NaCl, respectively. Higher applied voltages improved the per-
formance of both color and salt removal, while higher MO
concentrations suppressed decolorization and higher NaCl
concentration accelerated desalination rate. MO dissociated
into anions transferred into the anode compartment, where
the generated active species as ·OH, H2O2, and ClO

− contrib-
uted to color removal, while salt removal were driven by ex-
ternal voltage based on ions balance analysis. This work fur-
ther elucidates the possibility for simultaneous decolorization
and desalination of salt-containing dye wastewater treatment
by electrochemical process.
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