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Biochar amendment with fertilizers increases peanut N uptake,
alleviates soil N2O emissions without affecting NH3 volatilization in field
experiments
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Abstract
Biochar application to soil is currently widely advocated for a variety of reasons related to sustainability. However, the synergistic
effects of biochar combined with mineral or organic fertilizer on soil N2O emissions, NH3 volatilization, and plant N uptake are
poorly documented. Field plot experiments planted with peanut were conducted under the application of biochar (derived from
rice husk and cottonseed husk, 50 t ha−1) with organic or mineral fertilizer. It was found that biochar increased soil nutrient
availability and decreased surface soil bulk density, demonstrating that biochar could improve the soil quality especially in the 0–
20-cm profile. The total N content of the plant changed little with treatments, but the kernel N concentration increased signif-
icantly when biochar was applied with organic fertilizer. Peanut yield increased with biochar amendment while no significant
difference was observed in plant biomass, suggesting biochar had a positive effect on belowground biomass. Peanut N uptake
was also increased following biochar amendment with either organic or mineral fertilizers. While biochar amendment had no
significant effect on soil NH3 volatilization, it did decrease the cumulative N2O emission by 36.3% on average with organic
fertilizer, and by 32.6% with mineral fertilizer, respectively (p < 0.05). The copy numbers of 16S rDNA, nifH, nirK, and nirS
were not influenced by the application of biochar; however, the copy number of nosZ was significantly increased under biochar
plus mineral fertilizer treatment. The results imply that biochar application can suppress N2O emissions, as a result of abiotic
factors and enhanced peanut N uptake rather than changes of denitrification genes.
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Introduction

Managing nitrogen (N) dynamics has received much attention
in agricultural systems due to the increased application of N
fertilizer. According to Liu et al. (2010), only 55% of the
global applied N is taken up by crops while 14% is lost in
gaseous emissions. Nitrous oxide (N2O) emissions and am-
monia (NH3) volatilization are two of the main pathways for
gaseous N losses from agricultural system, and result from
excessive fertilizer. N2O is a potential greenhouse gas
(GHG) that has a global warming potential 298 times that of
carbon dioxide (CO2) over a 100-year time period (Davidson
2009). Agricultural land contributes approximately 60% to
global anthropogenic N2O emissions (Reay et al. 2012).
NH3 volatilization can contribute to the formation of atmo-
spheric aerosol, and acidification and eutrophication of water
systems (Howarth et al. 2002). It is also an indirect source of
N2O and NO (Mosier et al. 1998). The loss of N through
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gaseous emissions (N2O, NH3 and N2) from soil decreases the
amount of available N for crop growth and causes environ-
mental degradation.

Biochar is a solid carbon-rich organic material generated by
pyrolysingbiomass.Biochar is typically alkaline, highlyporous,
with considerable amount of functional groups and large specific
surface area (Tan et al. 2016). As a soil amendment, biochar can
potentially increasesoilNretentionthroughseveralmechanisms:
adsorption of NO3

−, NH4
+ and organic N, increase biological N

fixation and changemicrobial community dynamics related toN
transformation (Rondon et al. 2006; Kammann et al. 2017).
Applying biochar with N fertilizers in agricultural ecosystem
may be an effective method to increase soil C storage and en-
hance N use efficiency thereby reducing environmental impacts
and increase crop productivity.

N2O emissions canbeproduced from threemainprocesses in
soil: nitrification, denitrification and dissimilatory nitrate reduc-
tion to ammonia (Baggs 2011).Both soil characteristics (texture,
pH, aeration, C:N ratio and microbial diversity) and prevailing
environmental conditions (temperature and rainfall) influence
the contribution of each process to the total N2O emission flux
(Cayuela et al. 2014). Reductions in soil N2O emissions after
biochar application are widely reported (Case et al. 2012; Xu
et al. 2014;Caseet al. 2015), forwhich severalmechanismshave
been proposed: (i) biochar improves soil aeration thus reduces
denitrification (Yanai et al. 2007); (ii) biochar liming effect could
drive denitrification thorough to N2 (Castaldi et al. 2011); (iii)
biochar increases the adsorption of NO3

−, thus decreases sub-
strate availability for denitrification (Mukherjee et al. 2014);
(iv) biochar reduces the availability of organic C for soil micro-
organisms through sorption, thus decreasing the formation of
N2O (Cayuela et al. 2014); (v) biochar could sorb N2O directly
(Cornelissen et al. 2013); (vi) biochar participates in abiotic re-
duction of nitrate/nitrite to N2 (Thomazini et al. 2015); and (vii)
biochar releases inhibitory or toxic compounds that inhibit nitri-
fication (Freddo et al. 2012) thereby decreasing the formation of
N2O. Most of these studies were conducted in the laboratory.
More studies are needed to elucidate the effects of biochar when
appliedwith fertilizers under field conditions. Furthermore, little
information is available about the effects of biochar onmicrobial
functional genes related to N2O emissions.

NH3 volatilization occurs when ammonium-N in fertilizer
or solution is converted to dissolved ammonia gas at neutral to
alkaline pH (Rochette et al. 2013). Soil NH3 volatilization is
influenced by the combined effects of various factors includ-
ing pH, aeration, N sources, moisture content and temperature
(Mandal et al. 2016). Contradictory results have been reported
about the effect of biochar on soil NH3 volatilization. Doydora
et al. (2011) demonstrated that soil amended with acidified
biochar could reduce NH3 volatilization from poultry litter.
Taghizadeh-Toosi et al. (2012) showed that NH3 volatilization
was reduced by 45% from ruminant urine when biochar had
been incorporated in the soil. Similarly, Mandal et al. (2016)

also reported that soil NH3 volatilization was reduced by ap-
proximately 70% under biochar amendment with fertilizer in
an incubation experiment. However, Jones et al. (2012b) dem-
onstrated that biochar had no significant effect on soil NH3

volatilization or soil NH4
+ concentrations. Sun et al. (2014)

reported that NH3 volatilization increased after applying bio-
char to an agricultural soil in an incubation experiment. Still,
more studies are needed regarding to the impact of biochar
amendment with fertilizer onNH3 volatilization in agricultural
soil, especially under in situ conditions. In addition, the syn-
ergistic effects of biochar on soil N2O emissions, NH3 vola-
tilization and plant N uptake are poorly documented.

In the present study, two biochars (derived from rice husk
or cottonseed husk, 50 t ha−1) were applied in combination
with organic or mineral fertilizer to a fluvo-aquic soil planted
with peanut during field plot experiments. The objectives of
the present study were as follows: (i) to study the effects of
biochar on soil physiochemical properties and peanut yield;
(ii) to investigate the effects of biochar on soil NH3 volatiliza-
tion, N2O emissions and crop N uptake; and (iii) to determine
the mechanisms for the effect of biochar amendment on N2O
emissions in fluvo-aquic soil. In particular, quantitative real-
time PCR was employed to quantify the copy numbers of soil
N-fixing gene marker (nifH), nitrification functional markers
(archaeal amoA and bacterial amoA) and denitrifying bacte-
rial gene markers (nirS, nirK, and nosZ). We hypothesized
that biochar amendment would improve peanut yield, mitigate
greenhouse gas emissions and enhance peanut N uptake.

Materials and methods

Biochar characterization

Rice husk biochar (RH biochar) and cottonseed husk biochar
(CH biochar) used in this experiment were supplied by the
Sanli New Energy Company (Tianjin, China). The biochars
were produced from rice husk (Oryza sativa L.) and cotton-
seed husk (Gossypium spp.) through pyrolyzation at 450 °C
for 4.5 h in a vertical kiln made of refractory materials. The
important characteristics of the biochars are provided in
Table 1. Biochar pH was measured using a pH meter
(Mettler Toledo Delta 320) with a biochar to deionized water
ratio of 1:30 w/w, after being stirred for 1.5 min and equili-
brated for 1 h. The cation exchange capacity (CEC) of the
biochars were measured by a modified NH4

+-acetate compul-
sory displacement method (Gai et al. 2014). The elemental
composition (C, H, N, S) of the biochars were measured using
an elemental analyzer (vario PYRO cube, Germany).
Brunauer-Emmett-Teller (BET) specific surface area (SSA)
of the biochars were determined using N2 gas on a
Micrometrics ASAP 2010 system (Micrometrics, Norcross,
GA, USA). Ash content was determined by combusting
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biochar at 750 °C for 6 h in open crucibles, on a dry weight
basis. Fourier transform infrared (FTIR) spectra were recorded
using a Thermo Nicolet 6700 FTIR spectrometer (Thermo
Fisher, America) that was equipped with a TGS/PE detector
and a silicon beam splitter with 4 cm−1 resolution. The infra-
red spectra were obtained in the range of 4000–400 cm−1 as
shown in Fig. S1.

Site description and experimental design

The experiment was conducted from June to October, 2015 at
the fluvo-aquic soil (Haplic Luvisol soil according to the Food
and Agriculture Organization Soil Classification 2006) agri-
cultural experimental station of Chinese Academy of
Agricultural Sciences, Changping County, Beijing, China
(40° 13′ N, 116° 14′ E, and 43.5 m above sea level). This area
has a typical sub-humid temperate continental monsoon cli-
mate, with mean annual rainfall of 625 mm, mean annual
temperature of 11.5 °C, featuring four distinct seasons. The
main physicochemical characteristics of the soil are summa-
rized in Table 1. Daily precipitation and the maximum and
minimum air temperatures during the peanut growing season
were recorded (Fig. S2).

Experimental units consisted of 10 m2 plots (each 2 m ×
5 m) with seven different treatments (each in three replicates),
resulting in a total of 21 plots. Plots were arranged in the field
following a randomized complete block design. In each plot,
the biochars were applied manually (50 t ha−1) and incorpo-
rated into the top 20 cm of soil. The application rate of organic
fertilizer (chicken manure, Beijing Shiji Dade Environmental
Protection Technology Co., Ltd., China) was 9 t ha−1. The
application rate of mineral fertilizers was calculated to obtain
the same level of nutrient content (NPK) as applied in the
organic fertilizer. Mineral fertilizers applied in a dry form

included CO(NH2)2 (urea, 0.89 t ha−1), P2O5 (0.34 t ha−1)
and K2O (0.23 t ha−1). As a result, all the treatments were
added with the same amount of nutrients except for the control
(CK). Fertilizer was added in a single spring application be-
fore primary tillage, with surface broadcasting of fertilizers.
Seven different treatments were included in the field plot ex-
periments: CK, organic fertilizer only (OM), mineral fertilizer
only (NPK), organic fertilizer plus RH biochar (ROM), organ-
ic fertilizer plus CH biochar (COM),mineral fertilizer plus RH
biochar (RNPK), and mineral fertilizer plus CH biochar
(CNPK). Plots were sown after application of the fertilizers
and biochars on June 1. Peanut (Arachis hypogaea L.) was
sown in each experimental plot; plots were overplanted and
thinned to obtain a final density of approximately 75,000
plants ha−1. Plots were hand-weeded throughout the experi-
ment. No pesticides or fungicides were applied and no irriga-
tion water was supplied to the plants.

Soil and crop sampling and chemical analyses

Composite samples of bulk soil were collected with an
Eijkelkamp soil core sampler from each plot after peanut har-
vest on October 7, 2015. Soil samples were immediately
transported to the laboratory where they were sieved (2 mm)
and processed for subsequent analyses. Soil samples were
either: (1) dried at 60 °C until constant weight for determina-
tion of total nitrogen (TN), total phosphorus (TP), and total
potassium (TK); (2) stored at 4 °C for the other physicochem-
ical, biochemical, and microbial analyses; or (3) immediately
frozen in liquid N2 and stored at − 80 °C until used for DNA
extraction. All plants were harvested to calculate the above-
ground biomass (plant biomass) and kernel weight (peanut
yield). Aboveground biomass was oven-dried at 70 °C for
48 h before recording the plant biomass for the total plot.

Table 1 Basic physiochemical
properties of the tested soil and
biochar

Soil Rice husk
biochar

Cottonseed
husk biochar

pH 8.2 pH 10.3 9.7

SOC (g kg−1) 10.3 BET surface area (m2 g−1) 89.4 24.8

TN (g kg−1) 0.8 TN (g kg−1) 8.1 8.9

TP (g kg−1) 0.7 TP (g kg−1) 1.1 1.0

TK (g kg−1) 9.2 TK (g kg−1) 7.6 30.2

CEC (cmol kg−1) 17.1 CEC (cmol kg−1) 20.4 25.3

Olsen-P (mg kg−1) 1.1 C (%) 53.1 39.9

Available-K (mg kg−1) 53.0 H (%) 1.6 1.1

NO3
− (mg kg−1) 3.5 N (%) 0.8 0.8

NH4
+ (mg kg−1) 0.6 S (%) – 0.4

Field moisture capacity (%) 24.8 Ash content (%) 43.2 56.1

CEC cation exchange capacity, SOC soil organic carbon, TN total nitrogen, TP total phosphorus, TK total
potassium
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The kernels were air-dried for 1 week before recording the
peanut yield for the total plot. One dried subsample of plant
and kernel was selected at random and ground for determina-
tion of TN content using a Leco TruMac CNS Analyzer
(LECO Corporation, USA). Plant N uptake was calculated
using plant biomass multiplied by the TN of plant, and peanut
N uptake was calculated using peanut yield multiplied by the
TN of kernel. Except for those specified above, all the soil and
biochar physicochemical properties were measured using the
methods reported by Margesin and Schinner (2005), Xu et al.
(2016) and Gai et al. (2016).

Measurements of NH3 volatilization

The NH3 volatilization flux was measured with a continuous
airflow enclosure method using a chamber in each plot as
described by Chen et al. (2015). The NH3 volatilization flux
was measured in the morning daily, from 8:00 to 10:00 am
after fertilization. A gas blanketing bottle filled with 60 ml of
10 g L−1 H3BO3 was used to absorb the ammonia gas. The air
was pushed to flow through the 10 g L−1 H3BO3 for each
treatment. Then the ammonia absorbents were brought to the
laboratory immediately and titratedwith diluted sulphuric acid
(0.01 M). The daily NH3 volatilization flux was calculated as
the average of the fluxes measured on each day.

Measurements of N2O emissions

The in situ N2O fluxes were measured using the closed cham-
ber method (Pereira et al. 2015). The chambers consisted of a
permanent base (bottom part) and a removable lid with a rub-
ber septum for gas sampling, both made of polycarbonate
engineering plastics. The lid was a cylindrical flux chamber
of 30 cm in diameter and 60 cm in height. The permanent base
was 15 cm in height with the same diameter as the lid. The
base was inserted 10 cm into the soil immediately after fertil-
ization to minimize the effects of disturbance. When the lid
was closed, it was secured tightly to the base by a gas-tight
rubber seal (8 cm wide). At sampling time, gas samples
(50 ml) were drawn from the chambers with gas-tight syringes
and stored in evacuated glass tubes at 0, 20, and 40 min after
the chambers were closed. Samples were taken every day in
the first 2 weeks after fertilization and then once every week
over the 126 days growth period. The gas samples were ana-
lyzed for N2O concentration by electron capture gas chroma-
tography (GC-2010 plus Shimadzu Gas Chromatograph,
Kyoto, Japan). Standard N2O was used for calibration, and
flux rates were calculated with the linear regression method.

Quantification of functional gene abundance

DNAwas extracted from 0.5 g of soil using the FastDNA SPIN
kit for Soil (MP Biomedicals, USA) according to the

manufacturer’s instructions.The total amountofDNAwasquan-
tified using a NanoDrop ND-1000 UV-Vis spectrophotometer
(NanoDrop Technologies, USA) and stored at − 80 °C.
Quantitative PCR (qPCR) was performed to assess the abun-
dance of the following genes: 16S rRNA gene for total bacteria,
amoAgene for archaeal ammoniaoxidizers (AOA)andbacterial
ammoniaoxidizers (AOB),nifH(Nfixationgene),nirKandnirS
(nitrite reductase genes), and nosZ (nitrous oxide reductase
gene). All qPCR reactions were conducted using a Bio-Rad
CFX1000 Thermal Cycler (Bio-Rad, USA). Standard curves
were obtained using 10-fold serial dilutions of plasmid DNA
containing cloned genes of interest and spanning seven orders
of magnitude. Single qPCR reaction was prepared in a total vol-
ume of 20 ml including 10 ml SYBR green PCR Master Mix
(Takara SYBR Premix Ex Taq (perfect real time)), 0.4 ml of
forward and reverse primers (10 mM), and approximately 5 ng
of DNA. Melting curves and agarose gel running of PCR prod-
ucts were used at the end of each qPCR reaction to check ampli-
ficationspecificityandpurityofnegativecontrols.Specificprim-
er combinations and thermal conditions were described in
Table S1. Each PCR run included triplicate sample templates,
calibration standard series and no template controls. The pres-
enceofPCRinhibitors inDNAextractedfromsoilwasestimated
by a 1:10 soil DNA dilution, and no inhibition was detected.

Statistical analysis

The soil physicochemical and N related results were expressed
asmeans ± standard deviations. Statistical and correction anal-
yses were performed using Statistical Product and Service
Solutions 22.0 (SPSS Inc., Chicago, IL, USA). Significant
differences were obtained by the one-way analysis of variance
(ANOVA) with means compared using the Duncan’s multiple
range test. The correlation was analyzed with the Pearson test
(two-tailed) at p = 0.05. Any differences between the mean
values at p < 0.05 were considered statistically significant.

Results

Soil physicochemical properties and peanut yield

Physiochemicalpropertiesofsoilunderdifferent treatmentswere
given in Table 2. Soil moisture content and pH both increased
with biochar amendment (p < 0.05), while soil bulk density de-
creased (p < 0.05). Biochar amendment increased soil organic
carbon (SOC) irrespective of organic or mineral fertilizer
(p < 0.05). Neither soil CEC nor TP were influenced by treat-
ments. Soil Olsen-P was significantly increased under CH bio-
char amendment compared tonobiochar amendmentwith either
organicormineral fertilizer (p < 0.05),while the increasewasnot
significant for RH biochar. Compared to the CK, soil TK was
increasedunder theCNPKtreatment (p < 0.05),while increasing
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only slightly under the other treatments. Soil available-K was
increased with biochar amendment irrespective of organic or
mineral fertilizer (p < 0.05). In addition, soil available-K in-
creased with CH biochar amendment when compared with RH
biochar (p < 0.05).

Plant biomass and peanut yield are shown in Fig. 1.
Without biochar amendment, an increase in plant biomass,

by 42.4 and 48.4% under OM (p > 0.05) and NPK treatments
(p < 0.05), respectively, was observed when compared to CK
(6.94 t ha−1). There were no significant differences in plant
biomass due to biochar amendment. Without biochar amend-
ment, increases in peanut yield, of 24.6 and 32.5% under OM
and NPK treatments, respectively, were observed when com-
pared to the CK (3.42 t ha−1) (p < 0.05). With biochar

Table 2 Physiochemical properties of soil under different treatments

Parameters CK OM NPK ROM COM RNPK CNPK

Moisture content (%) 15.67 ± 0.23b 15.29 ± 0.81b 15.22 ± 0.72b 17.05 ± 0.63a 17.32 ± 0.24a 16.97 ± 0.50a 17.71 ± 0.47a

BD (g cm−3) 1.30 ± 0.01a 1.30 ± 0.07a 1.29 ± 0.01a 1.06 ± 0.07b 1.12 ± 0.01b 1.10 ± 0.06b 1.10 ± 0.06b

pH 8.16 ± 0.05b 8.17 ± 0.04b 8.12 ± 0.03b 8.67 ± 0.03a 8.76 ± 0.03a 8.71 ± 0.04a 8.76 ± 0.07a

CEC (cmol kg−1) 14.66 ± 0.46a 14.62 ± 0.27a 14.13 ± 0.56a 14.42 ± 0.68a 15.56 ± 1.30a 14.47 ± 0.12a 14.26 ± 0.52a

SOC (g kg−1) 10.48 ± 1.31c 12.87 ± 1.07b 9.93 ± 1.20c 22.67 ± 2.64a 22.54 ± 2.53a 20.21 ± 2.40a 19.18 ± 2.73a

TP (g kg−1) 0.76 ± 0.05a 0.83 ± 0.09a 0.84 ± 0.09a 0.89 ± 0.08a 0.85 ± 0.08a 0.87 ± 0.02a 0.87 ± 0.08a

Olsen P (mg kg−1) 1.05 ± 0.11c 2.36 ± 0.23bc 2.20 ± 0.84bc 3.23 ± 0.87ab 4.40 ± 0.91a 3.57 ± 0.56ab 4.9 ± 0.78a

TK (g kg−1) 9.28 ± 0.24b 9.51 ± 0.06ab 9.88 ± 0.20ab 9.42 ± 0.27ab 9.67 ± 0.16ab 9.55 ± 0.40ab 10.01 ± 0.29a

Available-K (mg kg−1) 52.68 ± 2.28c 61.63 ± 2.21c 62.17 ± 4.40c 84.00 ± 10.01b 142.00 ± 16.10a 96.71 ± 18.10b 162.40 ± 22.91a

Different letters in a single row indicate significant difference between the treatments at p < 0.05 (Duncan’s multiple range test. Values are presented as
means ± standard deviation with n = 3

CK the control, OM organic fertilizer only, NPK mineral fertilizer only, ROM organic fertilizer plus rice husk biochar, COM organic fertilizer plus
cottonseed husk biochar, RNPK mineral fertilizer plus rice husk biochar, CNPK mineral fertilizer plus cottonseed husk biochar, BD bulk density, CEC
cation exchange capacity, SOC soil organic carbon, TP total phosphorus, TK total potassium
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Fig. 1 Plant biomass (a), peanut yield (b), plant N uptake (c), and peanut
N uptake (d) under different treatments. (CK, the control; OM, organic
fertilizer only; NPK, mineral fertilizer only; ROM, organic fertilizer plus

rice husk biochar; COM, organic fertilizer plus cottonseed husk biochar;
RNPK, mineral fertilizer plus rice husk biochar; CNPK, mineral fertilizer
plus cottonseed husk biochar)
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amendment, the peanut yield increased further, by 27.2 and
25.6% under ROM and COM treatments when compared to
the OM (4.26 t ha−1), and by 16.8 and 14.4% under RNPK and
CNPK treatments when compared to NPK (4.53 t ha−1), re-
spectively (p < 0.05).

Soil N fractions, total N of peanut, and peanut N
uptake

Soil N fractions and TN of peanut were shown in Table 3. In
0–20 cm profile, soil TN, NO3

−, and NH4
+ all increased with

biochar amendment when compared to the mineral fertilizer
treatment (p < 0.05); however, no obvious change was ob-
served with biochar amendment when compared to the organ-
ic fertilizer treatment (p > 0.05). In the 20–40 cm profile, soil
TN, NO3

− and NH4
+ were not affected by biochar or fertilizer

treatments. There were no significant differences among CK,
OM, and NPK treatments in the TN of plant or that of kernel.
However, compared to CK (33.31 g kg1), the TN of kernel
was significantly increased by 26.4 and 23.9% under COM
and ROM, respectively (p < 0.05).

Plant N uptake and peanut N uptake are shown in Fig. 1.
Compared to CK, plant N uptake was significantly increased
under OM and NPK treatments. While there was no signifi-
cant change in plant N uptake under biochar amendment when
compared with either OM or NPK. However, peanut N uptake
increased by 42.6 and 44.9% under ROM and COM treat-
ments compared to OM (157.49 kg ha−1), and by 20.7 and
17.6% under RNPK and CNPK compared to NPK
(167.38 kg ha−1), respectively (p < 0.05). In addition, when
compared to CK, the peanut N uptake was significantly in-
creased by 34.2 and 42.6% under OM and NPK, respectively
(p < 0.05).

Soil NH3 volatilization and N2O emissions

Soil NH3 volatilization decreased rapidly after the mineral
fertilizers were applied (Fig. S3). The cumulative NH3 vola-
tilization over the first 4 days accounted for 67.4–68.5% of the
total cumulative NH3 volatilization under mineral fertilizer
treatments. Compared to the CK (1.38 N kg ha−1), the cumu-
lative NH3 volatilization for NPK increased by 22.5 times
(p < 0.05) according to Table 3. However, the NH3 volatiliza-
tions were minor for organic fertilizer treatments and not sig-
nificantly different from that for CK. The application of bio-
char did not alter NH3 volatilization, either with mineral or
organic fertilizers. There was no statistical difference in NH3

volatilization from OM, ROM, and COM treatments, or
among those from NPK, RNPK, and CNPK treatments.

The N2O emissions (Fig. S4) throughout the whole peanut
growing season were influenced by the prevailing environ-
mental conditions such as temperature and rainfall (Fig. S2).
In particular, N2O efflux declined for all treatments after Ta
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September 1 as the temperature dropped. During the first half
month, N2O efflux was higher under the mineral fertilizer
treatments than others. N2O efflux ranged from 5.2 to
120.7 μg N m−2 h−1 and 2.2 to 65.1 μg N m−2 h−1 for mineral
fertilizer treatments and organic fertilizer treatments, respec-
tively. The N2O efflux from the control remained relatively
stable and varied over the range of 2.3–16.2 μg N m−2 h−1.
The cumulative N2O emissions decreased by 37.3 and 35.3%
under ROM and COM treatments compared to OM
(0.51 N kg ha−1), and by 33.7 and 31.5% under RNPK and
CNPK treatments compared to NPK (0.89 N kg ha−1), respec-
tively (p < 0.05). The NPK treatment recorded the highest
cumulative N2O emission, 3.2 times higher than CK
(0.21 N kg ha−1) and 75% higher than OM.

Abundance of functional genes involved in N cycle

Microbial gene copy numbers did not differ among treat-
ments for nifH, nirK, and nirS (Table 4). Similarly, the
copy numbers of AOB and AOA were not influenced by
biochar amendment compared to no biochar treatment
with either organic or mineral fertilizer (p > 0.05).
However, biochar amendment with fertilizers increased
the copy numbers of AOB and AOA compared to the
control (p < 0.05). The copy numbers of nosZ increased
under RNPK (6.51 × 104 copies g−1 dry soil) and CNPK
(6.47 × 104 copies g−1 dry soil) compared to NPK (5.28 ×
104 copies g−1 dry soil) (p < 0.05), but showed no obvious
difference among ROM, COM, and OM.

Discussion

Biochar effect on peanut yield and total N of peanut

In accordance with previous reports (Agegnehu et al.
2015; Xu et al. 2015a), biochar significantly increased
peanut yield. This result was mainly attributed to in-
creased nutrient availability, such as SOC, Olsen-P and
available-K, and to improved soil physical properties in-
dicated by decreased soil bulk density and increased soil
moisture content. As shown in Table 1 and Fig. S1, both
RH biochar and CH biochar had large surface areas and
quantity of functional groups which could potentially re-
tain soil nutrients (Darby et al. 2016). The fact that peanut
yield increased under biochar amendment, while plant
biomass was not affected, suggests that biochar had a
more positive effect on the belowground biomass.

The fact that both Olsen P and available-K increased
under biochar treatments could contribute to improved
TN of kernel as P is essential for the formation, develop-
ment and function of nodules (Xu et al. 2015b) and K is
essential for biological N2 fixation and enhanced

competitive ability of legume species (Xu et al. 2015a).
In addition, the application of organic fertilizer could input
trace elements into the soil, such as molybdenum and bo-
ron which are essential for the growth of N-fixing micro-
organisms (Fageria et al. 2010). This could be one reason
for the significant increase in the TN of kernel under ROM
and COM treatments. Soil available-K was significantly
improved under CH biochar amendments irrespective of
organic fertilizer or mineral fertilizer compared to RH bio-
char amendments. This could be due to the relatively
higher TK of CH biochar which was more than three times
that of RH biochar. Similarly, soil Olsen-P was only sig-
nificantly increased under CH biochar amendment irre-
spective of organic or mineral fertilizer. These results sug-
gested that the changes of soil characteristics depended on
the type of the biochar.

Biochar effect on soil N fraction and NH3 volatilization

Compared to CK, biochar significantly increased soil TN,
NO3

−, and NH4
+ in 0–20 cm profile while no obvious changes

were observed in 20–40 cm profile. As biochar was manually
applied in the top 20 cm soil, this result indicated that biochar
could immobilize soil N through adsorption directly.

The addition of mineral fertilizers significantly in-
creased NH3 volatilization regardless of biochar applica-
tion, which was predominantly due to the elevated NH4

+

concentration in soil after the application of urea. The
NH3 volatilization from organic fertilizer treated soils
was very low, due to the slow mineralization of N from
organic fertilizer (Mandal et al. 2016). No significant
changes in NH3 volatilization were observed after biochar
incorporation with either organic or mineral fertilizer,
which were similar with (Jones et al. 2012a) who reported
that biochar did not affect NH3 volatilization in situ. This
outcome could be attributed to the balance of the contra-
dictory effects of biochar on soil NH3 volatilization. The
biochar alkalinity increased soil pH, and biochar porosity
enhanced soil aeration, which were both beneficial to NH3

volatilization (Sun et al. 2014). On the contrary, biochar
has the potential to adsorb both NH4

+ and NH3 due to its
large surface areas and the presence of various functional
groups, which was unfavorable for NH3 volatilization
(Mandal et al. 2016). As a result, soil NH3 volatilization
was not influenced by biochar amendment.

Biochar effect on soil N2O emissions and peanut N
uptake

Similar to soil NH3 volatilization, applying fertilizers only
increased N2O emissions, which was due to higher N
availability in those treatments compared to CK.
However, biochar amendment significantly decreased

Environ Sci Pollut Res (2018) 25:8817–8826 8823



N2O emissions under fertilizer treatments. The enhanced
expression of nosZ under RNPK and CNPK compared to
NPK suggested that biochar could mitigate N2O
emissions by further reducing it to N2. Similarly, both
Xu et al. (2014) and Harter et al. (2014) reported that
biochar increased the copy number of NosZ while having
no significant effect on nirK and nirS. Nonetheless, the
copy number of nosZ was not significantly different
among ROM, COM, and OM. On the other hand, soil
pH increased under biochar amendment which could po-
tentially favor the activity of N2O reductase from
denitrifying microorganisms while inhibit the activity of
reductases involved in the conversion of nitrite and nitrate
to N2O (Yanai et al. 2007). Soil aeration improved as bulk
density decreased which would also tend to limit the ac-
tivity of denitrifiers in soil amended with biochar (Zhang
et al. 2011), thereby decrease N2O emission. In addition,
higher C:N ratio under biochar treatments could result in
greater immobilization instead of mineralization (Ly et al.
2014) thus also inhibit N loss through N2O emission.
These results indicated that denitrification gene abun-
dances only play a partial role in the mitigation of N2O
emissions in comparison with soil environmental factors.
The copy number of nifH was not influenced by biochar
amendment. However, it must be born in mind that this
result was obtained from the bulk soil. Similar to
Agegnehu et al. (2015), there was a significant increase
in nodule number and size of peanut root under biochar
amendment in the present study (data not shown). As the
nodule number and size for leguminous plants were di-
rectly related to the ability of biological N2 fixation
(Güereña et al. 2015), it was reasonable to believe that
biochar enhanced the N2 fixation of peanut. Similarly,
Rondon et al. (2006) demonstrated that biological N2 fixation
by common beans increased under biochar addition.
Compared to CK, the copy numbers of AOB and AOA sig-
nificantly increased under biochar application implying that
biochar could enhance microbial N transformation thereby
improve plant N uptake and decrease N2O emissions.

Biochar amendment increased the peanut N uptake by
43.7% on average with organic fertilizer, and by 19.1%
with mineral fertilizer, respectively (p < 0.05). Besides,
plant N uptake was also slightly enhanced under biochar
amendment. These results were similar with (Zhang et al.
2011) and (Pereira et al. 2015) which reported that N
uptake was significantly enhanced under biochar amend-
ment planted with maize and lettuce, respectively. In sum-
mary, as shown in Fig. 2, despite the insignificant effect
on soil NH3 volatilization, biochar could adsorb soil NO3

−

and NH4
+, decrease N2O emissions and increase the copy

number of amoA and nosZ. Along with the improvement
in soil nutrient pool, peanut yield, and N uptake were both
enhanced under biochar amendment.Ta
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Conclusions

The present study investigated changes in soil properties, N2O
emissions and the abundance of its related genes, NH3 vola-
tilization, and peanut N uptake following biochar amendment
with fertilizers in a field experiment planted with peanut. Soil
physicochemical properties and nutrition availability were im-
proved with the application of biochar. Compared to above-
ground biomass (plant biomass), biochar had stronger positive
effect on belowground biomass (peanut yield). Biochar had no
influence on plant N content, but significantly increased ker-
nel N content under the application with organic fertilizer.
Although soil NH3 volatilization was not influenced by bio-
char, biochar application with fertilizers (mineral or organic)
significantly mitigated N2O emissions in agricultural soil. The
suppression of soil N2O emissions may be mainly due to abi-
otic factors (soil aeration, pH, and C:N) and peanut N uptake.
Biochar addition could modulate soil N transformation and
enhance peanut N uptake, resulting in increment in crop yield.
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