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Abstract
Water quality is highly dependent on landscape characteristics. This study explored the relationships between landscape patterns
and water quality in the Ebinur Lake oasis in China. The water quality index (WQI) has been used to identify threats to water
quality and contribute to better water resource management. This study established the WQI and analyzed the influence of
landscapes on the WQI based on a stepwise linear regression (SLR) model and geographically weighted regression (GWR)
models. The results showed that theWQI was between 56.61 and 2886.51. Themap of theWQI showed poor water quality. Both
positive and negative relationships between certain land use and land cover (LULC) types and the WQI were observed for
different buffers. This relationship is most significant for the 400-m buffer. There is a significant relationship between the water
quality index and landscape index (i.e., PLAND, DIVISION, aggregation index (AI), COHESION, landscape shape index (LSI),
and largest patch index (LPI)), demonstrated by using stepwise multiple linear regressions under the 400-m scale, which resulted
in an adjusted R2 between 0.63 and 0.88. The local R2 between the LPI and LSI for forest grasslands and the WQI are high in the
Akeqisu River and the Kuitun rivers and low in the Bortala River, with an R2 ranging from 0.57 to 1.86. The local R2 between the
LSI for croplands and the WQI is 0.44. The local R2 values between the LPI for saline lands and the WQI are high in the Jing
River and low in the Bo River, Akeqisu River, and Kuitun rivers, ranging from 0.57 to 1.86.
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Introduction

The degradation of water quality is a hot topic and a global
issue (Chen et al. 2016a; Roebeling et al. 2015). Studies high-
light this topic in arid areas due to global warming and eco-
nomic advancement (Chen et al. 2016b, c). Global warming
and economic development are associated with changes in

land use and land cover (LULC) through infrastructure devel-
opment; therefore, human activities and social and economic
factors influence patterns in LULC and landscape (Xu et al.
2016). Intensive LULC changes in watersheds and the rapid
response of water quality pollutants from different sources
may cause substantial deterioration in water quality (Wang
et al. 2017a). Therefore, the direct or indirect threat of water
quality pollutants to the quality of life for local populations
and the health of ecosystems requires analysis.

Early studies link the water quality index to different
LULCs within a watershed (Bolstad and Swank 1997;
Donohue et al. 2006). The relationship between river water
quality and the landscape pattern has been explored in many
previous studies (Collins et al. 2013; Souza et al. 2013; Chen
et al. 2016a). Zhao et al. (2012) show that there was a signif-
icant positive correlation between an urban LULC area and
water quality parameters. In addition, Wan et al. (2014) report
a significant correlation between croplands, urban areas, and
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total phosphorus and nitrogen in rivers. Ahearn et al. (2005)
indicate a close relationship between the nitrate-N content in
water and the cropland and grassland areas in the river water-
shed. Some researchers have analyzed the effect of land use
and land cover on water quality on different scales (Jarvie
et al. 2002; Woli et al. 2004; Sahu and Gu 2009; Li et al.
2009a). Different scales showed different results. Guo et al.
(2010) indicate that the influence of LULC on total phospho-
rus (TP) changes with buffer size, and Zhang (2011) report
that LULC significantly governed river TP loads. Tran et al.
(2010) report that cropland and urban areas can decrease non-
point source inputs in 200-m river zones. Therefore, when
analyzing the correlation between landscape patterns and wa-
ter quality in river, selecting the proper spatial scale is an
important factor. A multi-scale approach is advocated in some
recent studies, which have characterized the influence of the
landscape index at different scales.

However, two main arguments were often ignored. First,
when the relationship between water quality parameters and
landscape pattern in watershed is explored, it is uncertain be-
cause the water environment is complex and changeable, and
a single water quality parameter does not reflect the entire
water quality environment. Based on this analysis, a water
quality index that reflects the entire water environment is pro-
posed to evaluate to the entire water environment. Several
methods have been introduced to evaluate the status of water
quality in rivers and lakes (Jena et al. 2013; Misaghi et al.
2017). Water quality index (WQI) is used for assessing the
water quality of a drinking water source (Qiu et al. 2013; Xu
et al. 2017; Anuar et al. 2017). Second, the relationship be-
tween water quality parameters and landscape patterns has
been explored with global statistical methods in many previ-
ous studies, but some significant hidden local variations and
spatial characteristics may have been neglected (Chen et al.
2016a). Local, rather than global, parameters will be estimated
by the geographically weighted regression (GWR) model.

Therefore, the WQI and GWR methods will be used to
explore the relationship between landscape patterns and the
WQI in a multi-scale analysis. The main objectives of this
study are (1) to analyze the temporal and spatial patterns of
water quality in the Ebinur Lake oasis, (2) to extract an effec-
tive buffer based on relationships between LULC and the
WQI, (3) to establish a WQI suit to assess water quality in
arid regions, and (4) to identify and quantify the relationship
between LULC types and the WQI.

Study area

The Ebinur Lake oasis is in the center of Eurasia, located in
northwest Xinjiang at 44° 02′–45° 10′ N and 81° 46′–83° 51′
E (Fig. 1). This region has a typical temperate arid continental
climate. The study region is located inland; moisture sources

in the study area are derived from the Atlantic Ocean
(7000 km), but overall, there is limited water vapor transport
from maritime areas. The total area of the watershed area is
50,621 km2. It is surrounded by a mountainous region
(24,317 km2; Alatau Mountains) and plain areas
(26,304 km2) to the north, west, and south (Wang et al.
2017a, b). The Ebinur Lake oasis was once fed by 12 branch
rivers belonging to three major river systems, including the Bo
River, the Ebinur Lake River, and the Kuitun River. The west
Bo River (BR) valley, the south Jing River (JR) oases, the
Dandagai desert, and east of the lower Mutetaer desert zone
reach the Akeqisu–Kuitun River (A-KR). Artificial reservoirs
(RES) are distributed to the southwest of the watershed (Ma
et al. 2016; Chao et al. 2016; Li et al. 2016).

Materials and methods

Site description and the water quality data

Water samples were collected on 15 July 2016 from 30 loca-
tions within the Ebinur Lake oasis (Fig. 1), a typical arid area
of the river. Most rivers in Xinjiang are characterized by low
water yield, short length, small environmental water capacity,
poor self-cleaning capability, and low tolerance to pollution
(Ma et al. 2016). To represent different oasis LULCs, in this
study, 30 sites (1–30) are selected based on local hydrological,
geological, and human activity characteristics, as well as land-
scape (Fig. 1). S1, S2, S3, S4, and S5 are in the Akeqisu River,
which is a river in the mountain-desert river system. S1 is
located at the middle upstream. These sites are near Toutuo
County, which is considered an urban area, and the sample
sites are distributed around large areas of cropland. S2, S3, S4,
and S5 are located downstream; these sites are near Ebinur
Lake, and the sample sites are distributed around large areas of
forest grassland and saline land, but this river has broken
down and does not enter Ebinur Lake. S9 through S23 are
located on rivers along the Jinghe River system, which has a
total length of 66.1 km (Liu et al. 2011). The Jinghe River
system is the main agricultural area for the Ebinur Lake oasis.
S13 is location upstream. Both of these sites are near the
Xiatianji reservoir, which is critical for river water adjustment.
S16 and S17 sample sites are near the Dandagai desert. S20
and S22 are located at midstream, and both sample sites are
near Jinghe County, where human activity is the main factor
controlling water quality. S11 is located at the Ebinur estuary,
an ecological environment of poor quality with nearby soil
salinization where desertification is extremely serious. S26
and S27 are located at the edge of the oasis; these sample
locations are at Bo River (midstream), near Bole City. This
is a large city in the Ebinur Lake oasis, where human activities
are mainly industrial and agricultural, including animal hus-
bandry. S28 and S29 are located midstream of the Bo River;
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these two points are the center of the whole oasis. S30 is
located at Ebinur Lake estuary, where nearby soil salinization
and desertification are extremely serious. S6 through S8 are in
the Kuitun River, where rivers have broken down, and there
are large deserts around the river. S24 and S25 are located at
the lake bed, where water bodies are mainly brine, and there is
a large amount of saline land around the river.

Collected samples were kept at low temperatures in cold
storage (under 2 °C) during transport before water quality
measurements were carried out in the laboratory. Samples
were transported in polyethylene plastic bottles, which were
previously washed in 10% HCl and cleaned with deionized
water to minimize changes in the water chemical characteris-
tics. Temperature and pH were recorded at the time of sam-
pling in the field. All other measurements were conducted
within one week after the sample collection. The concentra-
tions for five-day worth of biochemical oxygen demand
(BOD5), chemical oxygen demand (COD), total nitrogen
(TN), total phosphorus (TP), iron, copper, zinc, ammonia ni-
trogen (NH4

+-N), magnesium, sulfate ions (SO4
2−

), phosphate
(PO4

3−), and chromium VI (Cr6+) were determined according
to corresponding standard methods, shown in Table 1.

Data acquisition and processing

We usedGF-1 remote sensing images obtained in July 2016 as
data sources (see http://www.cresda.com/CN/). These images
were not influenced by clouds, fog, or snow cover, and their
quality was good. We conducted radiation and orthographic
corrections for the remote sensing image data, combined with
1:50,000 digital elevation model (DEM) data. The ENVI 5.1
(The Environment for Visualizing Images 5.1 by Harris
Geospatial Corporation, USA) radiometric calibration tool

and the gain and deviation ratio in the G-F 1 image data head
document were used for the radiometric calibration of the GF-
1 data and included five bands: B (0.45–0.52 um), G (0.52–0.
59 um), R (0.63–0.69 um), NIR (0.77–0.89 um), and PAN (0.
52–0.89 um). Then, the ENVI5.1 FLAASH atmospheric cor-
rection model was used for the atmospheric correction of re-
mote sensing images. Data fusion at different resolutions or
different spectrums was beneficial for image classification and
interpretation. PAN bands and four multispectral band images
were used for image fusion.

Land use and land cover data

Seven LULC types were analyzed, including urban areas,
croplands, forest grassland (i.e., trees, grass, bushes, sparse
trees, shrubs, and other vegetation), water bodies (i.e., lakes,
rivers, ponds, and reservoirs), other land types (i.e., medium-
and low-cover grasslands and bare land), saline land, and de-
serts. We used a decision tree classification approach when
classifying these types. Specifically, we established the fol-
lowing seven land use and land cover types with the
Environment for Visualizing Images software (ENVI
Version 5.0): urban areas, cropland, forest grassland, water
bodies, salinized land, desert, and others. These classifications
were based on actual conditions in the research zone. The final
result showed that the overall accuracy was 87.31% and the
kappa coefficient was 0.88. Table 2 shows a confusion matrix
with a maximum likelihood supervised classification.

Construction buffers in rivers

This study references a previously used method (Karr and
Schlosser 1978; Shen et al. 2015). To analyze the relationship

Fig. 1 a Amap of the study area, photographs of the study site, and photographs of four selected sampling locations. b A satellite map of the study area
for the following sites: water body (sample site 26), saline land (sample site 5), forest grassland (sample site 9), and desert (sample site 8)
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between LULC types and the WQI at different distances, this
study constructed a wide range of buffer zones (e.g., 100, 200,
300, 400, and 500 m) for the sites through ArcGIS 10.2
(Environmental Systems Research Institute, Inc., Redlands,
CA, USA).

Selected landscape index

A landscape pattern index reflects the characteristics of the
spatial configuration (Cadavid Restrepo et al. 2017; Yang
et al. 2017) to reduce redundancy. Here, six landscape indexes
were selected, including the largest patch index (LPI), the
landscape shape index (LSI), the landscape segmentation

index (DIVISION), the connectivity index (COHESION),
PLAND, and the aggregation index (AI). These parameters
were calculated using Fragstats 3.3 software (McGarigal
et al. 2012). Landscape indexes describing landscape are in
Table 3.

Calculating the WQI

The WQI reflects the composite influence of different water
quality parameters (Sahu and Sikdar 2008). The WQI has
critical health effects whose presence above critical concen-
tration limits could limit the usability of the resource for do-
mestic and drinking purposes (Varol and Davraz 2015; Şehnaz

Table 1 Water quality parameters and experiment methods

Number Water quality
parameters

Experiment methods

1 COD According to the dichromate method (GB 11914-1989) using a standard COD digestion apparatus
(K-100) to determine COD

2 BOD5 According to the dilution and inoculation method (HJ 505-2009) with a constant temperature incubator (HWS-150 type)
for determining the content of BOD5

3 TP According to the ammonium molybdate spectrophotometric method (HJ 636-2012) using a visible light
spectrophotometer 722 N for determining the content of TP

4 TN According to the ultraviolet spectrophotometry (HJ 535-2009) by using an ultraviolet visible light spectrophotometer,
UV-6100, for determining the content of TN

5 NH4
+-N According to Nessler’s reagent spectrophotometer with the amount of visible light spectrophotometer 722 N for

determining NH4
+-N

6 Iron According to the chemical analysis of tungsten method, the ortho-phenanthroline photometric method was used for the
determination of iron content

7 Copper According to the chemical analysis of ferrotitanium method, the DDTC photometric method used for the determination
of copper content

8 Zinc According to the spectrophotometric method with PAN method determination of zinc content

9 Mg According to the acid chrome blue K method

10 SO4
2− According to the methylene blue method (GB T5750.5-2006)

11 PO4
3− According to the phosphorus molybdenum blue colorimetric method (GB T5750.5-2006)

12 Cr6+ According to the photometry of diphenylcarbazide method (GB T5750.5-2006)

Table 2 The calculation of a confusion matrix by a maximum likelihood supervised classification

LULC Water
body

Saline
land

Cropland Forest
grassland

Desert Urban
land

Other
land

Total User’s accuracy
(%)

Water body 144 0 0 0 0 0 0 144 100

Saline land 0 57 0 0 0 19 26 102 55.88

Cropland 0 46 101 0 0 0 0 147 68.71

Forest grassland 0 46 0 101 0 0 0 147 68.71

Desert 1 0 0 0 114 0 0 115 99.13

Urban land 0 0 0 0 0 99 17 116 85.34

Other land types 0 0 0 0 0 0 77 77 100

Total 145 103 101 101 114 118 120 Overall = 87.31%

Producer’s accuracy
(%)

99.31 55.34 100 100 100 83.89 64.17 Kappa = 0.80
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Şener et al. 2017). The relative weight (Wi) was computed
from the following equation:

Wi ¼ Wi

∑n
n¼1Wi

ð1Þ

where Wi is weight of each parameter, Wi is the relative
weight, and n is number of parameters. Then, a quality rating
(Qi) by the WHO (2008) was performed, and the result was
multiplied by 100:

Qi ¼
Ci

Si
� 100 ð2Þ

where Ci is the concentration of each chemical parameter in
each water sample (mg/L),Qi is the quality rating, and Si is the
drinking water standard for each chemical parameter (mg/L).
The WQI equations were calculated as follows:

SIi ¼ Wi � qi ð3Þ

WQI ¼ ∑n
i¼1SIi ð4Þ

where SIi is the sub-index of the ith parameter and Qi is the
quality rating based on the concentration of the ith parameter.

Standard water quality assessment

The calculatedWQI values were classified into five categories
as follows (Wang et al. 2017c; Şehnaz Şener et al. 2017; Wu
et al. 2018): when the WQI value > 50, water quality was
excellent and suitable for drinking (I water quality); 50 >
WQI value > 100 meant that the water quality was acceptable
(II water quality); 100 > HIX > 200 implied that water quality
was poor (III water quality); when 200 > HIX > 300, water
quality was very poor (IV water quality); finally, a value of
HIX < 300 indicated that the water was unsuitable for drinking
(V water quality).

Stepwise linear regression model

A parametric stepwise regression analysis was performed at
every step for variables in previous steps (Qiu et al. 2016). We
constructed a stepwise linear regression (SLR) model. SPSS
(version 19.0) software was selected to construct the SLR
model.

y ¼ β0 þ βx1 þ βx2 þ⋯⋯βkxx þ ε ð5Þ

where β0, β1…βk is an unknown parameter of k + 1, β0 is a
regression constant, β1…βk is the regression coefficient, and Y
is the interpreted variable.

Geographically weighted regression model

As an extension of global statistical models, the geographically
weighted regression (GWR) embeds location data into regres-
sion parameters to assess the local relationships between inde-
pendent and dependent variables (Li et al. 2014; Chen et al.
2016a; Li et al. 2017; Dziauddin et al. 2015). The distribution
of sample sites resulted in a significant advantage in developing
GWRmodels for Ebinur Lake oasis. The formula is as follows:

yi ¼ β0 uj; vi
� �þ ∑

p

i¼1
uj; vi
� �

xij þ ε j ð6Þ

where (uj, vj) are the coordinates for location j, β0(ui, vj) is the
local regression coefficient for independent variables xi at loca-
tion j, and β0(ui, vj) and εj are the intercept and error term,
respectively.

Statistical analysis and model assessment

Data were analyzed using the SPSS19.0 (19.0, SPSS,
Chicago, IBM, USA) software for statistical calculations,
drawing, and analyses. Data analyses were performed using
Origin 8.0 (OriginLab Corporation, America). R2 is the fit

Table 3 Landscape metrics used in the present study

Index Symbol Definition

Largest patch index LPI LPI quantifies the percentage of total landscape area comprised by the largest patch

Landscape shape index LSI LSI provides a standardized measure of total edge or edge density that adjusts for the size of the landscape

Connectivity index COHESION COHESION is equal to 1 minus the sum of the plaque perimeter divided by the circumference patch
multiplied by the area of the square root sum, the reciprocal of the square root of the difference, finally
multiplied by 100

PLAND PLAND The number of adjacent plaques, including focus types, is divided by the number of adjacent cells,
including the focus class, before multiplying by 100 to retrieve the percentage

Landscape segmentation
index

DIVISION DIVISION is equal to 1 minus the area of the plaque divided by the sum of squares of the entire landscape

Aggregation AI AI takes into account only adjacencies involving the focal class, not adjacencies with other patch types
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coefficient of the model; the closer this value is to 1, the higher
the relative accuracy of the model. Figure 2 shows a technical
flowchart for this study.

Result and analysis

Statistical analysis of land use and land cover
under the multi-scale method

This study used river scales at 100-, 200-, 300-, 400-, and
500-m buffers as examples (Fig. 3). The value of the area
for urban areas declined slightly within the buffer zones,
with high values for sample 28 and sample 29, which
were only 56.2 and 48.2% for the 100- and 200-m scale,
respectively. The lowest values were for samples 25 and
34, which were only 0% at different scales. The propor-
tion of other land in samples 16 and 17, however, was up
to 74.93% at the 100-m buffer scale, which reflects the
existence of a large amount of undeveloped land within
this area. It is the main feature of land use in a dry area.
The proportion of saline land in samples 3, 4, and 10 was
up to 60% at the 100-m buffer scale; with an increase in
percentage, the value declines in the buffer scale, which
reflects the existence of a large amount of undeveloped
land within this area.

Spatial variations in water quality

In this study, TN, NH4
+-N, TP, DO, copper, zinc, iron, BOD5,

and COD were selected. Spatially, TP is high in most areas of
the Ebinur Lake oasis (Fig. 4). The highest value is observed
in the Bo River (0.53 g/kg), because the water sample site is
located in Jinghe County, where the effects of human factors
are severe, and the content of TP in water bodies is high and
affects the entire river. Copper, Fe, and zinc are lower in most
areas in the Ebinur Lake oasis (Fig. 4). The highest values are
observed in the Jing River, reaching 5.88, 0.13, and 1.72 g/kg
because the water sample site is located midstream of the Bo
River where the effects of mining are severe, and the content
copper in water bodies is high and affects the entire river.
COD and BOD5 are lower in most areas in the Ebinur Lake
oasis (Fig. 4). The highest value is observed in the Ebinur
Lake, reaching 12.1 and 1721 g/kg.

Calculation of the WQI

TP, TN, BOD5, NH4
+-N, iron, copper, zinc, SO4

2−, COD,
PO4

3−, and Cr6+ were considered when calculating the WQI
value for each sample. The analysis results for all 30 sampling
points were used for quality evaluation. The World Health
Organization (WHO 2008) limits were utilized for calcula-
tions. Distribution maps of the water quality parameters (TP,
TN, BOD5, NH4

+-N, iron, copper, zinc, SO4
2−, COD, PO4

3−,
and Cr6+) and a final WQI map of the river are shown in Fig. 5
and Table 4.

Spatially, content for the WQI is high in most areas of
the Bo River downstream of Ebinur Lake (Fig. 4). The
highest value is observed in the Kuitun River (438), which
belongs to the V category since this water is unsuitable for
drinking; this is because the water sample was located in
the town of Tuotuo, where the effects of human factors are
severe, and the water quality is the worst in the river.
Therefore, water quality is poorer, and the content of the
WQI is higher. The best water quality in the Ebinur Lake
oasis was located in the upper reaches of the Bo River.
With a WQI value less than 100, it belongs to the I grade
water quality category and is suitable for drinking. Poor
water quality has been observed midstream in the
Boertala River, where the sample located in Wenquan
County was taken; the effects of human factors there are
severe, and there are water quality mutations and water
quality index anomalies.

Extracted effective buffer based on relationships
between land use and land cover and WQI

To show that the LULC area has very different impacts on
the WQI, the Pearson correlation coefficient was calculated
(Fig. 6). Urban areas, saline areas, and deserts were

Water samples
were collected

Remote sensing
image collected

Water quality parameters
measurements

(Decision tree)
LULC classification

Spatial variations
Calculated WQI

Construction Buffers
Selected landscape index

Rrelationships between land uses/cover
and water quality index under multi-scale

Extract the primary factors of landscape
influencing water quality index

Analysis the primary factors of landscape
influencing water quality

Pearson's
correlation

Stepwise linear
regression

GWR model

Ebinur Lake Oasis

To quantify the relationship between landscape index and WQI

Fig. 2 Overall flowchart of the study
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positively correlated with the WQI. The results found that
urban areas were positively correlated with the WQI, with r
correlation coefficients of 0.73 (p < 0.05), 0.89 (p < 0.01),
0.90 (p < 0.01), 0.92 (p < 0.01), and 0.77 (p < 0.01). The
highest correlation appears at 400 m, with an r correlation
coefficient of 0.92 (p < 0.01). The saline areas were positive-
ly correlated with the WQI, with r correlation coefficients of
0.57 (p < 0.05), 0.68 (p < 0.05), 0.75 (p < 0.05), 0.82
(p < 0.05), and 0.76 (p < 0.05). The highest correlation ap-
peared at 400 m, with an r correlation coefficient of 0.82
(p < 0.05). The desert was positively correlated with the
WQI, with r correlation coefficients of 0.53 (p < 0.05), 0.54
(p < 0.05), 0.60 (p < 0.05), 0.80 (p < 0.05), and 0.70
(p < 0.05). The highest correlation appeared at 400 m, with
an r correlation coefficient of 0.80 (p < 0.05). Forest grass-
lands, other types of land, water bodies, and croplands were
negatively correlated with the WQI. Pearson results showed
that forest grasslands were negatively correlated with the

WQI, with r correlation coefficients of 0.64 (p < 0.05), 0.68
(p < 0.05), 0.69 (p < 0.05), 0.82 (p < 0.05), and 0.63
(p < 0.05). The highest correlation appeared at 400 m, with
an r correlation coefficient of 0.82 (p < 0.05). The other land
types were negatively correlated with the WQI, with r corre-
lation coefficients of 0.44 (p < 0.05), 0.46 (p < 0.05), 0.53
(p < 0.05), 0.74 (p < 0.05), and 0.68 (p < 0.05). The highest
correlation appeared at 400 m, with an r correlation coeffi-
cient of 0.74 (p < 0.05). Water bodies were negatively corre-
lated with the WQI, with r correlation coefficients of 0.47
(p < 0.05), 0.54 (p < 0.05), 0.56 (p < 0.05), 0.62 (p < 0.05),
and 0.51 (p < 0.05). The highest correlation appeared at
400 m, with an r correlation coefficient of 0.62 (p < 0.05).
Croplands were negatively correlated with the WQI, with r
correlation coefficients of 0.44 (p < 0.05), 0.46 (p < 0.05),
0.50 (p < 0.05), 0.56 (p < 0.05) and 0.51 (p < 0.05). The
highest correlation appeared at 400 m, with an r correlation
coefficient of 0.56 (p < 0.05).

Fig. 3 Statistical analysis of land
use and land cover area under a
multi-scale method
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Fig. 4 Spatial-temporal distribution of water quality in the Ebinur Lake oasis
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Regional relationships between the water quality
index and landscape patterns

Landscape index statistics

Figure 7 shows the differences in the following indexes at
different scales: PLAND, DIVISION, AI, COHESION, LSI,
and LPI. PLAND values ranged from 0 n/ha to 78%within the
400-m buffer zone, showing the highest degree of landscape
fragmentation. The values of DIVISION were highest at the
400-m buffer scale, ranging from 0.4 to 0.11, which shows
that the landscape became increasingly diverse. The value of
COHESION andAI both show dispersion and interspersion of
the land use types.

Extract the primary factors influencing landscape WQI

Using the stepwise multiple linear regression method, the
contribution of land use land cover type to the WQI was

analyzed. R2, F, and p values are used to test significance
levels, as shown in Table 5. For urban areas, the regression
analysis between landscape indexes and the WQI indicated
that there is a significant relationship between the WQI and
COHESION, with an adjusted R2 of 0.63. For water bod-
ies, the regression analysis between landscape indexes and
the WQI indicated that there is a significant relationship
between the WQI and COHESION, with an adjusted R2 of
0.64. For croplands, the regression analysis between land-
scape indexes and the WQI indicated that there is a signif-
icant relationship between LSI, DIVISION, and the WQI,
with an R2 of 0.77. For forest grasslands, the regression
analysis between landscape indexes and the WQI indicated
that there is a significant relationship between LSI, LPI,
and the WQI, with an R2 of 0.79. For saline areas, the
regression analysis between landscape indexes and the
WQI indicated that there is significant relationship be-
tween the LPI and the WQI, with an R2 of 0.71. For other
types of land, the regression analysis between landscape

Table 4 Assessment of the water
quality using WQI Number Parameters WHO standards (2008) Weight (Wi) Relative weight (Wi)

1 COD 15.00 4.00 0.117

2 BOD5 3.00 5.00 0.147

3 TP 0.10 3.00 0.088

4 TN 0.50 3.00 0.088

5 NH4
+-N 0.50 3.00 0.088

6 Mg 30.00 2.00 0.059

7 Fe 0.30 1.00 0.029

8 Cu 1.00 1.00 0.029

9 Zn 1.00 2.00 0.059

10 SO4
2− 250.00 4.00 0.117

11 PO4
3− 50.00 5.00 0.0174

12 Cr6+ 0.05 1.00 0.0294
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Fig. 6 Pearson relationships between the following LULC types: forest
grasslands, water bodies, croplands, saline lands, other land types, and
deserts. The WQI is within a buffer from 100 to 500 mFig. 5 Spatial characteristics of the WQI in the Ebinur Lake watershed
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indexes and the WQI indicated that there is significant
relationship between the LSI, PLAND, and the WQI, with
an R2 of 0.88. For deserts, the regression analysis between
landscape indexes and the WQI indicated that there is sig-
nificant relationship between PLAND and the WQI, with
an R2 of 0.81.

Analysis of the primary factors in landscape that influence
the WQI

Spatially, local R2 and residual values show a consistent trend,
where the residual showed a drastic change. The local R2

between the LPI, LSI of forest grasslands, and the WQI was
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Table 5 Results of the stepwise linear regression between the WQI and landscape indexes

LULC Variable Autonomous variable Model Adjust R2 Std. error F p

Urban land WQI COHESION WQI = − 7.48 COHESION+ 844.29 0.63 80.04 18.59 p < 0.01

Water body WQI COHESION WQI = 11.66 COHESION − 959.93 0.64 61.47 34.22 p < 0.01

Cropland WQI LSI, DIVISION WQI = 41.33 LSI − 894.43 DIVISION+ 831.15 0.77 75.83 35.07 p < 0.01

Forest grassland WQI LSI, LPI WQI = 33.63 LSI − 2.89 LPI + 98.27 0.79 64.52 44.51 p < 0.01

Saline land WQI LPI WQI = − 6.01 LPI + 372.476 0.71 82.64 27.01 p < 0.01

Other land WQI LSI, PLAND WQI = 30.466 LSI − 3.492 PLAND+ 176.389 0.88 42.44 40.626 p < 0.01

Desert WQI PLAND WQI = 10.4.9 PLAND+ 21.224 0.81 29.42 29.92 p < 0.01
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high in the Akeqisu River and the Kuitun rivers and was low
in the Bo River; the value ranged range from 0.57 to 1.86. The
coefficient between LPI, LSI of forest grasslands, and the
WQI was high in the Akeqisu River and the Kuitun rivers
and was low in the Bo River. The residual between the forest
grasslands and WQI was 240 in the Jing River. The local R2

between the LPI, DIVISION for croplands, and the WQI was
high in the Akeqisu River and Kuitun rivers (0.41). The coef-
ficient between the LPI, DIVISION for croplands, and the
WQI was high in the Akeqisu River and the Kuitun rivers
and was low in the Bo River. The residual between croplands
and the WQI was 260 in the Jing River. The local R2 between
the COHESION for urban land and the WQI was high in the
Akeqisu River and the Kuitun rivers and was low in the Bo
River, with a range from 0 to 4.13. The coefficient between
COHESION for urban land and the WQI was high in the
Akeqisu River and the Kuitun rivers and was low in the Bo
River. The residual between urban land and the WQI was 256
in the Jing River. Saline area was a special land use type in the
watershed; there was a large distribution of salt in the water-
shed, and the distribution was less upstream of the Jing River.
The local R2 between LPI for urban land and the WQI was
high in the Akeqisu River and the Kuitun rivers and was low
in the Jing River (close to 0); other rivers ranged from 0 to
0.72. The coefficient between the LPI for urban land and the
WQI was high in the Akeqisu River and the Kuitun rivers and
was low in the Bo River. The residual between urban land and
theWQI was 300 in the Jing River. For water bodies and other

types of land, absolute values of the local regression coeffi-
cients, local R2, and residuals showed a consistent trend, and
the residual showed a drastic change (Fig. 8).

Discussion

Relationships between the WQI and land use
and land cover landscape

Forest grasslands, other types of land, water bodies, and crop-
lands had negative effects on the WQI value in this study,
whereas saline land types, deserts, and urban areas had posi-
tive effects on the WQI. Negative and positive relationships
between certain LULCs and water quality parameters were
found in different buffers. Statistics indicate that saline areas
mainly occurred in the Bo River, Jinghe River, surrounding
villages and towns of Ebinur Lake, downstream of the
Daheyanzi River, and north of Bole City in the Ebinur Lake
oasis (Mi et al. 2010). Severe soil salinization seriously affect-
ed the farming of crops; therefore, some farmers increase the
amount of chemical fertilizer to increase yield. Others even
abandon the land, thereby resulting in land use and land cover
change, and worse, water and soil pollution.

There are many studies that show cropland being negative-
ly correlated with water quality (Chen et al. 2016); however,
cropland had negative effects on the WQI value in this study.
The results indicate that croplands improve water quality in
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the Ebinur Lake oasis. These results are not consistent with
most previous studies (Li et al. 2009b; Tu 2011; Wu 2013;
Wan et al. 2014; Chen et al. 2016; Shi et al. 2017). Because the
study area is located in the arid areas of Xinjiang, desert dust

and salt dust are major environmental hazards in this study
area. Desert dust and salt dust seriously affect the atmosphere
and water quality and accelerate the degradation of vegetation
and threaten ecological security in the oasis. However, with
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economic development of and population growth, human im-
provement of desert land and saline land increases the area of
croplands (Yu et al. 2017). Therefore, croplands are the largest
cover of vegetation, indicating that croplands are positively
correlated with water quality in the Ebinur Lake oasis.

Most rivers in Xinjiang are characterized by low water
yield, short length, small environmental water capacity, poor
self-cleaning capability, and low tolerance to pollution.
Hence, an artificial change in land use and the exploration
for resources in lake regions has led to an evident correlation
between LULC types and the WQI. In addition, scientifically
utilizing and protecting water resources in Ebinur Lake, as
well as scientifically applying chemical fertilizers and improv-
ing their application rates, are important issues that should be

addressed to achieve sustainable development in agricultural
irrigation zones in the Jinghe oasis and in rivers in Xinjiang.

Scale effects on varying relationships

Determining an effective buffer in water quality management
was the key problem in this study, and the influence of land
use and land cover and landscape on WQI values varied spa-
tially. The relationship was most significant at the 400-m buff-
er in this study. Carey et al. (2011) indicated that a riparian
buffer was the key element in land use and land cover when
formulating policy. Buck et al. (2004) suggested that the
Bscale^ effects of land management should be given more
attention. Chen et al. (2016) reported that forest land and water
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quality were positively correlated within the 200-m buffer
zone. Ebinur Lake has become the most significant area of
ecological degradation. This study area has the typical char-
acteristics of a mountain oasis-desert environment. It can be
characterized as a desert-oasis region, where the researched
land area is large, the population is small, the changing land-
scape characteristics are small, and the desert area is located in
an ecologically fragile district. The effective buffer zone in
this area is 400 m and has a direct relationship with the local
desert-oasis ecosystem.

Management implications

The oasis is the foundation of human existence in Xinjiang.
Urban and saline areas, which have a positive effect on the
WQI value of the river, are mainly dispersed along the river in
this study. The AlashanMountain, located in the northwestern
part of the watershed, is consistent with a typical continental
climate. This region is windy and has scarce rainfall and
frequent salt storms in the Ebinur Lake oasis. Therefore, it is
important to control saline land runoff. Saline areas have a
strong impact on water quality at a large scale for ecosystem
security. Zhang et al. (2017) reports that salt dust from the
Ebinur Lake oasis has a great impact on the climate of East
Asia.

Conclusion

This study explored the relationships between land use and
land cover landscape patterns and water quality in the Ebinur
Lake oasis in China. The WQI was used to identify threats to
water quality and contribute to better water resource manage-
ment. The results showed the following:

(1) The calculated WQI was between 56.61 and 2886.51.
The prepared WQI map shows poor water quality.

(2) The WQI varied spatially and was influenced by land
use. Both positive and negative relationships between
land use and the WQI were found at different buffers.
This relationship was most significant at the 400-m
buffer.

(3) There was a significant relationship between the water
quality index and landscape (i.e., PLAND, DIVISION,
AI, COHESION, LSI, and LPI) using stepwise multiple
linear regressions under a 400-m scale, with an adjusted
R2 between 0.63 and 0.88.

(4) Absolute values of the local regression coefficients for
the LPI and LSI for forest grassland and the WQI were
high in the Akeqisu River and the Kuitun rivers and were
low in the Bo River, ranging from 0.57 to 1.86. The
absolute value of the local regression coefficient between
the LSI for cropland and theWQI was 0.44. The absolute

values of the local regression coefficients between the
LPI for saline lands and the WQI were high in the Jing
River and low in the Bo River, the Akeqisu River, and
the Kuitun rivers, ranging from 0.57 to 1.86.
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