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Abstract
Despite the fact that the nitrogen (N) fixers act as the key regulator of ecosystem process, a detailed study of their abundance,
diversity, and dynamics in arsenic (As)-contaminated rice fields is missing so far. DNA extracted from soil followed by 16S
rRNA and nifH gene-based real-time qPCR, clone library analysis, and DNA sequencing were used to examine the status of the
total and diazotrophic communities in two agricultural fields with and without arsenic contamination history during one rice
cultivation season. In general, higher nifH and 16S rRNA gene copy numbers were observed in rice growing soils with lesser As
than that with higher As. Elevated levels of 16S rRNA and nifH genes in soil is directly associated with total and nitrogen fixers
abundance in the agricultural land without As contamination history through the cultivation period, but the copy number of 16S
rRNA gene was decreased, and the nifH gene remained unchanged in the As-contaminated land. Additionally, Canonical
Correspondence Analysis (CCA) indicated the possible suppression of nifH gene abundance by soil pH, phosphate, and As
content. Increased abundance of total and Acidobacterial lineages in low As-containing soil and the detection of several
uncultured groups among nifH gene sequence in higher frequency indicated the presence of novel nifH bearing bacterial groups.
Conversely, the abundance of copiotrophic Proteobacterial lineages gradually increased in soil with higher As. Herein, our study
demonstrated that the dynamics of free-living nitrogen-fixing bacterial communities were perturbed due to As contamination in
agricultural land.
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Introduction

Arsenic (As) contamination of soil and water is a serious issue
due to its toxicity toward many organisms of the biome in-
cluding humans; thus, it poses a severe threat to biodiversity.
Higher concentration of As in underground aquifers is a seri-
ous concern, as most, if not all people are dependent on the
underground water for drinking and irrigation purposes (Li

et al. 2015; Wang et al. 2016a). Irrigation with As-laden
groundwater is the major source of arsenic contamination in
rice growing soil (Christopher and Haque, 2012; Polizzotto
et al. 2013). Accumulation of As in agricultural soil enhances
its translocation into rice plant and also in the rice grain in
greater amounts (Khan et al. 2010). Consequently, people of
rice-consuming countries like Bangladesh and India where
As-laden groundwater is used for irrigation, in particular, were
severely affected by As (Meharg and Rahman 2003; Mondal
and Polya 2008; Karagas et al. 2016). Furthermore, several
investigations noticed the negative correlation between crop
yield and As contamination in soil (Brammer and Ravenscroft
2009; Srivastava et al. 2013). Therefore, elevated accumula-
tion of As in rice field reduces soil fertility, and simultaneously
its translocation to rice plant increases human health hazard
through food chain contamination, thereby indirectly
obstructing the sustainable agriculture (Brammer and
Ravenscroft 2009; Bhattacharya et al. 2016).

Responsible editor: Diane Purchase

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11356-017-0858-5) contains supplementary
material, which is available to authorized users.

* Ekramul Islam
ekramul.rs@gmail.com

1 Department of Microbiology, University of Kalyani, Kalyani, West
Bengal 741235, India

Environmental Science and Pollution Research (2018) 25:4951–4962
https://doi.org/10.1007/s11356-017-0858-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-017-0858-5&domain=pdf
http://orcid.org/0000-0001-9033-1732
https://doi.org/10.1007/s11356-017-0858-5
mailto:ekramul.rs@gmail.com


The fertile quality of soil in particular zone is largely deter-
mined by the composition and diversity of the inhabitant mi-
crobial communities which influence nutrient transformation
and edaphic factors (Reed et al. 2011; Luo et al. 2016).
Nitrogen-fixing bacteria, the diazotrophs, are the major
drivers of soil nitrogen input in the terrestrial ecosystem, re-
duce atmospheric nitrogen into ammonia which in turn gets
converted to nitrate by nitrifying bacteria (Herridge et al.
2008; Vitousek et al. 2013; Vicente and Dean 2017).
Biologically fixed ammonia and nitrate are used by all plants
as their sole source of nitrogen (Santi et al. 2013). The con-
version of free N2 into ammonia is exclusively carried out by
prokaryotic nitrogenase (Yang et al. 2017, Vicente and Dean
2017). Among several subtypes, the molybdenum-dependent
nitrogenase NifH encoded by the highly conserved nifH gene
is widely distributed among all diazotrophs and well studied
(Gaby and Buckley 2012; Santos et al. 2012; Kaschuk and
Hungria 2017). Therefore, the soil fertility, as well as the op-
timum growth of plant directly or indirectly depends on the
expression of nifH gene or in other words diversity of
diazotrophic microorganisms (Kaschuk and Hungria 2017).
Previous studies showed the effects of agricultural irrigation
on in situ microbial community in high As aquifer but the
impact of aquifer microbes in the irrigated water on the surface
sediment geochemistry is less studied and should be explored
in much detail (Li et al. 2015;Wang et al. 2016a). Considering
these facts, present agricultural practice emphasizes predomi-
nantly on microbial community management, among many
other factors to sustain the soil fertility (Das et al. 2016).
Several investigations targeted As abatement into the plant
bymanaging the agricultural practice and also by on focussing
soil microbial communities (Somenahally et al. 2011; Das
et al. 2016). Also, the rhizosphere microbial community
thought to play a pivotal role during enhanced phytoextraction
of As from soil (Sessitsch et al. 2013). All these studies re-
volved around the interaction between plant, microbes, and
arsenic. However, not a single study reported so far on the
impact of As exposure on soil microbial community during
crop cultivation and therefore information on their abundance,
diversity, dynamics, and function in the arsenic contaminated
rice field has been carried out in this study to help ameliorate
the problem.

Consequently, the abundance, composition, and distribu-
tion of microbes are site-specific and influenced by the chem-
istry of soil microhabitats (Wang et al. 2007; Islam et al. 2011;
Gittel et al. 2014; Wang et al. 2017). Any perturbation to the
soil composition and microenvironment may lead to
restructuring the inhabitant microbial community composi-
tion, diversity, and function (Griffiths and Philippot 2013;
Huhe et al. 2014; Wang et al. 2016b). For this reason, these
microbial community parameters are generally used to assess
the environmental changes influenced by varied factors (Islam
and Sar 2011; Silva et al. 2013). Microorganisms capable of

assimilating and fixing atmospheric N2, are considered as one
of such important bio-indicators of soil fertility of several
agricultural fields including paddy field (Hsu and Buckley
2009; Huhe et al. 2014). Changes in diazotroph composition
implicating As contamination might be resulting in the de-
crease of rice production.

In this study, dynamics of total and free-living diazotrophic
population was assessed in the soil of two agricultural fields
with and without the history of irrigation with As-laden
groundwater, throughout the rice cultivation period. Free-
living diazotrophs are recalcitrant to laboratory cultivation;
thus, little is explored about them; the nifH gene was used to
study their diversity using culture-independent methods (Hsu
and Buckley 2009; Gaby and Buckley 2012; Huhe et al.
2014). The abundance, distribution, and diversity of the total
and nitrogen-fixing bacterial community were monitored by
quantitative real-time PCR (qPCR), clone library analysis, and
DNA sequencing.

Materials and methods

Site description and sample collection

Samples were collected from agricultural fields cultivating
rice rotationally with other crops. Two agricultural fields
with and without As contamination history in two differ-
ent locations of West Bengal, India, were selected. One
agricultural field was located in Arazi Ramakantapur vil-
lage (24° 34′ 15′′ N, 88° 3′ 59′′ E) of Murshidabad district
(MBD) with a history of As contamination, and the other
was in Baruipara village (22° 45′ 33′′ N, 88° 14′ 26′′ E) of
Hooghly district (BP). Arsenic-laden groundwater is used
in Arazi Ramakantapur village for rice cultivation but
there was no history of As contamination in groundwater
of Baruipara village. Alternate wetting and drying irriga-
tion strategy was followed in both places, where the field
was re-flooded when saturated water of the soil reduced.
Soil samples were collected during drying cycle from
three randomly selected points (~ 5 cm deep), composited,
and kept on ice. Samples collected from Murshidabad
(MBD) and Hooghly (BP) district were numbered accord-
ing to the place of collection followed by numerals show-
ing collection sequence. Samples from both the agricul-
tural lands were collected in three phases, during tillage
(BP1 and MBD1), late tillering stage (BP2 and MBD2),
and after harvesting of rice (BP3 and MBD3). Collected
samples were transported in the ice-cooled chest to the
laboratory and stored at − 20 °C until used for DNA ex-
traction. One aliquot of the composite sample was ana-
lyzed for soil physicochemical properties and the other
was used for culture independent microbiological
analysis.
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Chemical analysis of soil samples

Aliquots of soil samples were oven dried and grinded to obtain
powder samples. For estimation of arsenic and other metal
content, aliquot of the powdered soil samples was acid-
digested with the digestion mixture (nitric, sulfuric, and
perchloric acid in a volume ratio of 3:1:1). Arsenic and other
metal concentration were estimated by Atomic Absorption
Spectrophotometer (Thermo Scientific™ iCE™ 3000 Series)
attached with vapor generator (VP100). Total organic carbon
was estimated using standard Walkley-Black method
(Walkley and Black 1934). Nitrate (NO3-N) and total phos-
phorus were measured following standard spectrophotometric
methods (Jackson 1958). Briefly, nitrate was estimated from
soil extract by the development of yellow color with
nitrophenoldisulfonic acid and measuring absorbance at
420 nm wavelength light. Total phosphorus was measured
from the acid digested soil sample by the development of 1,
2, 4-aminonaphtholsulfonic acid-reduced molybdophosphoric
blue color in the perchloric acid system. Exchangeable ammo-
nium (NH4

+-N) from soil was estimated by Kjeldahl distilla-
tion followed by titration with H2SO4 (Jackson 1958). Soil pH
was measured by pH meters following resuspending the pow-
dered soil in deionized water (10:1). Sand, silt, and clay con-
tent in the collected samples were determined by standard
procedure (Lu 1999).

DNA extraction and PCR amplification

Total DNA from the six soil samples was extracted in tripli-
cate taking 0.25 g subsample using MoBio PowerSoil DNA
kit (MoBio, Carlsbad, CA). All three extractions from each
sample were pooled and quantified by NanoDrop spectropho-
tometer (Thermo Scientific) and stored at − 20 °C until use.
Diluted DNA (15 ng/μl) was used to amplify the nifH and 16S
rRNA genes. Each PCR reaction mixture contained the fol-
lowing (final concentration): 2 mM MgCl2, 240 μM of each
dNTPs, 10 pmol (16S rRNA gene) or 40 pmol (nifH gene) of
each primer, 10× PCR buffer, and 1.5 U TaqDNA polymerase
in 25 μl reaction. The bacterial 16S rRNA genes were ampli-
fied with the primer set 27F and 1492R using previously de-
scribe touchdown PCR across a broad range of annealing
temperatures (55–60 °C) (Islam et al. 2014). The primer pair
IGK3/DVV was used to amplify nifH gene according to Gaby
and Buckley (2012).

Construction of 16S rRNA and nifH gene clone
libraries and OTU assignment

Amplified PCR products were pooled, gel purified, ligated
into the pGEM-T vector (Promega, USA), and cloned into
E. coli JM109. Positive transformants with proper insert size
were considered for clone library construction with nearly 100

(16S rRNA) and 30 (nifH gene) randomly chosen positive
colonies per samples. The cloned gene fragments from each
positive colony were re-amplified using vector specific primer
SP6 and T7 by whole-cell PCR. The amplified products were
digested with restriction endonuclease (MspI) in separate re-
actions and analyzed by 2.5% agarose gel electrophoresis. The
restriction patterns of amplified cloned genes were grouped
visually, and each group was considered as an Operational
Taxonomic Unit (OTU). Representative clones from each
OTU were identified through plasmid extraction and DNA
sequencing with ABI PRISM BigDye terminator ready reac-
tion mix (Life Technologies, USA) and Applied Biosystems
ABI 3730xl DNA analyzer. Aliquots of each clone were pre-
served at − 80 °C until further analysis.

DNA translation and operational protein unit (OPU)
assignment

For better taxonomic resolution of the nifH sequences and to
associate their presence with the specific soil sample, DNA
sequences were translated into amino acid sequences by trans-
lation tools of ExPASy. Respective protein sequence obtained
for each RFLP group was referred as OPU. These protein
sequences were used to find and retrieved similar putative
bacterial groups in the NCBI database through protein blast.

Quantification of 16S rRNA and nifH gene copies
by qPCR

The abundance of total bacteria and nitrogen fixers were quan-
tified by qPCR targeting the 16S rRNA gene (primer 341F
and 518R) (Muyzer et al. 1993) and nifH gene (primer polF
and polR) (Poly et al. 2001). All real-time PCR runs were
performed in duplicate, and each reaction mixture was pre-
pared using the Quantifast SYBR Green master mix
(Qiagen) in a total volume of 20 μl: 10.0 μl Master mix,
1.25 μl of each primer (5 pmol), 4.0 μl template DNA, and
3.5 μl PCR-grade water. The thermal cycling protocol was as
follows: initial denaturation for 3 min at 95 °C followed by
40 cycles of 10 s at 95 °C, 30 s at 55 °C, and 5 s at 72 °C. The
fluorescence signal was measured at the end of each extension
step at 72 °C.

Standards for the qPCR assays were prepared by PCR
amplification of each gene of interest (16S rRNA and nifH
genes) from the genomic DNA of pure cultures using the
universal bacteria specific primers (16S rRNA gene) (Islam
and Sar 2011) and polF and polR (nifH gene) (Poly et al.
2001) followed by cloning into a pGEM-T Easy vector ac-
cording to Islam and Sar (2011). Plasmid DNA concentra-
tions ranging from 1.0 to 0.0001 ng/μl were prepared to
generate the qPCR standard curves. Copy numbers were
calculated from the concentration of DNA added to the re-
action according to Lee et al. (2008).
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Phylogenetic and statistical analyses

Based on number and frequency of OTU identified in each
library, Shannon diversity index (H) and evenness (E) were
calculated as described previously (Islam et al. 2014).
Phylogenetic analysis of the DNA sequence data was per-
formed using MEGA 4.1 software. The relationship between
the samples in respect to their geochemical properties
(Supplementary Table S1) and bacterial assemblage
(Supplementary Table S2) was ascertained using
Unweighted Pair Group Method with Arithmetic Mean anal-
ysis (UPGMA) by building the resemblance dendrogram
using MVSP 3.1 software. The differences in soil chemical
parameters and nifH gene abundance in the different soils over
time were estimated with independent -tests. To test the influ-
ence of soil physicochemical factors on the community, ca-
nonical correspondence analysis (CCA) was performed using
XLSTAT 2014.5.03 software.

Nucleotide accession number

DNA sequences retrieved in this study were submitted to the
GenBank under the following accession number, 16S rRNA
genes: KU603353-KU603417; nifH genes: KX273131-
KX273174.

Results

Comparison of soil parameters

The physicochemical data are presented in Table 1.
Relatively higher concentration of As was observed in
MBD soils (~ 11 mg/kg) compared to BP (~ 7 mg/kg).
Through the cultivation period in BP, the As concentra-
tions in soil remain same but in MBD, it gradually
declined from 12.8 to 10 mg/kg. The pH of the BP
soils was nearly 5.0, whereas ~ 6.5 for MBD. The mois-
ture content of the samples was nearly the same for
both the fields but relatively increased humidity was
noticed during tillering. Compared to NH4-N, relatively
higher level of NO3-N was observed in both the rice
fields. NH4-N level declined with the progression of
cultivation in both rice fields. Reduction of NH4-N level
in MBD during tillering and fall of NO3-N level in BP
through the cultivation period, in particular, was notice-
able. BP soil was characterized by higher sulfate and
lower phosphate content than MBD soil. In addition,
nearly similar level of total organic carbon was noticed
in both the fields and remains unchanged throughout the
cultivation period.

Abundance of nifH and 16S rRNA gene in the soils

Real-time qPCR was used to compare the fluctuation of the
nifH and 16S rRNA gene copy numbers in two rice fields
across one cultivation cycle. Irrespective of rice field, the
abundance of nifH gene copy numbers varied from (1.40 ±
0.21) × 106 to (2.49 ± 0.24) × 107 g−1 dry soil during the cul-
tivation period (Fig. 1a). In general, significantly higher
(p < 0.05) nifH gene copy numbers in BP, particularly during
tillering and post-harvesting [(2.23 ± 0.36) × 107 and (2.49 ±
0.24) × 107 g−1dry soil)] was observed to that in MBD (~
1.45 × 106 g−1dry soil) in all sampling time. In BP, nifH gene
copy numbers gradually increased from tillage to late tillering
(13-fold) and post-harvesting (15-fold) while no significant
(p > 0.05) change in nifH gene copy number was observed
in MBD.

Abundance of total bacterial community in terms of 16S
rRNAgene copy number was assessed to draw conclusions on
the fluctuations of the diazotrophic population using nifH
gene copy number. During the cultivation period, the 16S
rRNA gene copy numbers fluctuated between (3.88 ±
1.03) × 108 to (6.72 ± 2.09) × 108 g−1 dry soil in BP and
(2.98 ± 0.71) × 108 to (5.15 ± 0.74) × 108 g−1 dry soil in
MBD (Fig. 1a). During tillage, higher level of 16S rRNA gene
abundance was observed in MBD than BP. However, during

Table 1 Sampling locations and physicochemical and biological data

Sample BP1 BP2 BP3 MBD1 MBD2 MBD3

Soil texture SCL SCL SCL SC SC SC

Total As (mg/kg) 7.36 6.66 6.94 12.77 10.39 10.00

NH4-N (ppm) 133.8 121.8 106.4 128.8 79.8 99.4

NO3-N (ppm) 397.6 375.2 240.8 313.6 257.6 476

SO4 (ppm) 64.5 78.0 78.0 39.0 40.5 52.5

PO4 (ppm) 1.2 0.92 0.62 15.01 19.61 16.2

TOC (%) 0.85 1.1 0.86 1.0 0.9 0.83

pH 5.1 4.9 4.9 6.7 6.4 6.5

EC (μS/cm) 88.4 82.1 102.8 102.5 97.8 72.4

Moisture (%) 30.2 36 26.3 30.7 42.2 35.3

Zn (mg/kg) 34.2 17.8 34.2 26.5 25.1 23.6

16S rRNA gene clone libraries

Clone library size 101 105 105 100 101 101

Richness 30 21 29 29 25 24

H 3.07 2.62 2.91 3.09 2.80 2.83

Evenness 0.90 0.86 0.86 0.92 0.87 0.89

NifH gene clone libraries

Clone library size 30 30 30 29 30 30

Richness 10 12 11 10 10 11

H 1.64 2.36 2.24 2.03 2.05 2.19

Evenness 0.71 0.95 0.93 0.88 0.89 0.92

SCL, silty clay loam; SC, silty clay; EC, electrical conductivity; H,
Shannon’s diversity index
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tillering and post-harvesting abundance of 16S rRNA gene
gradually declined in MBD but enhanced in BP.

To compare the fluctuation of the diazotrophic bacterial
population in respect to the fluctuation of total bacterial pop-
ulation in each sampling period, the abundance of nifH gene
copy was expressed as per copy of 16S rRNA gene (Fig. 1b).
In BP, relative abundance of nifH gene showed, although,
diazotroph population first increased ninefold during tillering,
however, decreased subsequently during post-harvesting. On
the contrary, the relative abundance of nifH gene copy in
MBD insignificantly increased (p > 0.05) round the cultiva-
tion period. Noticeably, the relative abundance of diazotrophs
in MBD in all sampling period was similar to that observed in
BP during tillage.

Fluctuation of total bacterial communities

To address how the total and diazotrophic bacterial diversity
fluctuated, we focused on ARDRA richness, Shannon diver-
sity index, and evenness of six 16S rRNA gene clone libraries
(BP1, BP2, BP3, MBD1, MBD2, and MBD3) presented in
Table 1. During tillage, both the agricultural fields showed the
similar diversity of total bacteria with nearly equal OTU

richness and evenness. During tillering, total bacterial diver-
sity in both agricultural fields decreased in terms of OTU
richness, Shannon index, and evenness (Table 1). In post-
harvesting time, OTU richness again grew up with increasing
diversity compared to tillering in BP. On the contrary, in the
same period, MBD had less OTU richness with constant
diversity.

DNA sequencing of representative 16S rRNA gene clones
followed by phylogenetic analysis; we tried to find out the
taxonomic groups that were really fluctuated (Fig. 2a).
During tillage, more than eight bacterial groups were observed
in two rice fields at the phylum level. Proteobacteria,
Acidobacteria, and Verruccomicrobia were found as predom-
inant bacterial groups in both the rice field but with different
proportionate (Fig. 2a). Apart from these, Cyanobacteria,
Gematimonadetes, and Candidates saccharibacteria were
found in BP1, whereas, Bacteroidetes, Actinobacteria, and
Chloroflexi were detected in MBD1. During tillering, four
and five different bacterial groups were found in BP2 and
MBD2, respectively. Compared to tillage, declined abundance
of Proteobacteria , as well as the proliferation of
Acidobacteria, was noticed in BP2. In the contrary, very lesser
increased in abundance of these bacterial groups along with
the decrease in Bacteroidetes and Actinobacteria was ob-
served in MBD2. During post-harvesting, in BP3 and
MBD3, eight and six, respectively, bacterial groups were ob-
served. In this period, abundance of both Acidobacteria and
Proteobacteria was reduced to that of tillering.

During tillage, α-, ß-, γ- and δ-Proteobacteria were dis-
tributed equally in BP1, but during tillering, α-Proteobacteria
flourished and other classes were depleted. β-Proteobacteria
became abundant population during post-harvesting. In con-
trast α-, γ- and δ-Proteobacteria were detected during tillage
atMBD1with the abundance ofα-Proteobacteria population,
which became more abundant during tillering and declined
during post-harvesting. Emergence of β-Proteobacteria,
Bacilli, Cyanobacteria, and Ktedonobacteria as dominant
population during post-harvesting in MBD3 was noteworthy
although they were not detected in tillage and tillering period.

Fluctuation of nitrogen-fixing bacterial communities

An attempt had been made to find out the diazotroph that
proliferated or inhibited during cultivation cycle through the
analysis of six nifH gene clone libraries (Table 1). Sequencing
of representative nifH gene clones and BLAST analyses in
NCBI database revealed putative nitrogen fixer were mostly
affiliated to uncultured microorganisms (Fig. 2b), although
blast search with translated putative amino acid sequence in-
dicated their relatedness to dinitrogenase protein.
Phylogenetic analysis of nifH gene sequence revealed the
presence of 11 bacterial taxa (C1 to C11) throughout the cul-
tivation period in two rice fields of which eight (C2 and C5 to
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C11) remained unclassified (Fig. 3). The three known taxo-
nomic groups with which some sequences showed relatedness
were α-Proteobacteria (C1), γ-Proteobacteria (C3), and
Cyanobacteria (C4). Sequences affiliated with α-
Proteobacterial group were more abundantly detected in all
MBD samples. Although the putative nifH gene sequences of
Cyanobacterial origin were more frequent in BP1 and remain
undetected in BP2 and BP3, they found to be flourished dur-
ing tillering in MBD. Sequences-related group C7 and C11
were frequently observed in all sampling period in BP but the
latter remain undetected in MBD. During the assessed period,
in BP and MBD, the following numbers of taxonomic groups
were observed: tillage, 4 and 6; tillering, 5 and 4; and post-
harvesting, 6 and 4, respectively (Fig. 3). Nitrogen-fixing gene
sequences retrieved from one library were used to find similar
sequences in other libraries based on identity matrix. Both in
BP and MBD, except few (α-Proteobacteria and
Cyanobacteria in MBD), those bacterial population detected
during tillage were not observed in late tillering or in post-
harvesting.

Through the maximum-likelihood phylogenetic analysis,
we addressed, whether the above differences were maintained
at the protein level or not. Based on NCBI protein database,

total 11 OPU (OPU1 to OPU11) were found across all sam-
ples that were distributed to two distinct NifH clusters (groups
I and III) (Fig. 4). The OPUs with more than 50% identity was
mentioned. Although putative protein sequences showed con-
siderable identity with the sequences in the database with very
lower query coverage, five OPU were affiliated with
Proteobacteria, one with Cyanobacteria, four with
Firmicutes, and rest with unidentified organisms. OPU1 affil-
iated with α-Proteobacteria (94–100% sequence identity) no-
ticed only in all samples of MBD. Although OPU4 affiliated
to Cyanobacteria was observed only during tillage in BP at
higher abundance, it was ubiquitously noticed in all MBD
samples. OPU7 and OPU11, affiliated with δ-Proteobacteria
and Firmicutes were frequently observed in BP.

Relation of soil variables to nifH gene carrying
communities

To understand the potential effect of soil variables on the dy-
namics nifH gene carrying communities and total bacterial
communities, we performed canonical correspondence analy-
sis (CCA) on the abundance of nifH and 16S rRNA genes
copy number, diversity indices, and physicochemical data
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(Fig. 5). CCA revealed that arsenic, pH, phosphate, and sul-
fate were the main factors affecting both absolute and relative
abundance of nifH genes. The nitrogen-fixing bacterial abun-
dance was negatively correlated with As, pH, and phosphate
but positively correlated with TOC and sulfate. Total bacterial
diversity remained unchanged in respect to these soil
variables.

UPGMA clustering based on abundance of different bac-
terial groups in each sample showed similar bacterial commu-
nity composition during tillage and tillering at MBD, but at
BP, similarity was observed during tillering and post-
harvesting (Fig. 6a). A closer relation between bacterial com-
position during tillage at BP and during post-harvesting of
MBD was observed.

Heat map (Fig. 6b) based on relative abundance of individ-
ual phyla/class detected within the samples showed
Acidobacteria Gp6 Cyanobacteria 1, α-Proteobacteria 2,
and ß-Proteobacteria were prevalent in BP1 and MBD3.
Similarly, Bacteroidetes , α-Proteobacteria 2, α-
Proteobacteria 3, δ-Proteobacteria 2, and Acidobacteria
Gp3 were predominant in MBD1 and MBD2; and
Acidobacteria Gp1 and ß- Proteobacteria were in BP2 and
BP3. But UPGMA based on geochemical data showed in
Table 1, closer relationship between BP1, BP2, and MBD3
and close clustering between MBD1 and MBD2 (Fig. 6c).
Most of the retrieved 16S rRNA genes did not show high
sequence identity at lower taxonomic level (the known gen-
era). However, phylogenetic analysis (Fig. 6d) indicated that

BP1 
(%)

BP2 
(%)

BP3 
(%)

MBD1
(%)

MBD2
(%)

MBD3
(%)

Taxonomic
description

0.0 0.0 20.0 44.9 25.0 50.0 α-ProteobacteriaC1
99

0.0 4.5 7.9 0.0 29.2 0.0 Uncultured 1

0.0 45.5 4.0 0.0 0.0 0.0 Uncultured/γ

45.9 0.0 0.0 17.2 41.7 12.5 Cyanobacteria

0.0 0.0 12.0 20.7 0.0 0.0 Uncultured 2

C1

 C2

 C3

 C4

 C5

99

99

96

76

5999

85

90

0.0 0.0 0.0 3.5 0.0 12.5 Uncultured 3

4.1 18.2 32.0 0.0 0.0 25.0 Uncultured 4

0.0 0.0 0.0 10.3 0.0 0.0 Uncultured 5

0.0 18.2 0.0 0.0 4.1 0.0 Uncultured 6

 C6

 C7 

 C8 

 C9 

93

88

99
91

68

99

95

4.1 0.0 0.0 3.4 0.0 0.0 Uncultured 7

45.9 13.7 24.0 0.0 0.0 0.0 Uncultured 8

 C10 

 C11
92

93

54

0.05

Fig. 3 Bootstrap neighbors
joining phylogenetic tree based
on DNA sequences of the nifH
gene from six different soil
samples collected from two rice
fields in different cultivation
period. Each taxonomic group (C)
include representative sequences
with closer identity query cover-
age. Numbers at the nodes reflect
bootstrap support values with
branches within clusters being
collapsed. Frequency of each tax-
onomic group in each soil sample
is shown in percentage and closer
putative taxonomic affiliation
nifH gene sequences are provided

BP1 
(%)

BP2 
(%)

BP3 
(%)

MBD1
(%)

MBD2
(%)

MBD3
(%) Identity Taxonomic

description
nifH

Cluster

0 0 0 44.8 20 23.3 94-100% α-Proteobacteria OPU1
94

99

0 0 13.3 0 0 16.7 94% α- and β-Proteobacteria

0 33.3 13.3 0 0 0 93-100% α-Proteobacteria

36.7 0 0 17.2 33.3 10 87-98% Cyanobacteria

0 3.3 6.6 0 23.3 0 74-88% γ- and δ-Proteobacteria
/Uncultured

 OPU2

 OPU3

 OPU4

 OPU573
63

98
99

49
67

91

98

I

0 0 0 13.7 0 0 Firmicutes

3.3 13.3 36.6 10.4 0 30 80-96% δ-Proteobacteria

0 0 0 10.3 0 0 Firmicutes

0 13.3 0 0 0 0 Uncultured

 OPU6

 OPU7

 OPU8

 OPU9

99

81

99
86

III

3.3 0 0 3.5 0 0 69% Firmicutes

36.7 10 20 0 3.3 0 71-95% Firmicutes

 OPU10

 OPU11

99

99
42

0.05

Fig. 4 Maximum likelihood
phylogenetic tree based on
translated amino acid sequences
of the nifH gene from six different
soil samples collected from two
rice fields in different cultivation
period. Each operational protein
unit (OPU) include sequences
with range identity shown in per-
centage and 90% query coverage.
Numbers at the nodes reflect
bootstrap support values with
branches within clusters being
collapsed. Frequency of each
OPU in each soil sample is shown
in percentage, and closer putative
taxonomic affiliation of translated
NifH protein sequences is
provided

Environ Sci Pollut Res (2018) 25:4951–4962 4957



the 16S rRNA gene sequences from different samples alto-
gether represented 25 bacterial taxa (at higher taxonomic lev-
el) distributed among more than six prominent clusters.
Clustering pattern indicated, except few, the types of
Acidobacteria and Proteobacteria sequences retrieved from
BP were different than those from MBD in their respective
counterpart.

Discussion

Total and free-living N2-fixing bacterial community structure
and diversity is associated with the change in various physical,
chemical, and biological factors such as pH, chemical fertilizer,
and crop rotation. (Chunleuchanon et al. 2003; Orr et al. 2011;
Silva et al. 2013;Wang et al. 2016b). Herein, we tried to explore
the effects of As contamination on the microbial community in
soil by comparing the dynamics of abundance and diversity of
total and free-living N2-fixing bacteria during rice cultivation in
two lands, with and without any history of As contamination.
The observed abundance of total and N2-fixing bacteria in our
studied rice fields as indicated by qPCR (based on nifH gene),
corroborated with the previous reports from agricultural field,
cropland, managed agricultural system, and rainforest (Orr et al.
2011; Silva et al. 2013; Mirza et al. 2014; Huhe et al. 2014).
Although the two studied rice field exhibited almost identical
levels of total bacterial abundance as revealed by 16S rRNA
gene-based qPCR, a marked difference was noticed in abun-
dance of N2-fixers. The lower absolute and relative abundance
and insignificant proliferation of N2-fixers during the progres-
sion of cultivation in MBD soil compared to BP indicate the
existence of factors that did not allow N2-fixers to flourish in

MBD soil.We tried to correlate this difference of shifting of N2-
fixing communities with various physical and chemical param-
eters to find out the causative factors. The CCA revealed quite
dissimilar distribution of abundance of free-living N2-fixing
bacteria to that of total bacteria in respect to distribution of
probable influencing factors. This suggests that the factors that
affect total bacterial community did not likely influence the
free-living N2-fixers in studied agricultural soils. CCA also re-
vealed pH, PO4

−, and As as the major factors that negatively
influence the nifH gene abundance.

We observed elevated level of As in rice field of MBD while
in BP As level remains below the global average (10.0 mg/kg)
set for As in soil environment, across the cultivation period (Das
et al. 2013a). This difference might be corroborated with the
level of As in groundwater of respective villages as the rice fields
were irrigated with groundwater (Christopher and Haque 2012;
Santra et al. 2013). It is well reported that groundwater of MBD
is significantly contaminated with As (> 0.05 mg/L) while there
is no history of As contamination of groundwater in Baruipara
village (Das et al. 1996; Roychowdhury et al. 2002). Therefore,
whatever the As concentration detected in the BP soils might be
the background As naturally present in this region. Investigation
showed > 10 mg/kg As in soil significantly decrease the growth
of crop plant (Yan-Chu 1994; Smith et al. 1998; Abedin et al.
2002; Khan et al. 2010; Das et al. 2013b). Consequently, it could
be assumed that compared toMBD, the level of As in BP did not
impart any negative influence on microbial community.
Therefore, the observed lower level of diazotrophic bacterial
population in MBD suggests a possible detrimental effect of
As contamination. Although, very little information is available
regarding the impact of As contamination on soil microbial di-
versity, previous research based on culture-dependent
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approaches hypothesized that As might decrease the nitrogenase
activity in cyanobacteria and leguminous plant by interacting
with iron, an important cofactor of dinitrogenase reductase
(Ahmad et al. 2000; Mandal et al. 2011, Singh et al. 2014). In
this regard, the pattern of fluctuation of bacterial community
composition in both the rice fields could be elaborated in much
detail. Here, we noticed the proliferation of Acidobacteria in BP

but in MBD, the abundance of this group remained same with
the progression of cultivation. This observation is well supported
by the findings of Luo et al. (2014), who noticed negative cor-
relation between abundance of Acidobacterial population and
As concentration in the soil. Sheik et al. (2012) also noticed
the dominance of Proteobacteria with minor representation of
Acidobacteria in As-contaminated soil. Study also showed the
prevalence of Acidobacterial communities in soil with lower pH
(Jones et al. 2009). We also observed lower pH in BP soil com-
pared to MBD which showed insignificant change during the
cultivation. Therefore, this lower Acidobacterial abundance that
remained unchanged in MBD soil might be due to As toxicity
rather than pH.

The effort was also made to trace the bacterial groups that
were fluctuated and contributed in increased nifH gene abun-
dance. Our data suggested that the increased nifH gene abun-
dance might be due to the proliferation of Acidobacteria in BP
and Proteobacteria in MBD soil. Interestingly, based on nifH
gene sequence, we could not found Acidobacterial lineage in
the database; instead, we noticed the prevalence of unidenti-
fied lineages based on the nifH gene sequences. Although
Acidobacteria group is prevalent in the soil environment, this
might be due to unculturability of Acidobacteria and lack of
nifH sequence of Acidobacterial origin in the database (Liu
et al. 2016). In recent years, Santos et al. (2012) however,
noticed few Acidobacterial nifH sequences through in silico
analysis. Soil pH was also considered as an important driver
controlling nifH gen-bearing bacterial population. Previous
study noticed the positive correlation between soil pH and
clay content but these two showed a negative correlation with
nifH gene abundance (Silva et al. 2013). Similar clay content
in both agricultural lands suggests increasing abundance of
nifH gene in BP likely due to low pH rather than soil texture.
Sulfur is another important component of dinitrogenase reduc-
tase enzyme used to fix N2 by microorganisms (Speelman and
Holland 2016). Therefore, it could be assumed that at certain
extends, the more available sulfur to the microorganisms, the
more formation of dinitrogenase reductase and hence require
more NifH (Rao and Rao 1986; Yuvaniyama et al. 2000;
Cheng et al. 2016). In the present study, the observed higher
level of sulfur in the form of sulfate in BP soil than MBD
could be the reason of increased level of nifH in BP.
However, increased level of sulfate does not guarantee its
translocation into the cell as it depends on the highly regulated
sulfate transporter (Aguilar-Barajas et al. 2011; Cheng et al.
2016). Previous investigations showed that available inorgan-
ic N in the form of NO3 in environment inhibits the function of
di-nitrogenase reductase of N2 fixers (Knowles and Denike
1974; Yin et al. 2015). Therefore, removal of NO3-N from
the environment might allow the expression of nifH gene
(Yin et al. 2015). Gradual decrease in NO3-N level in BP soil
is corroborated well with the increased level of nifH gene in
this region. In this respect, although the level of NO3-N
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decreased in tillering stage and increased in post-harvesting
period of MBD, the level of nifH did not align with the fluc-
tuation of NO3-N, indicating the involvement of other factors
in soil that reduce N2-fixing bacterial community.

Previous study showed soil microbial community shift is
principally driven by the growing plant within a specific soil
(Cline and Zak 2015). In this regard, however, Huhe et al.
(2014) found a negative correlation between plant diversity
and nifH copy number. The observed gradual decrease in As
level might also be due to the uptake of arsenic by rice plants
after converting it to available forms or volatilizing it by plant
or microbes (Abedin et al. 2002; Meng et al. 2011).

The observed high soil phosphate, increased As, and de-
creased nifH gene abundance in MBD compared to BP soil
also indicated the negative influence of As on nifH gene abun-
dance in MBD. Although the As and inorganic phosphate
ratio in soil sap and their retention in soil system determine
the As uptake, however, the phosphate fertilization or in-
creased phosphate availability in soil decrease the acquisition
of As uptake by rice plant (Pigna et al. 2010). Conversely,
previous investigation also showed a positive influence of
available phosphorous on nitrogen fixation as well as abun-
dance of nifH gene (Reed et al. 2007).

Conclusion

In summary, using a molecular method and statistical analysis
with physicochemical data, this study revealed that free-living
N-fixer could not flourish in As-contaminated soil. Our find-
ings also indicated Proteobacterial dominance in As-
contaminated soil while Acidobacteria were prevalent in the
soil without As contamination. This study also indicated di-
verse nifH gene bearing unidentified bacteria in arsenic-rich
soil, but this does not imply all nifH genes bearing bacteria
actually express dinitrogenase. However, our study on micro-
bial community structure involved in nitrogen fixation might
be useful to elucidate the functional significance of
diazotrophs for sustainable agriculture in As-contaminated
soil and opens up an avenue to investigate the relationships
between microorganisms and the environment.
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