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Abstract In this study, a new methodology is proposed to
balance environmental and economic issues in water alloca-
tion under uncertainty. Two objective functions, including
maximizing economic income (EI) and minimizing environ-
mental pollution (EP), were considered as two groups of
players to construct a deterministic multi-objective bargaining
methodology (DMOBM). In the next step, it is enhanced to a
robust multi-objective bargaining methodology (RMOBM),
which is capable of incorporating the main uncertainties exist
in the problem. A large-scale inter-basin water transfer case
study was utilized to investigate the applicability of the devel-
oped model. The outputs of the models showed that Nash
equilibrium provide a rather narrow range of solutions.
According to the results, the required rounds to reach Nash
equilibrium raised as the uncertainty level increased. In addi-
tion, higher levels of uncertainty lead to higher reduction in
water allocating of receiving basin. Sensitivity analysis
showed that economic income values are less sensitive to
changes of uncertain parameters than the environmental ob-
jective function. The developed methodology could provide a
framework to incorporate the behavior of different stake-
holders. Furthermore, the proposed method can be reliable
under the condition of facing water allocation uncertainties.
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Introduction

Recently, water-shortage and high-demand of water on the
one hand, and the existence of uncertain data on the other
hand, leads the reliable water allocation to be a major
challenge. In order to achieve the sustainable development
approach, US Water Resource Council (1973) has suggested
to consider national economic development and environmen-
tal quality as two crucial objectives in water resource schemes.
However, over the past few decades, inter-basin water transfer
schemes commonly have been constructed with major and
minor emphasize respectively on economic and environmen-
tal aspects. Due to some negative environmental impacts of
such projects, environmental aspects need to get more atten-
tion. Likewise, uncertainties of such schemes supposed to be
taken into consideration.

Water transfer scheme, from a reach (donor) basin to a
poor one (receiving), have been implemented as an alter-
native to balance the uneven distribution of water re-
sources all over the world. In spite of having many benefits
for the receiving basin, it may have negative impacts on the
donor basin. Hence, it is imperative to justify such schemes
to avoid expected conflicts. Since achieving to a balance
between economic and environmental issues in such a case
is more complicated, an inter-basin case study is consid-
ered. However, the methodology can be used for intra-
basin water allocations schemes as well.

Some research have focused on the economic and
environmental aspects of water transfer schemes. For
example, Draper et al. (2003) utilized a model with economic
objective function for main water supply system in California
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and confirmed its effectiveness for assessing the project. A
framework that integrates ecological consequences into the
economic assessment model was proposed by Matete and
Hassan (2005), to ensure sustainable development.
Karamouz et al. (2009) investigated the feasibility of two
inter-basin water transfer schemes by applying an economic
model. The outputs of their model were the value of economic
gain of the donor basin to offset the loss of agricultural income
and environmental costs.

To consider several conflicting objectives, conventional
multi-objective approaches are often utilized. These ap-
proaches, which their solutions are obtained from an optimi-
zation view point, address the problem only as a single
decision-making procedure. Such problems result in a set of
optimal solutions, known as Pareto front. However, Pareto
optimal solutions may lead to failure of a decision, since they
may not be acceptable socially (Madani 2010). Moreover, it is
difficult to make a choice among Pareto front solutions due to
the wide range of choices that it provides.

Game theory models, which provide a process of interac-
tive decision-making, intend to find optimal solutions among
conflicting interests of several players (Davila et al. 2005).
Recently, various game theory models have been widely used
to deal with the inter-basin water allocation conflicts (Sadegh
et al. 2010; Wei et al. 2010; Jafarzadegan et al. 2014;
Manshadi et al. 2015). However, less attention has been paid
to the games with application of Nash equilibrium resulting
from the negotiation. Lee (2012) proposed a methodology
based on combination of multi-objective optimization and
Nash equilibrium concepts for land use management, which
results in easier decision-making.

Uncertainties of input data has been considered in many
water allocation problems, since parameters of these models
usually are not precisely known. Some studies focused on
developing methods based on stochastic and fuzzy set con-
cepts. In these studies, the probability density functions
(PDFs) or fuzzy membership functions of uncertain data were
assumed to be known. However, this is an unrealistic assump-
tion for uncertain data. In this view, these methods may not
address the risk of sub-optimality or infeasibility due to data
uncertainty.

Robust optimization discovers solutions that remain reli-
able under uncertainty by providing a framework for control-
ling the effects of uncertainty. Although the application of
robust optimization is considerable in water resource prob-
lems, the probabilistic and non-probabilistic robust optimiza-
tion should be distinguished. During the past decades, appli-
cation of probabilistic (scenario-based) robust optimization in
water resource management has been extensive (Watkins and
McKinney 1997; Escudero 2000; Pallottino et al. 2005; Jia
and Culver 2006; Kang and Lansey 2012; Chen et al. 2013).
However, its complexity cannot be ignored (Watkins and
McKinney 1997). In this method, similar to stochastic

approaches, PDFs of uncertain data are assumed to be unrea-
sonably known (Housh et al. 2011).

In non-probabilistic robust optimization, known as robust
counterpart, there is no need to scenarios, PDFs, or member-
ship functions to present uncertainty (Ben-Tal and Nemirovski
1999). Among different robust counterpart models, Bertsimas
and Sim (2004) have introduced a form which does not trans-
form a linear programming model to a nonlinear one. Though
there are numerous studies demonstrate applicability of their
formulation for optimization problems, the literature is rela-
tively poor in application of it to water allocation problems.
Some studies can be mentioned as application of this model in
water science, for instance, some attempt have been made to
design a reliable water supply system (Chung et al. 2009) and
to maximize the total gross margin of an irrigation network
(Sabouni and Mardani 2013). Both studies confirm the appli-
cability of such approach in tackling parameters uncertainties,
without introducing additional complexity.

In view of the above discussion, this study presents a new
approach for supporting decision-making process of water
allocation problems in an uncertain environment. The pro-
posed method is developed by combing multi-objective
bargaining methodology and robust optimization. To this
end, a deterministic multi-objective bargaining methodology
(DMOBM) is extended to inter-basin water allocation prob-
lems for reflecting compromises between income and pollu-
tion. Then, the deterministic model is improved to a robust
multi-objective bargaining methodology (RMOBM) forma-
tion in order to provide the capability of handling uncertainties
and controlling risks of the model unreliability and infeasibil-
ity. The applicability of the model is explored by examining in
the presence of the large-scale water transfer scheme of
Karoon to Rafsanjan basin.

Material and methods

The diagram of the developed methodology is shown in Fig. 1.
This figure illustrates how four main steps of the procedure
were implemented. In step 1, the determination of major water
users of studied basins, data collection, and selection of water
quality indicator were carried out. To this regard, data of water
demands, upstream flows, as well as quality and quantity of
return flows were required. In the next step, the environmental
and economic objective functions of the study were construct-
ed. Also, in order to compute the variation range (negotiation
interval) of each objective function, the maximum and mini-
mum of objective functions were computed. The aim of the
third step was to present the algorithm of DMOBM model.
During this step, ɛ-constraint approach was used as a baseline
for investigating the efficiency of the DMOBM model. In the
last step, considering the main uncertain variables and applica-
tion of robust formulation into the DMOBM model, the
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RMOBM was derived. The sensitivity of the RMOBM model
to variations in uncertain parameters was also investigated.

It should be noted that the ɛ-constraint method, utilized to
assess the DMOBM model, is one of the conventional and
well-known approaches to solve multi-objective problems
(Ehrgott and Gandibleux 2002). This technique is commonly
used to produce Pareto front, which is a set of optimal solu-
tions. Theoretically, in this method, one objective will be op-
timized, whereas remaining objectives are subjected to the
upper and lower bound values (ɛ-vector). The Pareto optimal
solutions are generated using different values of ɛ.

Study area

Location and the schematic view of the main water users of the
study area is shown in Fig. 2. The Karoon river basin (donor
basin) is located in the southwest part, whereas Rafsanjan basin
(receiving basin) is located in central Iran. The receiving basin

(RA) sector consists of Rafsanjan agricultural water user, and
the donor basin sector involves three main water users of
Khuzestan province, namely Khuzestan local agricultural
(KLA), Khuzestan old agro-industrial (KOAI), and Khuzestan
new agro-industrial (KNAI) water users.

The Karoon river basin with an area of 100,000 km2 is the
most important water basin in Iran, since it contains one-fifth
of country’s surface water resources. It has two main rivers,
namely Karoon and Dez. The major water pollution sources of
this area are return flows of agricultural and agro-industrial
activities, and domestic and industrial wastewaters. Sugar
cane is the dominant crop of the KOAI and KNAI water users,
while tomato, sugar cane, wheat, potato, date, corn, watermel-
on and other crops are cultivated in KLAwater user.

The Rafsanjan basin with an area of about 20,000 km2 is an
arid region with hot summers and dry winters. Pistachio,
which is an expensive and high-value horticultural product,
is the main cultivated crop of this basin. Over 1300 deep wells
are used to supply water to around 110,000 ha of pistachio
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orchards. The average annual precipitation and groundwater
drawdown of Rafsanjan area is 170 mm and 80 cm, respec-
tively. Significant groundwater overdraft leads to salinization
of groundwater and 30 cm annual subsidence of earth as well.

The water transfer scheme has been designed to transfer
252 MCM/year from Solakan, one of the upstream branches
of the Karoon river, to Rafsanjan basin. The main aim of the
scheme is to produce pistachio and to control the groundwater
level decline as well as its salinization. Among these issues,
the possible environmental impacts of the scheme on the do-
nor basin are also supposed to be taken into consideration. In
other words, the scheme should be adjusted environmentally
and economically.

The total water demand is significantly greater than
Solakan water capacity. Thus, it is necessary to use an algo-
rithm to allocate water optimally. Meanwhile, only monthly
water allocation to agricultural demand is regarded as decision
variable, since the environmental and municipal water de-
mands are assumed to be satisfied completely. Table 1 pre-
sents the demands of water users that should be supplied from
Solakan reservoir (MCM/month). Among different water
quality monitoring variables, total dissolved solids (TDS)
has the worst condition, and in some cases, it violated the
standard level. Thus, it was selected as water quality indicator
of this study. As a result of wastewater discharges, concentra-
tion of TDS increases along the river.

DMOBM formulation

In this following, a DMOBM formulation is presented.
Equation 1 shows a multi-objective programming model.

Minimize f xð Þ ¼ f 1 xð Þ; f 2 xð Þ;…; f q xð Þ
h i

Subject to :
hr xð Þ≤0 ; r ¼ 1; 2;…; l
xp≥0 ; p ¼ 1; 2;…; v

ð1Þ

where [f1(x), f2(x),…, fq(x)] is a set of all q objective functions,
xp is the pth decision variable, and hr(x) is the rth constraint
function. In favor of applying the bargaining model to the
multi-objective problem, two groups of stakeholders were con-
sidered as two players, environmental player (player 1) and
economic player (player 2). The objective of players 1 and 2
was to minimize pollutant load discharged into the river and to
maximize economic income of the scheme, respectively.

Primarily, the upper and lower values of each player should
be determined. Negotiation interval, which is a payoff of the
bargaining approach, is the difference between upper and low-
er levels of objective functions. These bounds can be found by
maximizing and minimizing every individual single objective
function. Consequently, computing procedure of the negotia-
tion interval of each player is presented in Eq. 2:

For player 1 : EPmin≤ f 1 xð Þ ¼ EP≤EPmax

For player 2 : EImin≤ f 2 xð Þ ¼ EI ≤EImax
ð2Þ

Since the aim is to maximize the economic income and
minimize the environmental pollution as much as possible
simultaneously, at the initial round of bargaining, EPmin and
EImax will be considered as goal values of each player i.e.,
EPgoal and EIgoal, respectively. As the strategies are shown
for player 1 in Eq. (3) and for player 2 in Eq. (4), each player
will be subjected by the goal value of the other player (Lee
2012).
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The strategy for player 1:

Minimize f 1 xð Þ ¼ EP
Subject to :
f 2 xð Þ≥EIgoal
hr xð Þ≤0; r ¼ 1; 2;…; l
xp≥0 ; p ¼ 1; 2;…; v

ð3Þ

And the strategy for player 2:

Maximize f 2 xð Þ ¼ EI
Subject to :
f 1 xð Þ≤EPgoal

hr xð Þ≤0; r ¼ 1; 2;…; l
xp≥0 ; p ¼ 1; 2;…; v

ð4Þ

The players will begin a sequential bargaining round, since
they will not be satisfied with the results from the other
player’s goal. Thus, players 1 and 2 will reduce the environ-
mental concerns and economic expectation, respectively. By
increasing the bargaining rounds, the value of EIgoal and
EPgoal will decrease and increase, respectively. Thus, the dif-
ference between the reset goal values and the results of
DMOBM approach will become less and less. In order to
compute the concession (Cn) of each player, the maximum
and minimum values of the environmental pollution (EP)
and economic income (EI) were divided into small same-
size parts. The calculation of Cn value is as Eq. (5):

Cn 1 ¼ EPmax−EPmin

f

Cn 2 ¼ EImax−EImin

f

ð5Þ

where f is a coefficient which provides the most rational con-
cession for not influencing the satisfaction values of both

players, considerably (Üçler et al. 2015). Finally, the
bargaining process for players will be stopped if final solu-
tions of EPfinal and EIfinal are reached as follows:

EPfinal≤EPgoal

EI final ≥EIgoal
ð6Þ

The values of EPfinal and EIfinal are the Nash equilibrium of
the problem (Gibbons 1997). A numerical example on this
topic has been described in (Üçler et al. 2015).

Robust counterpart formulation

In mathematical programming, a small deviation of the input
data may cause the final solution no longer be optimal or even
feasible. Under this condition, application of robust optimiza-
tion, which is a methodology for designing solution ap-
proaches that are immune to data uncertainty, can be quite
useful (Bertsimas and Sim 2004).

As mentioned above, the robust counterpart approach is an
alternative robust optimization method that has no need to
specify the probability distribution function of uncertain pa-
rameters. Among different robust counterpart formulations,
Bertsimas and Sim (2004) have presented a model with
interval-polyhedral uncertainty set in which the robust coun-
terpart form of a linear deterministic model still remains linear.
It is possible to adjust conservatism degree of their model
using budget parameter (Γ).The formulation of a linear model
can be considered as Eq. (7):

Minimize c
0
x

Subject to :
∑
j
aijx j≤bi ∀i

x j≥0 ∀ j ð7Þ

Table 1 Demands of water users
from Solakan reservoir (MCM/
month)

Month Water users Environmental use Municipal use

KLA KOAI KNAI RA

April 18.8 2.5 2.1 17 5.6 0.8

May 24.8 3.3 2.7 39.8 7.2 1.2

June 27 3.6 3 49.6 8 1.2

July 34.2 4.6 3.8 47 10 1.6

August 30.4 4 3.4 45 9 1.4

September 25 3.3 2.7 38 7.4 1.2

October 15.4 2.1 1.7 28.2 4.6 0.8

November 9 1.2 1 8.8 2.6 0.4

December 6.2 0.9 0.7 0.2 1.8 0.2

January 5.6 0.8 0.6 0 1.6 0.2

February 6.6 0.9 0.7 0 2 0.4

March 13.8 1.9 1.5 1.2 4 1
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Consider the ith constraint of aijxj ≤ bi and suppose Ji rep-
resents the set of uncertain coefficients (aij) in the ith con-
straint (~aij, j ∈ Ji). Assume that each uncertain parameter ~aij
can take values in the interval aij−âij; aij þ âij

� �
where âij is

the perturbation in each uncertain parameter ~aij, and aij is
regarded as the deterministic value of the uncertain parameter.
By introducing parameter Γi for each i, which is called uncer-
tainty budget and can vary in the interval of [0, |Ji|], it would
be possible to adjust the conservatism level of the model and
explore robustness of the system against failure.

When Γi = 0, the influence of deviations will be ig-
nored completely, while if Γi = |Ji|, the constraint i is en-
tirely hedged against uncertainty. Besides, when
Γ i ∈ [0, |Ji |], a trade-off exists between the desired
robustness and the optimality. Bertsimas and Sim (2004)
illustrate that it is possible to rewrite Eq. (7) as following
nonlinear formulation:

Minimize c
0
x

Subject to :

∑
j
aijx j þ max

Si∪ tif g Si⊆ J i; Sij j¼ Γ i½ �j ;ti∈ J inSif g
∑
j∈Si

â̂ijx j þ Γ i− Γ i½ �ð Þâ̂iti x j
( )

≤bi ∀ix j≥0 ∀ j

ð8Þ

Based on their procedure, by supposing x* as the optimal
solution of Eq. (8), the function

βi x
*;Γ ið Þ ¼ maxΩ ∑ j∈Si âijx

*
j þ Γ i− Γ i½ �âiti x*j
� �n o

, which is

known as protection function, can be represented as a linear
optimization program. Thus, the robust solution can be solved
using linear programming, without changing complexity of
the optimization problem. Ultimately, the final robust counter-
part model can be derived as following equation:

Minimize c
0
x

Subject to :
∑
j
aijx j þ ziΓ i þ ∑

j∈ J
pij≤bi ∀i

zi þ pij≥ â̂ijx j ;∀i; j∈J
zi≥0 ;∀i
pij≥0 ;∀i; j∈J
x j≥0 ;∀ j

ð9Þ

where zi and pij are required auxiliary variables related to
robust counterpart formulation. It should be noted that while
less than Γi uncertain parameters change from their determin-
istic values, the feasibility of robust solutions can be ensured.
If more than Γi parameters vary, the solution still will be fea-
sible with a high probability of:

P ∑
j
~aijx*j > bi

 !
≤Bi n;Γ ið Þ ð10Þ

The description of the Γi calculation can be found in
Bertsimas and Sim (2004).

Models frameworks

Framework of DMOBM for water allocation

The introduced DMOBM approach was applied to an inter-
basin water allocation problem in favor of balancing economic
and environmental issues in such schemes. It contained envi-
ronmental (player 1) and economic (player 2) objective func-
tions. The aim of optimization model of player 1 is to mini-
mize the total amount of waste load pollution that is
discharged into the river by water users. It is written in Eq. 11:

Minimize f 1 xð Þ ¼ EP ¼ ∑
u
∑
m
∑
c

Caum bum xumcð Þ
Subject to :

α dumc≤xumc≤dumc ∀u;m; c
β Qm≤ ∑

u
∑
c
xumc≤Qm ∀m

∑
u
∑
c
Plumc≤ ∑

u
Tum ∀m

EI ≥EIgoal

ð11Þ

where EP is the environmental pollution; u, m, and c are the
counter of water users, months, and cultivated crops, respec-
tively; Caum is the average TDS concentration in return flows;
bum is the factor of return flow discharged into the river of user
u in month m; xumc is the allocated water to crop c of user u in
month m; and dumc is water demand of user u (MCM/month).
Qm is the available water during month m, Plumc is the pollu-
tion load discharged into the river of user u in month m and
crop c, and Tum is the pollution discharge permit of user u in
monthm. EI is the economic income, and α and β are the non-
negative coefficients for determining the lower level of water
demands and the river flow, respectively.

The optimization model of player 2 which aims to maxi-
mize the total benefit of water users is as follows:

Maximize f 2 xð Þ ¼ EI ¼ ∑
u
∑
c
CPDuc NBuc ∑

m
xumc

Subject to :

α dumc≤xumc≤dumc ∀u;m; c
β Qm≤ ∑

u
∑
c
xumc≤Qm ∀m

∑
u
∑
c
Plumc≤ ∑

u
Tum ∀m

EP≤EPgoal

ð12Þ

where CPDuc is the average produced crop c per unit of sup-
plied water (crop per drop) for water user u (kg/m3), and NBuc

is the total net benefit due to crop c of water user u (USD/kg),
which is the difference between total benefits and total costs
(USD/kg) of each water user.
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Framework of RMOBM for water allocation

The procedure of Bertsimas and Sim (2004) is employed
to the proposed DMOBM model for water allocation, to
transform it into the robust counterpar t model .
Accordingly, uncertainties of demand and available water
of the river was incorporated to construct a RMOBM.
Thus, to address the uncertainty of water demand and
river flow, their equations in the optimization model need
to be rewritten in robust formulation. For EP (player 1),
the DMOBM can be rewritten as follows:

Minimize f 1 xð Þ ¼ EP ¼ ∑
u
∑
m
∑
c

Caum bum xumcð Þ
Subject to :

C1 xumc þ z1 Γ 1 þ p1umc≤dumc ∀u;m; cz1 þ p1 umc≥εd dumc ∀u;m; cf

C2
αdumc þ z2 Γ 2 þ p2 umc≤xumc ∀u;m; c
z2 þ p2 umc≥α εd dumc ∀u;m; c

�

C3 ∑
u
∑
c
xumc þ z3 Γ 3 þ p3 i≤Qm ∀m z3 þ p3m≥ε

Q Qm ∀m
n

C4 βQm þ z4Γ 4 þ p4m≤ ∑
u
∑
c
xumc ∀m z4 þ p4m≥εQ β Qm ∀m

n
C5 ∑

u
∑
c
Plumc≤ ∑

u
Tum ∀m

C6 ∑
j
∑
c
CPD jcNBjc ∑

i
xijc≥EIgoal

ð13Þ

For the EI (player 2), the DMOBMmodel can be rewritten
as follows:

Maximize f 2 xð Þ ¼ EI ¼ ∑
u
∑
c
CPDuc NBuc ∑

i
xumc

Subject to :

F1 xumc þ z5 Γ 5 þ p5 umc≤dumc ∀u;m; cz5 þ p5 umc≥εd dumc ∀u;m; cf

F2
α dumc þ z6 Γ 6 þ p6 umc≤xumc ∀u;m; c
z6 þ p6 umc≥α εd dumc ∀u;m; c

�

F3 ∑
u
∑
c
xumc þ z7 Γ 7 þ p7m≤Qm ∀m z7 þ p7m≥ε

QQm ∀m
n

F4 β Qm þ z8Γ 8 þ p8m≤ ∑
u
∑
c
xumc ∀m z8 þ p8m≥β εQ Qm ∀m

n
F5 ∑

u
∑
c
Plumc≤ ∑

u
Tum ∀m

F6 ∑
u
∑
m
∑
c

Caumcumxumcð Þ≤ EPgoal

ð14Þ

where εd and εQ are uncertainty levels of d (water de-
mand) and Q (available water), respectively, C1-C6 and
F1-F6 are constraints of the problem. Also, as presented,
the variables zi and pi are additional variables for robust
counterpart formulation, and the parameter Γi is used to
control the level of conservatism. Note that the counter-
part form is only applied in formulations which contain
uncertain parameters.

In order to investigate the effects of robustness on the
RMOBM model, it was optimized for different uncertain-
ty levels (ɛ) and constraint violation probabilities (P).
The violation probabilities (P) ranged from 0.01 (most
conservative state) to 1.0 (deterministic condition), and
uncertainty levels were equal to ε = 0.01, ε = 0.05, and
ε = 0.1.

Results and discussion

Results of DMOBM

In order to determine the variation range of two objective
functions, each player computes the minimum and maximum
values by running single objective function. It should be noted
that, since the objective function and constraints of the prob-
lem are linear, it is easy to find the exact solutions of the
problem in the developed models. The computed range of
EP (player 1) was between EPmin = 17,396 and
EPmax = 115,971 ton pollution loads per year, while the range
of EI (player 2) were between EImin = 74,324 and
EImax = 477,706 thousand dollars per year. As earlier
discussed, these ranges are negotiation interval of bargaining
process. The most desirable value for player 1 (17,396) is
much less than EPmax = 115,971 ton pollution loads per year,
while the best value for player 2 (478,842) is much higher than
EImin = 74,324 thousand dollars per year. After rerunning the
model for several times, the f coefficient of Eq. (5) was select-
ed to be 46. Based on the variation range of each objective
function and Eq. (5), the strategy of players in the bargaining
process was set (Goal column of Table 2).

The results of DMOBM model are shown in Table 2. The
state *0–1 stands for initial bargaining round (0) for player 1,
and the state *0–2 stands for initial bargaining round (0) of
player 2. In the state *0–1, the initial goal value of player 2
(EIgoal = 477,706 103 USD/year) was constrained in objective
function of player 1, and then, EPwas computed as 44,703 ton
per year. Similarly, in the state *0–2, the initial goal value of
player 1 (EPgoal = 17,396 ton/year) was constrained in the
objective function of player 2, and therefore, EI was computed
as 391,473 103 USD/year. Since the computed EI (391,473) is
less than EIgoal = 477,706 and the computed EP (44,703) is
more than EPgoal = 17,396, none of the players are satisfied
with the initial rounds of DMOBM results. Therefore, the
players were entered into the bargaining process.

During the bargaining rounds, the players lowered their
expectations. Accordingly, the environmental player reduced
the environmental goal by rising pollution load from 17,396 to
19,539 tons per year, and the economic player decreased the
economic goal by reducing economic income from 477,706 to
468,937 thousand dollars per year (Table 2). Even though the
goals of the players are adjusted in the first bargaining round,
both players still were not satisfied with the results of the other
player’s goal. Thus, consequent rounds of bargaining were
continued by revising the goals of each player and running
the model. In the fourth round, the computed EP and EI were
24,919 ton per year and 447,999 thousand dollars per year,
respectively. Based on these values, both players are satisfied
with the results of the other player’s goal. Consequently, Nash
equilibrium was reached (eq. 6). Hence, at Nash equilibrium
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condition EP ranged from 24,919 to 25,968 tons per year and
EI ranged from 442,630 to 447,999 thousand dollars per year.

Table 2 highlights that by increasing the bargaining rounds,
the annual allocated water to users is gradually converged
together. For instance, in the initial round of bargaining, the
annual allocated water to KNAI water user for player 1 and
player 2 were 22.1 and 6.6 MCM per year, while in the fourth
round, the allocated water to this area was 15.7 and 17.1
MCM per year, respectively. This occurred for water users
of both donor and receiving basins. Note that the monthly
water allocation values were added together to gain the yearly
values. During this process, the total allocated water of player
1 (EP) decreased, whereas for player 2 (EI), it increased.
Additionally, the results showed that, the allocated water to
KLA was highly influenced and changed by increasing the
bargaining rounds, while the allocated water to RA did not
vary considerably. This can be due to the higher crop per drop
of pistachio.

In Fig. 3, the results of DMOBM were compared with the
results of ɛ-constraint method (which is a conventional multi-
objective method). The Pareto optimal solutions of ɛ-con-
straint method are shown in Fig. 3a, and the Nash equilibrium
solutions of DMOBM are shown in Fig. 3b. Accordingly, the
wide ranges of Pareto optimal solutions may make it difficult
to select a final solution. However, Nash equilibrium results
had significantly smaller range of solution, in comparison to
the Pareto front. This rather narrow range, which was obtained
to be between 24,919 and 25,968 tons per year for EP and
between 442,630 and 447,999 thousand dollars per year for EI
may result in easier decision-making.

In the conventional multi-objective method, the problem is
solved as a single decision-making problem, and it only ex-
presses the problem from an optimization viewpoint consid-
ering the minimum of EP and the maximum of EI. Its solu-
tions may be utilized merely once there is no prejudgment
available about environment versus economy. Unlike the

conventional multi-objective methods, DMOBM approach
provides a framework to incorporate the behavior of different
stakeholders, which leads to find socially acceptable results
(Carraro et al. 2007). In other words, DMOBM approach
would be more useful for policy-making, since it provides a
better understanding of stakeholders’ behavior.

Monthly allocated water to users at the Nash equilibrium
for two objective functions is presented in Table 3. These
values are related to the state *4–1 and *4–2 of Table 2. As
discussed, two objective functions (Min. EP andMax. EI) met
the goals at the fourth round of bargaining. Decision makers
will select which one to apply. The environmentalists are will-
ing to choose the lower pollution load option (minimization of
EP), while the economists prefer to select the higher economic
income results (maximization of EI).

Results of RMOBM

The values of Gama parameter (Γ) as a function of constraint
violation probability (P) are given in Table 4. Γ = 0is related to
conditions with no uncertainty (P = 1). Also, at the constraint
violation probability of 0.01, the solution will remain feasible
at least 99% of the time.

Table 5 provides the optimal values of EP and EI for deter-
ministic and robust problems, by considering three levels of
uncertainty (0.01, 0.05, and 0.1) when Γ = 1. It is observed
from this table that when the level of uncertainty increases, the
required rounds of reaching Nash equilibrium will increase.
For instance, for an uncertainty level of ɛ = 0.1, the required
round to achieve Nash equilibrium changed from four to
seven.

In addition, application of the robust counterpart approach
leads to change in values of the objective functions.
Comparing the results of uncertainty level of ε = 0.1 with de-
terministic condition indicates that EI decreased to the range
of 416,322 to 419,216 thousand dollars per year and EP

Table 2 The results of
deterministic multi-objective
bargaining methodology
(DMOBM)

*Round-player Goal Solutions Allocated water to users (MCM/year)

EP

(ton/year)

EI

(103USD/year)

KNAI KOAI RA KLA

*0–1 EIgoal = 477,706 44,703 477,706 22.1 27.9 148.5 135.1

*0–2 EPgoal = 17,396 17,396 391,473 6.6 7.28 121.6 54.2

*1–1 EIgoal = 468,937 36,144 468,937 20.91 25.1 146.4 98.5

*1–2 EPgoal = 19,539 19,539 412,091 8.8 9.9 135.3 55.6

*2–1 EIgoal = 460,168 30,079 460,168 19.9 24.8 144.4 66.9

*2–2 EPgoal = 21,682 21,682 42,460 11.1 16.9 138.3 56.7

*3–1 EIgoal = 451,399 26,804 451,399 17.6 24.8 143.2 61.5

*3–2 EPgoal = 23,825 23,825 436,561 13.7 21.6 141.6 57.1

*4–1 EIgoal = 442,630 24,919 442,630 15.7 21.9 142.9 56.8

*4–2 EPgoal = 25,968 25,968 447,999 17.1 24.3 145.3 58.4
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increased to the range of 30,538 to 32,397 tons per year.
Although by incorporating the uncertainty of the input data
into the deterministic model, the economic benefits of the
scheme decreased; the risk of achieving such an income also
decreased. In other words, the RMOBM model has led to
reliable solution with lower risk. It should be noted that since
there is a trade-off between the conservatism degree and
amounts of two objective functions, the manager of the water
transfer scheme is able to adjust the robustness of the plan by
changing the level of uncertainty.

It can also be seen from Table 5 that for both environmental
and economic players, at higher uncertainty levels, allocated
water to users of the donor basin (KNAI, KOAI, and KLA)

increased, whereas the allocated water to user of RA de-
creased. For instance, as a result of robustness, allocated water
of RA water user decreased for player 1 (environmentalist)
from 142.9 to 130.9 MCM per year and for player 2 from
145.3 to 131.1 MCM per year. Accordingly, RMOBM ap-
proach led to a more conservative solution in such a way that
less water was transferred, while lower income with high sta-
bility was achieved.

Table 6 gives the monthly allocated water to the users at the
Nash equilibrium of RMOBM approach when ɛ and Γ were
selected to be 0.1 and 1, respectively. These values are related
to the state *7–1 and *7–2 of the Table 5. Both objective
functions satisfied the goals at seventh bargaining rounds so
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Fig. 3 Results of multi-objective methods. a ɛ-constraint approach. b DMOBM approach

Table 3 Monthly allocated water to users at Nash equilibrium of DMOBM approach (MCM/month)

Objective function Water user Month

April May June July August September October November December January February March

Min. EP KNAI 0.53 0.68 0.75 3.24 2.23 2.50 1.65 0.95 0.70 0.30 0.70 1.48

KOAI 0.63 0.83 0.90 4.60 4.00 3.30 2.08 1.18 0.90 0.80 0.88 1.80

RA 9.39 25.68 31.24 29.54 23.80 9.50 7.05 5.76 0.13 0.00 0.00 0.80

KLA 4.70 6.20 6.75 8.55 8.51 7.67 3.85 2.25 1.55 1.40 1.87 3.50

Max. EI KNAI 0.94 2.00 2.20 2.80 2.47 2.00 1.27 0.73 0.54 0.47 0.54 1.14

KOAI 2.11 2.75 3.03 3.85 3.40 2.75 1.74 1.01 0.73 0.64 0.73 1.56

RA 9.79 25.79 31.88 29.83 24.02 9.77 7.40 5.86 0.14 0.00 0.00 0.82

KLA 4.70 6.20 6.75 8.55 7.97 8.11 4.06 3.16 1.70 1.40 2.01 3.79
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decision maker can choose which one to apply. Meanwhile,
these values insure reliability, fairness, and optimality of the
solutions. Comparison of Tables 3 and 6 shows how robust-
ness influences monthly allocated water of users. Although in
comparison to DMOBMmodel, the yearly allocated water for
both players decreased under RMOBM model and compari-
son of Tables 3 and 6 shows that the reduction did not happen
for all months. For instance, in the case of player 1, April and
in the case of player 2, April and September were exceptions.
Both solutions of Table 6 (Min EP andMax EI) can be utilized
depending on the choice of decision maker. The environmen-
tal player prefers to select the lower pollution load choice
(Min EP), while the economic player is willing to choose the
higher economic income option (Max EI).

Sensitivity analysis

In order to show how objective function values change with
respect to variations in uncertain parameters, a sensitivity
analysis was performed. It can provide information for inves-
tigating the effects of robustness levels on the RMOBMmod-
el. The sensitivity analysis was performed using different con-
straint violation probabilities (conservatism degree) at given
uncertainty levels (ɛ = 0.01, ɛ = 0.05, and ɛ = 0. 1).

The amount of deterioration in environmental and econom-
ic objective functions with different levels of conservatism

and uncertainties is shown in Fig. 4. This figure shows that
reducing conservatism level (violation probability is in-
creased) results in decreasing the environmental objective
function and increasing the economic objective function.
The bigger the uncertainty level, the greater the impacts on
objective function changes will be. Meanwhile, the optimal
values of objective functions depend on both constraint viola-
tion probability (P) and uncertainty level (ɛ).

The results also demonstrate that up to violation probability
of 0.5 (P = 0.5), the performances of three uncertainty levels
are equal without any changes. In the case of violation prob-
ability more than P = 0.5, EP and EI values decreased and
increased at different uncertainty levels, respectively. Higher
levels of uncertainty lead to greater changes in values of both
objective functions. The responses of two objective functions
to changes in parameters were similar, but reverse. At uncer-
tainty levels of 0.01, 0.05, and 0.1, the value of EP decreased
by 3.5, 8.1, and 16.9%, and the value of EI increased by 1, 4.1,
and 8.6%, respectively. In comparison to EP, EI values are less
sensitive to changes in uncertain parameters.

Conclusions

In this study, a new methodology has been developed for
planning water allocation issues of inter-basin water trans-
fer schemes in the presence of uncertainty. This method
has been applied to large-scale case study of transferring
water from Karoon to Rafsanjan basin, to investigate its
efficiency. The developed model (RMOBM) had following
capabilities: (1) considering different stakeholders’ inter-
ests, (2) balancing economic and environmental concerns
of the problem, and (3) remaining reliable in the face of
data uncertainties.

Table 5 Optimal economic and environmental solutions for deterministic and robust problems

Model type Uncertainty Level *Round-player of Nash equilibrium Goal Solutions Allocated water to users (MCM/
year)

EPfinal
(ton/year)

EIfinal
(103USD/year)

KNAI KOAI RA KLA

DMOBM – *4–1 EIgoal = 442,630 24,919 442,630 15.7 21.9 142.9 56.8

*4–2 EPgoal = 25,968 25,968 447,999 17.1 24.3 146.3 54.4

RMOBM ɛ = 0.01 *4–1 EIgoal = 442,630 25,819 442,630 15.2 22.7 141.8 58.7

*4–2 EPgoal = 25,968 25,968 443,391 16.6 23.3 144.8 57.1

ɛ = 0.05 *6–1 EIgoal = 425,091 25,994 425,091 14.9 24.2 136.1 57.4

*6–2 EPgoal = 30,254 30,254 438,129 18.5 24.8 139.9 58.8

ɛ = 0.1 *7–1 EIgoal = 416,322 30,538 416,322 16.2 25.7 130.6 61.1

*7–2 EPgoal = 32,397 32,397 419,216 18.9 26.3 131.1 62.6

Table 4 Selection of Gamma based on the probability of constraint
violation

Constraint violation probability (P)

Γ 0.01 0.1 0.3 0.5 0.7 0.9 1

Γ1 − 8 2 2 1.82 1.11 0.4 0.00 0.00
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The DMOBM presents a compromise between environ-
mental protection and economic income in water resource
allocation problems. In comparison to a conventional multi-
objective method, it has provided slightly a narrow range of
solutions, which makes the decision-making process easier.
The RMOBM model can handle data uncertainties without
adding extra complexity to the DMOBM model and specify-
ing PDFs of uncertain parameters. The linearity of it has led to
low run-time and made it easy to find global solutions.

The results showed that by considering the uncertainty of
the input data into the DMOBM model using robust counter-
part optimization, the economic income of the scheme de-
creased. Meanwhile, these solutions are more reliable as a
result of hedging against uncertainties. The finding revealed

that increasing the uncertainty level leads to increase in the
required rounds to reach Nash equilibrium. Also, the robust-
ness results in an increasing and decreasing of the value of the
allocated water to users of the donor and receiving basins,
respectively. Hence, the transferred water was reduced from
the range of 142.9–145.3 MCM per year under deterministic
condition to the range of 130.6–131.1 MCM per year under
uncertainty level of 0.1. Sensitivity analysis illustrates that the
optimal solutions of two objective functions depend upon
both values of constraint violation probability and level of
uncertainty. The bigger these values, the greater the impacts
on objective function changes will be. However, economic
income has been less sensitive to changes of uncertain param-
eters than environmental pollution.

Fig. 4 Sensitivity of environmental pollution (EP) and economic income (EI) to different robustness levels

Table 6 Monthly allocated water to users at the Nash equilibrium of RMOBM approach when ε = 0.1 (MCM/month)

Objective function Water user Month

April May June July August September October November December January February March

Min. EP KNAI 0.53 0.68 1.58 3.14 2.76 2.25 1.42 0.82 0.60 0.53 0.60 1.28

KOAI 2.23 2.91 3.20 4.07 3.60 2.91 1.84 1.07 0.77 0.67 0.77 1.65

RA 10.41 24.38 28.67 25.79 18.67 9.50 7.05 5.27 0.12 0.00 0.00 0.74

KLA 4.70 6.20 6.75 8.55 7.60 9.17 4.63 3.86 1.95 1.40 2.16 4.12

Max. EI KNAI 1.46 2.16 2.37 3.02 2.65 2.16 1.37 0.79 0.58 0.51 0.58 1.23

KOAI 2.29 2.98 3.28 4.17 3.68 2.98 1.88 1.09 0.79 0.69 0.79 1.69

RA 10.45 24.47 26.83 24.95 21.09 9.87 7.18 5.29 0.12 0.00 0.00 0.74

KLA 4.82 6.33 7.01 8.64 8.37 9.32 4.32 3.95 2.00 1.40 2.21 4.23
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The developed methodology could balance the scheme
economically and environmentally. It has also considered both
quantity and quality issues of water allocation problem and
could immune the model against uncertainties. Therefore, it
can be applied as a comprehensive decision-making approach
to water allocation schemes and sustainable development.
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