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Abstract Light traps have been widely used for controlling
underground pests. However, very little is known regarding
the relationship between trapping effect and antioxidant enzy-
matic activities using light irradiation in underground pests.
Thus, we determined the trapping effect of three light sources
of the frequoscillation pest-killing lamp on two species of
cockchafers, Serica orientalis Motschulsky (Coleoptera:
Melolonthidae) and Anomala corpulenta Motschulsky
(Coleoptera: Rutelidae), and evaluated the effect of the same
three light sources on the activities of their antioxidant en-
zymes. The catches of S. orientalis were significantly higher
compared to A. corpulenta using light source A in peanut
fields in China. After irradiation by light source A, the
malondialdehyde (MDA) contents and activities of superox-
ide dismutase (SOD) and glutathione S-transferases (GST) in
S. orientalis were significantly and marginally significantly
lower compared toA. corpulenta. Taken together, these results
indicated a weaker antioxidant enzyme activity response to
light stress and a larger quantity of trapping catches using light

irradiation in cockchafers. Thus, we proposed a potential
negative relationship between trapping effect and antioxi-
dant enzymatic activities in response to light irradiation in
cockchafers.
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Introduction

Light traps can effectively control insect pests without releas-
ing pollutants. They have been widely used to monitor pest
population dynamics and to control for pests in agriculture,
forestry, and the warehousing industry (Neethirajan et al.
2007; Allsopp 2010; Zhang et al. 2011). Currently, the
frequoscillation pest-killing lamp, which emits different light
sources, is a very popular tool for pest management in China.
The effect of light irradiation on insect behavior, physiology,
and biochemistry has been previously reported (Gunn 1998;
A-H-Mackerness et al. 1999; Mazza et al. 2002; Jing and Lei
2004; Jing et al. 2005; Meng et al. 2009). However, the pho-
totactic mechanism of the insect remains poorly understood.
Many hypotheses have been proposed to explain the photo-
tactic behavior of the insect, among which light interference
(Robinson and Robinson 1950; Robinson 1952), light orien-
tation (Baker and Sadovy 1978; Atkins 1980), and biological
antenna hypotheses (Callahan 1965a, 1965b) have been re-
ported. A deeper understanding of the phototactic mechanism
of the insect can promote the application of the light trap.

Similar to other eukaryotes, insects have developed a suite
of antioxidant enzyme systems, which demonstrate various
antioxidant enzymes to counteract the toxicity of reactive
oxygen species (ROS) and to reduce oxidative damage
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(Ahmad 1992; Felton and Summers 1995). The major ingre-
dients of the antioxidant enzyme system of insects include
superoxide dismutase (SOD) and glutathione S-transferases
(GST) (Felton and Summers 1995; Wang et al. 2001; Gao
et al. 2013). In enzymatic ROS-cleaning pathways, SOD can
convert superoxide into oxygen and hydrogen peroxide
(Fridovich 1978). GST can scavenge the lipid peroxidation
or hydroperoxide products from cells (Dubovskiy et al.
2008; Meng et al. 2009). Several studies have shown that
the antioxidant systems of insects are coordinated with each
other, and some changes in antioxidant enzymatic activity can
result in changes in other systems (Shigeoka et al. 2002).
Thus, a comprehensive analysis of the activities of various
antioxidant enzymes is important to correctly assess the anti-
oxidant capacity of insects (Meng et al. 2009).

Cockchafers, adult white grubs, are major pests of peanuts
in China. Two important species, Serica orientalis
Motschulsky (Coleoptera: Melolonthidae) and Anomala
corpulenta Motschulsky (Coleoptera: Rutelidae), have been
shown to cause serious losses in Chinese peanut produc-
tion. These two cockchafers are nocturnal insects and ex-
hibit obvious phototactic behavior to light irradiation.
Increasing evidence has indicated that trap lamps are useful
for the control of cockchafers in agriculture (Wood and
Yew 1969; Jones 1990; Švestka 2007). Moreover, several
studies have been performed on oxidative stress induced
by light irradiation in insects (Heck et al. 2003; Lopez-
Martinez et al. 2008; Meng et al. 2009, 2010; Sang et al.
2012), but the potential relationship between trapping ef-
fect and antioxidant enzymatic activities using light irradi-
ation in cockchafers has not been reported.

In this study, the trapping effects of the three light sources
of the frequoscillation pest-killing lamp on S. orientalis and
A. corpulenta were investigated. Moreover, the effects of the
same three light sources on the activities of antioxidant
enzymes of S. orientalis and A. corpulenta were also eval-
uated. The purpose of this study was to analyze the poten-
tial relationship between trapping effect and antioxidant
enzyme activities using light irradiation in cockchafers.

Materials and methods

Light source and insects

Light sources A, B, and C (Hebi Jiaduo Science, Industry and
Trade Co. Ltd., Henan, China) were used as light sources in
this study. Light source A emits light with wavelengths in the
range of 350.91–461.44 nm and 544.43–548.6 nm. Light
source B emits light with wavelengths in the range of
399.56–449.12 nm and 544.43–548.4 nm. Light source C
emits light with wavelengths in the range of 356.42–
386.57 nm, 434.28–437.79 nm, and 544.43–548.2 nm.

S. orientalis and A. corpulenta were collected from peanut
fields in Dawu County, Hubei Province, China. Next, the two
species of cockchafers were reared in buckets. The buckets
were covered with a piece of black cloth and the soil moisture
was 18–25%. S. orientalis andA. corpulenta fed on fresh poplar
leaves and were used for further experiments 8 days later.

Field experiment

The trapping effect on S. orientalis and A. corpulenta among
the three light sources of the frequoscillation pest-killing lamp
was investigated in Dawu County, Hubei Province, China,
from May to August, 2011. The experiment was repeated
three times for each light source, and thus, there were nine
lamps used in total. The lamps were placed in the field accord-
ing to the manufacturer’s protocols. All lamps for each repli-
cate experiment were randomly installed in a straight line. The
vertical height of the lamps was 1.5 m, and the distance be-
tween two lamps was approximately 25 m. All lamps were lit
every 2 days. Insect bags were hung at 18:00–19:00 and col-
lected at 5:00–6:00 the next day. Then, the catches for
S. orientalis and A. corpulenta were quantified.

Light irradiation treatment and oxidative stress
measurement

The collected S. orientalis and A. corpulenta were divided
into three different groups. Sixteen samples of S. orientalis
and four samples of A. corpulenta per treatment were random-
ly selected and exposed to the three light sources or dark
condition (CK) for 30 min (Meng et al. 2009; Zhou et al.
2013). The temperature in the irradiating area was maintained
at 25 °C. After irradiation, all of the samples were immediate-
ly frozen in liquid nitrogen and stored at − 80 °C for further
determination.

Prior to homogenization, the wings of S. orientalis and
A. corpulenta were removed and the remaining parts were
weighed. The tissues were homogenized in ice-cold buffer
(1/150 mol/mL Na2HPO4-KH2PO4, 0.1% Triton, pH 7.4),
and the ratio of body weight and buffer volume was 1:10.
The crude homogenates were centrifuged at 10,000×g for
10 min at 4 °C and the supernatant was used for further anal-
ysis. According to the Bradford method (1976), protein con-
centrations were measured using bovine serum albumin as the
standard (Bradford 1976). In this study, the activities of
malondialdehyde (MDA), SOD, and GST were measured
spectrophotometrically using assay kits (Nanjing Jiancheng
Bioengineering Institute, Jiangsu Province, China) according
to the manufacturer’s protocols, with some modifications
(Meng et al. 2009). Lipid peroxidation was measured by de-
termining the MDA produced by reacting with thiobarbituric
acid (TBA) to provide a red species with a maximum wave-
length at 532 nm. The MDA concentration was expressed as
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nanomole of MDA produced per milligram protein. The SOD
activity was measured spectrophotometrically at 550 nm using
the xanthine and xanthine oxidase systems. One unit of SOD
activity was expressed as the number of enzyme required for
50% inhibition of the xanthine and xanthine oxidase system
reaction in 1 mL enzyme extraction of 1 mg protein. The SOD
activity was expressed as U mg−1 protein. The GST activity
was measured using 1-chloro-2, 4-dinitrobenzene (CDNB) as a
substrate. The formation of GSH-CDNB conjugate was moni-
tored using the variance in absorbance at 412 nm. One unit of
GST activity was expressed as the number that catalyzes the
conjugation of 1 mmol/L GSH with CDNB per minute per
milligram protein. The GST activity was expressed as U mg−1

protein. Each experiment was repeated four times.

Statistical analysis

All statistical analyses were carried out in IBM SPSS
Statistical 18.0 (SPSS Inc., Chicago, IL, USA). The results
in the graphs represent the mean values ± S.E. We applied
the paired t test which was used to compare trapping effect
and antioxidant system effect between the two cockchafers for
each light source. Meanwhile, the one-way ANOVAwas used
to compare the effect of the three light sources (A, B, and C)
and dark condition (CK) on the antioxidant system in
S. orientalis and A. corpulenta, respectively. Significant dif-
ferences were analyzed using Tukey’s multiple range test.

Results

Trapping effect of the three light sources on S. orientalis
and A. corpulenta

The catches of S. orientalis and A. corpulenta by light source
A were 4476 and 191, respectively (Fig. 1). The catches of
S. orientalis and A. corpulenta by light source B were 3396

and 187, respectively (Fig. 1). The catches of S. orientalis and
A. corpulenta by light source C were 4153 and 260, respec-
tively (Fig. 1). The catches of S. orientalis were significantly
higher compared to A. corpulenta by light sources A
(t = 6.275, df = 2, p = 0.024) and C (t = 5.565, df = 2,
p = 0.031). However, there were no significant differences in
the catches between S. orientalis and A. corpulenta by light
source B (Fig. 1; t = 2.220, df = 2, p = 0.157).

Effect of the three light sources on the antioxidant system
of S. orientalis and A. corpulenta

The protein concentrations in S. orientalis were significantly
higher compared to A. corpulenta after irradiation by light
source A (t = 5.891, df = 3, p = 0.010) (Fig. 2). However,
there were no significant differences in the protein concentra-
tions between S. orientalis and A. corpulenta after irradiation
by light sources B (t = 1.509, df = 3, p = 0.228) and C
(t = 3.057, df = 3, p = 0.055) and in dark condition
(t = − 0.379, df = 3, p = 0.730) (Fig. 2).Meanwhile, the protein
concentrations irradiation by light source Awere significantly
higher compared to dark condition (CK) in S. orientalis
(p = 0.001) (Fig. 2).

TheMDA contents in S. orientaliswere significantly lower
compared to A. corpulenta after irradiation by light sources A
(t = − 4.762, df = 3, p = 0.018) and C (t = − 4.051, df = 3,
p = 0.027) (Fig. 3). However, no significant differences were
detected in the MDA contents between S. orientalis and
A. corpulenta after irradiation by light source B (t = − 1.346,
df = 3, p = 0.271) and in dark condition (t = 0.637, df = 3,
p = 0.570) (Fig. 3). The MDA contents irradiation by light
source Awere significantly higher than dark condition (CK) in
A. corpulenta (p = 0.015) (Fig. 3). We also observed statisti-
cally non-significant but suggestive decreasing trends in the
MDA contents between the three light sources and dark con-
dition (CK) in S. orientalis (Fig. 3).

Fig. 1 Comparison of the catches
between S. orientalis and
A. corpulenta after irradiation by
the three light sources. Values
were expressed as the Mean ± SE
(n = 3). ns, not significant; *,
p < 0.05
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The SOD activity in S. orientalis was significantly lower
compared to A. corpulenta after irradiation by light source A
(t = − 9.675, df = 3, p = 0.002) (Fig. 4). However, there were
no significant differences in the SOD activity between
S. orientalis and A. corpulenta after irradiation by light
sources (t = − 2.111, df = 3, p = 0.125) and C (t = −3.015,
df = 3, p = 0.057) and in dark condition (t = − 0.078, df = 3,
p = 0.943) (Fig. 4). Also, the SOD activity irradiations by the
three light sources were significantly lower compared to dark
condition (CK) in S. orientalis (light source A p < 0.001; light
source B p = 0.042; light source C p = 0.006) (Fig. 4).

The GSTactivity in S. orientaliswas marginally significant-
ly lower compared to A. corpulenta after irradiation by the light
sources A (t = − 2.981, df = 3, p = 0.059), B (t = − 2.649, df = 3,
p = 0.077), and C (t = − 2.809, df = 3, p = 0.067) (Fig. 5).
However, there were no significant differences in the GST ac-
tivity in dark condition (CK) between S. orientalis and
A. corpulenta (Fig. 5; t = − 1.111, df = 3, p = 0.348). We also
observed statistically non-significant but suggestive decreasing

trends in the GST activity between the three light sources
and dark condition (CK) in S. orientalis (Fig. 5).

Discussion

UV irradiation is known to cause the production of ROS and
has been considered to be one of the environmental stresses in
animals (Rebollar et al. 2006; Schauen et al. 2007) and insects
(Meng et al. 2010). In response, insects have an antioxidant
system, which is the key for their ability to remove ROS to
protect cells from oxidative damage (Meng et al. 2009; Yang
et al. 2010). The induction of antioxidant enzymes as a result
of UV irradiation may also indicate the over-production of
ROS (Meng et al. 2009; Wang et al. 2012). In the present
study, our results indicated that there was a potential negative
relationship between trapping effect and antioxidant enzyme
activities in response to light source A. We proposed a weaker
response to light stress and a larger quantity of catches using

Fig. 2 Comparison of the protein
concentrations between
S. orientalis and A. corpulenta
after irradiation by the three light
sources. Values are expressed as
the Mean ± SE (n = 4). Different
letters over the bars denote
significant differences (p < 0.05;
capital letters: S. orientalis;
lowercase letters: A. corpulenta).
ns, not significant; *, p < 0.05

Fig. 3 Comparison of the MDA
contents between S. orientalis and
A. corpulenta after irradiation by
the three light sources. Values
were expressed as the Mean ± SE
(n = 4). Different letters over the
bars denote significant differences
(p < 0.05; capital letters:
S. orientalis; lowercase letters:
A. corpulenta). ns, not significant;
*, p < 0.05
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light irradiation in the cockchafers. We found that the re-
sponse of S. orientalis to light stress was weaker compared
to A. corpulenta under light source A, which resulted in a
significantly higher number of catches of S. orientalis
compared to A. corpulenta. Most likely, the degree of re-
sistance of S. orientalis against the frequoscillation pest-
killing lamp was lower compared to A. corpulenta. In ad-
dition, there were no significant differences in the catches
between S. orientalis and A. corpulenta by light source B.
A possible explanation for this result is that some unpre-
dictable environmental factors might affect our results in
the field experiments. Thus, the catches of S. orientalis and
A. corpulenta had big fluctuation by light source B among
replications.

As a biological marker of oxidative stress, MDA induces
oxidative stress in insects exposed to light irradiation and has
been used to determine the degree of lipid peroxidation (Del
Rio et al. 2005; Meng et al. 2009). In our study, irradiation of
light sources A and C generated significantly more ROS

damage to lipids in A. corpulenta compared to S. orientalis.
The higher MDA levels in A. corpulenta might be due to the
stronger response to light irradiation.

SOD is the first line of defense against ROS in insects
and plays an important role in scavenging intracellular su-
peroxide radicals induced by external stimulus such as light
irradiation. In this study, we observed that SOD activity in
A. corpulenta was higher compared to S. orientalis after
irradiation by light source A. In previous studies, it has
been found that light irradiation induced superoxide radi-
cals in the Antarctic midge Belgica antarctica and
Helicoverpa armigera adults (Lopez-Martinez et al. 2008;
Meng et al., 2009). Moreover, SOD was reported to be stim-
ulated by scavenging superoxide radicals, which protected
insects from UV stress, as a response to increasing ROS
(Krishnan and Kodrík 2006; Meng et al. 2009). Thus, the
higher level of SOD activity in A. corpulenta indicated that
A. corpulenta had a stronger response to light irradiation com-
pared to S. orientalis.

Fig. 4 Comparison of the SOD
activity between S. orientalis and
A. corpulenta after irradiation by
the three light sources. Values
were expressed as the Mean ± SE
(n = 4). Different letters over the
bars denote significant differences
(p < 0.05; capital letters:
S. orientalis; lowercase letters:
A. corpulenta). ns, not significant;
*, p < 0.05

Fig. 5 Comparison of the GST
activity between S. orientalis and
A. corpulenta after irradiation by
the three light sources. Values
were expressed as the Mean ± SE
(n = 4). Different letters over the
bars denote significant differences
(p < 0.05; capital letters:
S. orientalis; lowercase letters:
A. corpulenta). ns, not significant;
#, 0.05 < p < 0.1
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GST is considered as a primary antioxidant enzyme, which
is efficient in removing lipid peroxides in insects (Ahmad
et al. 1991; Kono and Shishido 1992). In our study, GST
activity in A. corpulenta was marginally significantly higher
compared to S. orientalis when exposed to the three light
sources. Thus, we proposed that GST might play an important
role in response to oxidative stress induced by light stress in
S. orientalis and A. corpulenta.

Collectively, we found that the catches of S. orientaliswere
significantly higher compared to A. corpulenta, but the MDA
contents and activities of SOD and GST in S. orientalis were
significantly and marginally significantly lower compared to
A. corpulenta in response to light source A. These results
suggested a weaker response of antioxidant enzyme activity
to light stress and a larger quantity of trapping catches using
light irradiation in cockchafers. Thus, we inferred that there
was a potentially negative relationship between trapping effect
and antioxidant enzyme activities in response to light stress in
cockchafers.
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