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Abstract Diatoms hold great promise as potential sources
of biofuel production. In the present study, the biomass and
lipid production in the marine diatom Navicula phyllepta,
isolated from Cochin estuary, India and identified as a po-
tential biodiesel feedstock, were optimized using Plackett-
Burman (PB) statistical experimental design followed by
central composite design (CCD) and response surface
methodology (RSM). The growth analyses of the isolate
in different nitrogen sources, salinities and five different
enriched sea water media showed the best growth in the
cheapest medium with minimum components using urea as
nitrogen source at salinity between 25 and 40 g kg−1.
Plackett-Burman experimental analyses for screening urea,
sodium metasilicate, sodium dihydrogen phosphate, ferric
chloride, salinity, temperature, pH and agitation influenc-
ing lipid and biomass production showed that silicate and
temperature had a positive coefficient on biomass produc-
tion, and temperature had a significant positive coefficient,
while urea and phosphate showed a negative coefficient on
lipid content. A 24 factorial central composite design
(FCCD) was used to optimize the concentration of the fac-
tors selected. The optimized media resulted in 1.62-fold
increase (64%) in biomass (1.2 ± 0.08 g L−1) and 1.2-fold
increase (22%) in estimated total lipid production
(0.11 ± 0.003 g L−1) compared to original media within
12 days of culturing. A significantly higher biomass and
lipid production in the optimized medium demands further

development of a two-stage strategy of biomass production
followed by induction of high lipid production under nu-
trient limitation or varying culture conditions for large-
scale production of biodiesel from the marine diatom.
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Introduction

Marine microalgae have been proved to be one of the most
promising candidates for biofuel production. Reports on bio-
fuel production from microalgae have been focussing more
on green algae as they are easily being mass produced and
more related to terrestrial plants. Recently, research on dia-
toms has started gaining momentum in the biofuel arena as
they are found to be rich source of neutral lipids (Hildebrand
et al. 2012; Levitan et al. 2014; D’Ippolito et al. 2015).
Effective commercialisation of microalgae-based biofuel is
limited for lack of technical and economic feasibility studies
in mass production, biomass harvesting and downstream
processing. Research on marine diatoms for biofuel applica-
tions is advantageous for use in large-scale raceway ponds
due to its ability to tolerate a wide range of salinity fluctu-
ations; the actual use may be limited until conditions are
optimized for diatom cell growth and lipid accumulation
(Fields et al. 2014). A number of factors are involved in
the economically feasible culturing of microalgae, such as
optimum light, nutrient availability and temperature, to yield
high lipid content and growth rate (Araujo et al. 2011;
Huang et al. 2013). Optimisation of micronutrients in the
growth medium is an important requirement in establishing
a sustainable production system of microalgae. The
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conventional one-factor-at-a-time approach does not take in-
to account the interactions between nutrients (Song et al.
2012). Therefore, optimisation of bioprocess using statistical
tools is the best option to understand multi-factorial interac-
tions in the production of biomass and targeted products
from algal biomass.

Response surface methodology is a collection of math-
ematical and statistical techniques widely used for design-
ing experiments, building models and determining opti-
mum conditions of several factors influencing a mecha-
nism (Ghadge and Raheman 2006; Acıkel et al. 2010;
Said and Amin 2016). It helps in screening the key factors
rapidly from multiple factors, which can avoid the defects
brought by single-factor optimisation (Zhang et al. 2012;
Qin et al. 2013). Most of the reports related to the statistical
optimisation of microalgal media for biodiesel production
are mainly on green algae (Azma et al. 2011; Chen et al.
2014; Jia et al. 2014; Yang et al. 2014a, b; Fawzy 2017).
The research using response surface methodology (RSM)
for improving the value of biomass and lipid production
towards biofuel production by one-stage culture in diatoms
has been scarcely reported. As differences among species
and strains of the same genus exist, it is imperative to
optimize the medium for each organism in order to obtain
the maximum response.

Navicula phyllepta MACC8 isolated from Cochin estu-
ary in the west coast of India was identified as a potential
biofuel feedstock based on its biomass and lipid produc-
tivities and fatty acid methyl ester composition (Sabu et al.
2017). It is a commonly reported benthic diatom from
brackish and marine sediments (Clavero et al. 2000;
Sabbe et al. 2003). N. phyllepta is ubiquitous in nature,
suggesting its adaptation capability across a wide range
of environmental conditions such as salinity, emersion time
and temperature (Witkowski et al. 2000; Sabbe et al.
2003). The lipids and fatty acids of some Navicula species
have already been investigated (Mansour et al. 2005;
Duong et al. 2015; Joseph et al. 2016), and the lipid quality
indicated the potential of this microalga to be used as a
feedstock for biodiesel production (Matsumoto et al.
2010; Sanjay et al. 2013). In addition, the characteristics
of the cells of Navicula sp. to settle to the bottom of the
vessel or to adhere to the surface of photobioreactors (non-
suspended, membrane-based cultivation) (Liu et al. 2013;
Bilad et al. 2014; Katarzyna et al. 2015) can be helpful in
the easy harvesting the biomass, reducing positively the
cost of biofuel production.

The present study was undertaken to identify and eval-
uate the effect of the different growth factors on biomass
and lipid production in the oleaginous microalga
N. phyllepta MACC8 identified as a biofuel feedstock
and to develop an economic growth medium by optimizing
the significant factors using statistical modelling.

Materials and methods

Microalgal culture

Pennate diatom N. phyllepta MACC8 (KC178569) was iso-
lated from brackish waters of Cochin estuary (9° 55′ 35″ N,
96° 17′ 53″ E), India and maintained at the Culture Collection
of National Centre for Aquatic Animal Health. The strain was
grown in F/2 medium (Guillard 1975) at 26–28 °C under
27 μmol m−2 s−1 with 16:8 light and dark photoperiods.

Light and transmission electron microscopy studies
on N. phyllepta MACC8

Algal cells were collected by centrifuging at 4000×g for
5 min. A small drop of the cell pellet was mounted on a clean
glass slide with a cover and viewed under oil immersion under
a light microscope (Olympus CH20iBIMF, India).

The cultures were observed under transmission electron
microscope for studying the ultrastructure of the cell during
lipid accumulating stationary stage. A sample of 5 mL
microalgal cells was harvested during stationary phase (18–
20 days) and washed in 1× phosphate buffer solution (PBS)
two to three times. The cells were centrifuged at 8000×g,
supernatant was discarded and 500μL of 2.5% glutaraldehyde
was added and incubated at 4 °C. The cells were harvested
after 12 h, washed in 1× PBS two to three times and 200 μL of
2% osmium tetroxide was added and incubated at 4 °C for 4 h
or more till the culture got stained black/dark brown. The cells
were harvested and washed with 1× PBS two to three times.
The cells were dehydrated with a graded series of acetone and
embedded in epoxy resin. The embedded specimen was cut
into ultrathin sections and stained with uranyl acetate and lead
citrate (Lewis and Knight 1977). Transmission electron mi-
crograph was recorded using TECNAI 200 TEM (FEI,
Electron Optics, USA) at All India Institute of Medical
Sciences (AIIMS), Delhi.

Selection of nitrogen source and salinity for high growth

Equimolar concentrations (2 mM) of ammonium chloride,
sodium nitrate and urea were used as nitrogen source in the
basal medium F/2 with salinity 30 g kg−1. An aliquot of 1 mL
of 1 × 106 cells was inoculated in to 50 mL sterilized medium
keeping the other culture conditions constant. The cell count
was determined by withdrawing 1 mL of sample from the
each culture flask every alternate day up to 14 days using
Neubauer haemocytometer. For measuring salt tolerance, the
diatom was cultured in F/2 medium (with sodium nitrate as
nitrogen source) with salinities 0, 10, 20, 30, 35 and 40 g kg−1.
Lower salinities were prepared by diluting sea water
(30 g kg−1) with distilled water, while higher salinities were
prepared by adding NaCl and measured using refractometer.
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Tap water was used for zero salinity. An aliquot of 1 ml of
1 × 106 cells was inoculated into 100-mL Erlenmeyer flasks
containing 50 mL sterilized F/2 medium at 26–28 °C with a
photoperiod of 16:8 h light/dark cycles under fluorescent
white light (27 μmol m−2 s−1). Cell count and growth rate
were determined every alternate days up to 14 days. The ex-
periments were carried out in triplicate under different nitro-
gen sources, salinities and cultivation time, and the mean
values measured at different experimental conditions (differ-
ent nitrogen sources/salinities) and cultivation time were
analysed by two-way analysis of variance (ANOVA).

Selection of growth medium

One millilitre culture of N. phyllepta at a cell density 1 × 106

was inoculated into 100-mL Erlenmeyer flasks containing dif-
ferent sterilized enriched sea water media of 30 g kg−1 such as
F/2 (Guillard 1975), modified F/2 for diatoms (modified from
Andersen et al. 2005), L1 medium (Guillard and Hargraves
1993), diatom artificial medium (DAM) (Gagneux-Moreaux
et al. 2007) and modified sea water medium (MSWM)
(Nurachman et al. 2010) at 26–28 °C with a photoperiod of
16:8 h light/dark cycles under fluorescent white light
(27 μmol m−2 s−1) and cultured for 14 days. Nutritional com-
position of each medium is given in Table 1. Cell count was
measured every alternate day and the growth rates of the iso-
late in different media were determined in triplicates for a
period of 14 days following Guillard (1973). The signifi-
cances of the differences in mean growth rate of the diatom
in different culture media and cultivation time were tested
using two-way ANOVA.

Enumeration of cell count using Neubauer
haemocytometer

The concentration of cells was calculated following the meth-
od given by Guillard and Sieracki (2005) as follows:

Cell density ¼ Number of cells � 10; 000

Number of squares
ð1Þ

Determination of specific growth rate

The specific growth rate (μ) based on cell density was calcu-
lated following the equation (Guillard 1973):

μ ¼ ln X 1−X 0ð Þ
T1−T0

ð2Þ

where X0 and X1 are densities at the starting and end of the
exponential phase at days T0 and T1, respectively.

Plackett-Burman experimental design-based screening
for significant variables

Plackett-Burman design was employed for screening eight
variables such as urea, sodium metasilicate, sodium
dihydrogen phosphate, ferric chloride, salinity, temperature,
pH and agitation influencing lipid and biomass production.
Each variable was set at a higher (+) and lower (−) value to
identify which factor had significant influence on the pro-
duction (Table 2). An experimental design of 12 experiments
or runs was formulated for the eight factors predicted by
Design Expert software version 6.0.9 (Stat-Ease Inc.,
Minneapolis, MN, USA) based on the range of the variables
provided. The experiments were carried out in 100-mL
Erlenmeyer flasks containing 50 mL MSWM medium, in
an incubator shaker (Orbitek® LEIL, Scigenics Biotech,
India) under illumination of 27 μmol m−2 s−1, 16:8 h light
and dark photoperiods. Five percent inoculum containing
1.5 × 106 mL−1 of cells in the exponential growth phase
was added to the 100 mL culture medium. The responses
were measured in terms of dry weight of biomass (g L−1)
and total lipid content estimates (g L−1) towards the end of
exponential phase (12th day). The dry weight was estimated
by harvesting 30 mL of 12 day culture at 4000×g for 3–
5 min, washed with sterilized distilled water and lyophilized
at − 72 °C for 12 h, and the weight was determined (Becker
1994). The total lipids were extracted from lyophilized
microalgal biomass (3–30 mg) (Shenbaga Devi et al. 2012)
following the modified method of Bligh and Dyer (1959), to
which 0.6 mL water, 1 mL methanol and 1 mL chloroform
were added. The solution was mixed for 30 s, and an addi-
tional 1 mL chloroform and 1 mL water were added and the
contents of the culture tube were mixed for 30 s. The tubes
were centrifuged at 3105×g for 10 min. The upper layer was
withdrawn using a pipette, and the lower chloroform phase
containing the extracted lipids was transferred into another
culture tube; the residue was extracted twice as above, and
the chloroform phases were pooled together and dried under
nitrogen. Thereafter, the total lipids were measured gravi-
metrically, and the lipid content was estimated. The re-
sponses obtained were subjected to ANOVA, and the signif-
icant (p < 0.05) variables were optimized for their concen-
trations of biomass and total lipid content.

Response surface methodology

A 24 factorial central composite design (FCCD) was used to
optimize the concentration of the factors selected such as so-
dium silicate, urea, sodium dihydrogen phosphate and temper-
ature, keeping rest of the factors such as ferric chloride, salin-
ity, pH and agitation speed constant. An experimental design
of 30 experiments or runs was formulated using the Design
Expert software 6.0.9 (Stat-Ease Inc., Minneapolis, USA).
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The experiments were conducted in 100-mL Erlenmeyer
flasks containing 50 mL medium (pH 7, 30 g kg−1) prepared
according to the design in Table 5. Five percent inoculum
containing 1.5 × 106 cells mL−1 in exponential phase was
added to the culture medium. The cultures were incubated in
an incubator shaker at 120×g under 27 μmol m−2 s−1, 16:8 h
light and dark photoperiods and the biomass (g L−1) and total
lipid content (g L−1) were estimated from 30 mL sample vol-
ume at the end of 12 days. Response surface methodology 3D
plots were generated to understand the interaction between
different factors and to find the optimum concentration of
the medium components favouring the responses. The opti-
mized values obtained were confirmed using point prediction.

Table 1 Nutrient composition of
different media used in the study Constituents DAM

(g L−1)
F/2
(g L−1)

Modified F/2 (for dia-
toms)
(g L−1)

L1
(g L−1)

MSWM
(g L−1)

Urea – – – – 0.060

NaNO3 25.5 75 150 75 –

NaH2PO4 1.38 5 10 5 0.030

Na2SiO3·9H2O 28.4 60 30 30 0.150

NaCl 20.57 – – – –

Na2SO4 3.067 – – – –

CaCl2·2H2O 1.15 – – – –

MgCl2·6H2O 11.1 – – – –

H3BO3 1.50 – – – –

KBr 5 – – – –

KCl 35 – – – –

NaF 0.15 – – – –

NaHCO3 10 – – – –

SrCl2·6H2O 0.85 – – – –

Trace metals

CoCl2·6H2O 10 10 9.9 10 –

CuSO4·5H2O 9.8 9.8 9.8 2.45 –

MnCl2·4H2O 0.8 180 179 180 –

NaMoO4·2H2O 6.30 6.3 6.2 19.9 –

NiCl2·6H2O 0.74 – – – –

Na2SeO3·5H2O 0.85 – – – –

ZnSO4·7H2O 22 22 21.9 22 –

FeCl3·6H2O 3.15 3.15 6.3 3.15 0.005

Na2EDTA·2H2O 4.36 4.36 8.8 4.36 0.050

NiSO4·6H2O – – – 2.7 –

Na3VO4 – – – 1.84 –

K2CrO4 – – – 1.94 –

ZnCl2 – – – – –

Vitamin solutions

Thiamine HCl 0.2 0.2 0.4 0.20 –

Cyanocobalamin 1 1 1 1 –

Biotin 0.1 0.1 0.2 0.1 –

DAM diatom artificial medium, MSWM minimal sea water medium

Table 2 Higher and lower limits of the variables selected for the study

Variable Higher limit (+) Lower limit (−)

Urea (mM) 10 0.5

Sodium silicate (mM) 25 0.25

Ferric chloride (mM) 0.1 0.01

Salinity (g kg−1) 40 25

Temperature (°C) 30 20

Sodium phosphate (mM) 1.0 0.1

pH 9 7

Agitation (rpm) 125 115
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Validation of the model

The predicted responses (biomass and lipid) were experimen-
tally validated in the optimized medium under optimized cul-
ture conditions predicted by the software at the end of the
analyses by shake flask experiments, and it was compared
with the un-optimized medium for understanding the effec-
tiveness of the whole optimisation process. The experiments
were carried out in triplicates.

Statistical analyses of data

The data was processed and analysed by the statistical soft-
ware, Design Expert. To estimate the coefficient of regression
of experimental data and to plot response surface. ANOVA
was used to determine the significance of each term in the
fitted equations and to estimate the goodness of fit in each
case.

Results and discussions

Cell structure

Tropical marine diatoms are generally difficult to adapt to
laboratory conditions (Nurachman et al. 2010), but in the pres-
ent study, Navicula sp. could be cultured under laboratory
conditions. This benthic diatom was isolated from the water
samples collected from Cochin Estuary, India. The diatom
N. phyllepta is unicellular and uni-nucleate appearing brown
to slightly green in colour (Fig. 1a). The primary photosyn-
thetic pigments are chlorophyll a and c and ß-carotene masked
by fucoxanthin and xanthophylls (Kuczynska et al. 2015). The
ultrastructure of the cell (Fig. 1b) showed the presence of
chloroplasts at the two ends of the cell. The large spherical
nucleus was attached to the chloroplasts. Tubular shaped mi-
tochondrion was localized in the peripheral cytoplasm layer
which is a characteristic of diatoms. The lipid bodies were
found at the centre or periphery (Dawes 1998).

Effect of different nitrogen sources

On assessing the effect of different sources of nitrogen on
the growth of the benthic diatom in F/2 medium with salin-
ity 30 g kg−1, urea gave higher cell densities compared to
sodium nitrate and ammonium chloride as nitrogen source
(Fig. 2a). There were significant differences in cell densities
of N. phyllepta MACC8 in different media (p = 0.0003) and
between the culturing periods (p = 0.007). The growth rates
of the diatom in sodium nitrate (NaNO3), urea and ammo-
nium chloride (NH4Cl) were 0.44, 0.40 and 0.21 day−1, re-
spectively. Similar results were reported in a study using
diatom Cylindrotheca fusiformis, where NaNO3 and urea
were equally good in promoting growth (Suman et al.
2012). Nitrate and urea were better nitrogen sources than
ammonium sal ts in Phaeodactylum tricornutum
(Yongmanitchai and Ward 1991), Chlorella vulgaris and
Scenedesmus sp. (Crofcheck et al. 2012; Wijanarko 2011;
Muthu et al. 2013). The possible explanation for this im-
proved growth mechanism could be that the various genes
involved in nitrate assimilation/acquisition in microalgae
were actively expressed in the presence of nitrate and urea
medium but repressed in the presence of ammonium medi-
um (Hildebrand and Dahlin 2000; Imamura et al. 2010;
McDonald et al. 2010). Most marine and fresh water
microalgae can effectively use NO3−, NO2−, N2 or NH4+

as nitrogen sources but through absolutely different path-
ways (Glass et al. 2009). Urea with double nitrogen groups
(NH2), upon degradation, results in other nitrogen sources
including ammonium ion and nitrate, thus increasing the
amount of nitrogen in vivo. It is also known to boost the
algal growth as it acts as a complementary source of organic
carbon (Saumya et al. 2016). Moreover, the use of urea in
growth media stabilizes pH due to lack of ionic charge
(Eustance et al. 2013). From the study, both urea and sodi-
um nitrate were proved to be good nitrogen sources, but
since urea is more cost-effective (Wijanarko 2011; Kim
et al. 2016), urea-based medium was selected as a more
feasible one for mass production of N. phyllepta MACC8,
a potential biodiesel producer.

Fig. 1 a Light microscopic
image of Navicula phyllepta
MACC8 under oil immersion
(× 100 magnification), scale
bar = 0.6 μm. b Electron
microscopic image of cross
section of a dividing cell showing
chloroplast (C), nucleus (N),
mitochondrion (M) and oil bodies
(OB)
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Effect of different salinities on diatom growth

N. phyllepta, an estuarine isolate, exhibited wide salinity tol-
erance by growing in all tested salinities 0, 10, 20, 30, 35 and
40 g kg−1 in F/2 medium with sodium nitrate as nitrogen
source. N. phyllepta is a dominant member of communities
along estuarine gradient (5–30 g kg−1) (Vanelslander et al.
2009; Smol and Stoermer 2010; Bellinger and Sigee 2015).
N. phyllepta has been reported from a broad range of salinities,
from electrolyte-rich freshwaters (Krammer and Lange-
Bertalot 1986) to hypersaline environments with salinities up
to 75 g kg−1 (Clavero et al. 2000). In the present study, the
highest cell densities were obtained at salinities ranging from
20 to 40 g kg−1. There was significant difference in growth
between the extreme salinities 0 and 40 g kg−1 (p < 0.05).
However, there was no significant growth difference within
a salinity range of 10–40 g kg−1 and cultivation time (Fig. 2b).
There was proportional reduction in lag phase with increasing
salinity. Growth in zero salinity showed a long lag phase of
8 days, whereas in salinities higher than 30 g kg−1, the expo-
nential phase started immediately after fourth day. Similar
studies reported that estuarine diatom Thalassiosira
weissflogii had higher growth rate and better biochemical
composition at salinities 25 and 30 g kg−1 (García et al.
2012). The diatom Chaetoceros calcitrans had significant
growth when cultured at salinity of 30 g kg−1 (Adenan et al.
2013). Similarly, Nannochloropsis salina belonging to
Eustigmatophyceae, a potential biofuel feedstock, showed
significant increase in growth rate, biomass and lipid content

at higher salinities in the range of 22–34 g kg−1 and higher
salinities helped in controlling the invading non-targeted algae
and grazers (Bartleya et al. 2013). The results of the present
study showed that after a long lag phase of 8 days, the diatom
showed a quiet steady growth in zero salinity, i.e. fresh water.
This indicates the reason for the abundance of the species at
low salinities and also imparts competitive advantage in
ol igohal ine and mesohal ine parts of the estuary
(Vanelslander et al. 2009). The tolerance to low salinities is
important during heavy rainfall when the salinity of sediment
top layer almost reduces to fresh water conditions (Coull
1999). The growth rate was found to be the highest in the
salinity range of 10–40 g kg−1 with an average rate of
0.46 day−1 with least shown in zero salinity (0.36 day−1).
Hence, the isolate can be cultured in sea water (30 g kg−1),
encouraging the utilisation of non-potable waters for mass
production and minimising the invasion of contaminating in-
vasive organisms.

Selection of growth medium

Of the five types of enriched sea water media of salinity
30 g kg−1 tested, such as F/2, modified F/2 for diatom (change
in quantities, not final concentration), L1, DAM and MSWM,
the modified sea water mediumwas found to be a cheaper and
better medium for the stable growth of N. phyllepta. Growth
studies showed that N. phyllepta MACC8 had a significant
growth difference in different media tested and during differ-
ent cultivation times (p < 0.05) (Fig. 2c). The highest growth

Fig. 2 The growth of Navicula
phylleptaMACC8 in a F/2 medi-
um with different nitrogen
sources, b different salinities and
c different media
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rate was found in MSWM (0.48 day−1), followed by F/2
(0.41 day−1) and L1 (0.32 day−1) medium. There was no sig-
nificant growth difference in modified F/2 medium with a
growth rate of 0.26 day−1and DAM with 0.25 day−1. The
major obstacle in the large-scale production of biodiesel from
microalgae is the high cost in production and one of the factors
contributing to the cost is the medium used for culturing the
organism. The conventional medium used for culturing this
strain contains many nutrients and trace metals which increase
the overall cost of the culturing medium. An optimal media is
the one which should contain the minimum quantity of nutri-
ents to support maximum growth of the microalgae
(Crofcheck et al. 2012). Different media have varying nutrient
quantities that can significantly change the quantity of cell
biomass and its biochemical composition during cultivation
(Mandalam and Palsson 1998).

Navicula sp. is a major biofilm producer as the cells are
capable for producing transparent exopolymer particles
(TEP), which are colonized by bacteria. These bacteria pro-
duce extra-cellular polysaccharides in response to the pres-
ence of phytoplankton, thereby initiating cell adhesion and
cell to cell attachment (Buhmann et al. 2011; Amin et al.
2012). Such a property is very disadvantageous in terms of
the mass cultivation of this diatom in any form of cultivation
systems. In this present experiment, the culturing of the dia-
tom N. phyllepta grown in the modified sea water medium
helped to reduce the cell adhesion and cell aggregation
compared to the conventional F/2 medium. The cells were
almost homogenously suspended in the media upon agitation.
Figure 3 shows the change in cell aggregation in MSWM and
F/2 media. It could be due to reduced number of bacterial
population in the media devoid of external addition of trace
metals and vitamins as it was reported byWindler et al. (2015)
that xenic cultures of benthic diatom Achnanthidium
minutissimum showed visible aggregates, whereas the axenic
cultures were almost suspended or less aggregated. It may be
also due to that some diatom secretome inhibited the biofilm
formation under the changed environmental conditions
(Doghri et al. 2016). Another possible argument is that urea,
a major protein denaturant, must have denatured/solubilized

the cell wall proteins involved in diatom cell adhesion
(Nguyen and Harvey 2001; Lee and van der Vegt 2006;
Willis et al. 2013). Finally, taking all the factors discussed
above into consideration, the modified sea water medium
was selected for further statistical optimisation.

Screening of variables using Plackett-Burman design

Plackett-Burman design helps us to screen the important fac-
tors affecting the desired response with limited number of
experiments. Table 3 shows the distribution of different vari-
ables and the responses in the study. Of the seven factors
tested, urea, sodium silicate, sodium phosphate and tempera-
ture were considered as significant variables influencing the
responses. The factors silicate and temperature had a positive
coefficient on biomass production in N. phyllepta. In the case
of total lipid content estimates, temperature had a significant
positive coefficient, while urea and phosphate had a negative
coefficient. The rest of the variables had no significant effects
on the responses and were kept constant in further experi-
ments. Statistical analysis was carried out at 95% confidence
interval (CI) throughout, based on t test statistic. Table 4 rep-
resents the ANOVA results of the selected variables having
significant effect on biomass production and estimated total
lipid content. Increasing the silica concentration in the culture
media enhances the cell division in diatoms, which is vital for
improving algal biodiesel productivity in terms of increased
biomass (Moll et al. 2014; Yang et al. 2014a, b). Most of the
published studies on phytoplankton were carried out between
20 and 30 °C, and this was suitable for mass cultivation
(Karthikeyan et al. 2010; Adenan et al. 2013). The results
indicated that concentration of silicon and the temperature
can be increased in their levels for further improving the bio-
mass production.

Identification of the best culture medium and growth
conditions using response surface methodology

Following screening, response surface methodology using
face-centred composite design was employed to understand

Fig. 3 Light microscopic image.
aAggregation of cells grown in F/
2 (conventional medium) medi-
um. b Non-aggregated diatoms
grown in MSWM medium,
viewed under × 100 magnifica-
tion. Scale bar = 5 μm
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the interactions between various nutritional and physical fac-
tors affecting biomass and lipid production. Table 5 summa-
rizes the results of FCCD experiment of each run with results
of the response. The results were analysed by standard analy-
sis of variance (ANOVA), which gave the following quadratic
equation:

Biomass ¼ þ0:74þ 0:33� Aþ 0:075� B−0:018� C þ 0:073

� Dþ 0:030� AB−0:029� AC þ 0:024� AD−0:013
� BC−0:026� BDþ 0:011� CDþ 0:025� A2−0:014
� B2−0:049� C2−0:068� D2

ð3Þ

Lipid ¼ þ0:15þ 6:66E−004� Aþ 6:22E−003� B−2:167E−003� C−
7:44E−003� Dþ 3:125E−004� ABþ 3:938E−003� AC−7:312E−
003� ADþ 7:312E−003� BC−9:938E−003� BD−3:812E−003� CDþ
4:035E−004� A2−0:015� B2−4:096E−003� C2−8:596E−003� D2

ð4Þ

where, A is sodium silicate, B is urea, C is sodium phosphate
and D is temperature. The ANOVA results for biomass and
estimated total lipid production (Table 6) showed that the
model was significant (p < 0.05). In the case of biomass, the
modelF value of 57.49 implied that the model was significant.

There was only a 0.01% chance that an F value this large
could occur due to noise. In this case A, B, D, AB and AC
were significant model terms. The predicted adjusted R2 value
0.9006 was reasonably in agreement with the adjusted R2

value 0.9646. The Black of fit F value^ of 2.09 implied that
the lack of fit was not significant relative to the error. There
was a 21.56% chance that a lack of fit F value of this large
could occur. Non-significant lack of fit was good. The results
showed that silicate, urea, temperature and interactive effect
between silicate and urea, and silicate and phosphate were
significant for biomass production. The predicted R2 value
of 0.8181 for model to predict lipid production was in fairly
reasonable agreement with the adjusted R2 of 0.9235. The
modelF value of 25.99 implied that the model was significant.
There was only a 0.01% chance that an F value of this large
could occur due to noise. Values of BProb > F^ less than 0.05
indicated that model terms were significant. In this case, B, D,
AC, AD, BC, BD, CD, B2 and D2 are significant model terms.
The lack of fit F value of 1.44 implied that the lack of fit was
not significant relative to the pure error. There was a 36.07%
chance that a lack of fit F value of this large could occur due to

Table 3 Plackett-Burman experimental design and range of factors

Run Urea
(mM)

NaSiO3 (mM) FeCl3 (mM) Salinity (g kg−1) Temp (°C) NaH2PO4

(mM)
pH Agitation (rpm) Biomass (g L−1) Estimated lipid

(g L−1)

1 0.5 2.5 0.01 25 20 1.0 7 115 0.241 ± 0.02 0.063 ± 0.003

2 10 0.25 0.1 25 20 0.1 7 125 0.1 ± 0.014 0.068 ± 0.006

3 10 2.5 0.01 40 20 0.1 9 115 0.214 ± 0.03 0.06 ± 0.003

4 0.5 0.25 0.1 40 30 0.1 7 125 0.209 ± 0.05 0.082 ± 0.002

5 10 2.5 0.01 40 30 0.1 7 115 0.65 ± 0.02 0.085 ± 0.003

6 0.5 0.25 0.01 25 20 0.1 7 125 0.135 ± 0.04 0.072 ± 0.001

7 10 0.25 0.1 40 20 1.0 9 115 0.11 ± 0.03 0.056 ± 0.002

8 0.5 0.25 0.01 40 30 1.0 9 115 0.24 ± 0.06 0.074 ± 0.002

9 10 0.25 0.01 25 30 1.0 9 125 0.241 ± 0.09 0.063 ± 0.006

10 0.5 2.5 0.1 40 20 1.0 9 125 0.238 ± 0.03 0.064 ± 0.004

11 0.5 2.5 0.1 25 30 0.1 9 125 0.605 ± 0.01 0.102 ± 0.002

12 10 2.5 0.1 25 30 1.0 7 115 0.32 ± 0.07 0.060 ± 0.007

Values represent mean of three biological replicates

Table 4 Statistical analyses for
biomass and estimated total lipid
production of selected factorial
model under Plackett-Burman
design

Biomass (g L−1) EstimatedTotal lipid (g L−1)

Source Sum of squares F value p value Sum of squares F value p value

Model 0.25 12.63 0.0024 1.586E−003 11.95 0.0025

Urea – – – 3.521E−004 7.96 0.0225

NaSiO3 0.13 12.69 0.0061 – – –

Temperature 0.13 12.57 0.0063 5.741E−004 12.97 0.0070

NaH2PO4 – – – 6.601E−004 14.92 0.0048
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the noise. The model showed that the estimated total lipid
content in the diatom was controlled by a number of individ-
ual factors such as urea, temperature and interactive factors
such as silicate-phosphate, silicate-temperature, urea-phos-
phate, urea-temperature and phosphate-temperature.
Perturbation graphs were plotted to compare the effect of all
the individual factors at a particular point in the design space.
The response is plotted by changing only one factor over its
range, while keeping the other factors constant. The lines
showing curves or steep slope are the variables showing sig-
nificant effect on the responses. The silicate (A) had great
influence on the biomass, whereas urea (B) and temperature
(D) showed major effect on the estimated total lipid produc-
tion (Fig. 4a, b). Three-dimensional response surfaces were
plotted on the basis of the model equation to investigate the
interactions among the variables and to determine the

optimum concentration of each factor for maximum response
(Figs. 5 and 6). Each figure presents the effect of two factors
while the other factor was held at zero level. It was clearly
seen that silicate had important role in the biomass production,
whereas urea, phosphate and temperature showed an interac-
tive effect towards the estimated total lipid production. The
predicted values obtained from this model were as follows:
4.89mM sodiummetasilicate, 0.90 mM urea, 0.1 mM sodium
dihydrogen phosphate and 30.8 °C temperature for giving a
biomass of 1.18 g L−1, whereas 4.69 mM sodiummetasilicate,
0.76 mM urea, 0.13 mM sodium dihydrogen phosphate and
25 °C temperature for the estimated total lipid production of
0.16 g L−1.

Amorphous silica is vital for cell growth as it is essential
component for frustule formation (Martin-Jézéquel et al.
2000), causing Si availability to be a key factor in the

Table 5 Central composite
design matrix with experimental
values of biomass and estimated
total lipid production in Navicula
phylleptaMACC8

Run A B C D Biomass (g L−1) EstimatedTotal lipid (g L−1)

Actual value Predicted value Actual value Predicted value

1 5.00 0.90 0.15 25 0.895 ± 0.04 0.93 0.164 ± 0.01 0.17
2 1.00 0.10 0.15 25 0.22 ± 0.028 0.20 0.097 ± 0.01 0.096
3 5.00 0.10 0.15 25 0.722 ± 0.05 0.70 0.119 ± 0.003 0.12
4 5.00 0.10 0.05 35 1.05 ± 0.062 1.01 0.121 ± 0.002 0.12
5 1.00 0.10 0.15 35 0.339 ± 0.01 0.37 0.105 ± 0.001 0.11
6 3.00 0.50 0.10 30 0.78 ± 0.03 0.75 0.154 ± 0.001 0.15
7 1.00 0.90 0.15 35 0.391 ± 0.01 0.38 0.111 ± 0.003 0.11
8 1.00 0.90 0.15 25 0.313 ± 0.01 0.31 0.144 ± 0.004 0.14
9 1.00 0.90 0.05 25 0.282 ± 0.17 0.34 0.128 ± 0.006 0.13
10 1.00 0.10 0.05 25 0.24 ± 0.033 0.17 0.114 ± 0.001 0.12
11 3.00 0.90 0.10 30 0.863 ± 0.02 0.86 0.144 ± 0.008 0.14
12 5.00 0.10 0.05 25 0.749 ± 0.07 0.79 0.126 ± 0.005 0.12
13 1.00 0.90 0.05 35 0.377 ± 0.006 0.36 0.122 ± 0.002 0.12
14 3.00 0.50 0.05 30 0.692 ± 0.01 0.71 0.144 ± 0.01 0.15
15 3.00 0.50 0.10 30 0.852 ± 0.02 0.75 0.149 ± 0.002 0.15
16 1.00 0.10 0.05 35 0.31 ± 0.01 0.30 0.145 ± 0.003 0.14
17 3.00 0.50 0.10 25 0.585 ± 0.02 0.61 0.149 ± 0.013 0.15
18 3.00 0.50 0.10 35 0.737 ± 0.08 0.75 0.132 ± 0.019 0.13
19 3.00 0.50 0.10 30 0.74 ± 0.04 0.75 0.156 ± 0.004 0.15
20 3.00 0.50 0.10 30 0.76 ± 0.02 0.75 0.147 ± 0.004 0.15
21 5.00 0.50 0.10 30 1.07 ± 0.07 1.10 0.142 ± 0.006 0.15
22 3.00 0.50 0.15 30 0.667 ± 0.03 0.68 0.146 ± 0.1 0.14
23 3.00 0.50 0.10 30 0.748 ± 0.06 0.75 0.144 ± 0.005 0.15
24 3.00 0.10 0.10 30 0.567 ± 0.01 0.66 0.125 ± 0.003 0.13
25 5.00 0.10 0.15 35 0.995 ± 0.02 0.97 0.106 ± 0.004 0.10
26 5.00 0.90 0.05 25 1.146 ± 0.01 1.08 0.146 ± 0.009 0.14
27 3.00 0.50 0.10 30 0.747 ± 0.03 0.75 0.147 ± 0.003 0.15
28 1.00 0.50 0.10 30 0.437 ± 0.01 0.44 0.157 ± 0.003 0.15
29 5.00 0.90 0.15 35 1.103 ± 0.02 1.10 0.113 ± 0.002 0.11
30 5.00 0.90 0.05 35 1.143 ± 0.07 1.20 0.098 ± 0.001 0.1

Values represent mean of three biological replicates

A NaSiO3 (mM), B urea (mM), C NaH2PO4 (mM), D temperature (°C)
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regulation of diatom growth in nature. But the concentration
of silicate is critical, as higher concentrations can be inhibitory
as reported by Alverson (2007). There are various studies
focussing on the significance of mutual effects of nutrients
and environmental stress on the growth and lipid production
rather than their individual effects (Juneja et al. 2013; Spilling
et al. 2015; Singh et al. 2015). Nitrogen has been already
identified as limiting agent for increased lipid production in
marine microalgae. This could be due to alteration in meta-
bolic pathways (gene regulation) under stress conditions lead-
ing to lipid accumulation (Yang et al. 2013). The combined
limitation of both nitrogen and phosphorus resulted in the
highest lipid concentrations in P. tricornutum (Valenzuela
e t a l . 2012, 2013) , Chlamydomonas reinhardt i i
(Kamalanathan et al. 2015) and Chlorella minutissima

(Arora et al. 2016). Increase in lipid during deprivation or
limitation of nitrogen, phosphorus source or both could be
due to decrease in protein synthesis, causing the excess carbon
to get channelized into storage molecules such as neutral
lipids (triacylglycerides) and starch (Arora et al. 2016).
Temperature affects the physiological processes by changing
the rate of chemical reactions and the stability of cellular com-
ponents (Sandnes et al. 2005; Wagenen et al. 2012). The re-
sponse of microalgal lipid content to high and low growth
temperatures varies from species to species (Renaud et al.
2002; Wu et al. 2013). The results in the present study are in
accordance with the results of study by Wu et al. (2013) on
Monoraphidium sp., in which lipid content was the highest at
25 °C, while high biomass and lipid productivities were
achieved at 30 °C. Similarly, Wah et al. (2015) stated in his

Table 6 ANOVA results for
biomass and estimated total lipid
production under response
surface quadratic model

Biomass (g L−1) EstimatedTotal lipid (g L−1)

Source Sum of squares F value p value Sum of squares F value p value

Model 2.32 57.49 < 0.0001 9.927E−003 25.99 < 0.0001

A—NaSiO3 1.99 69.36 < 0.0001 8.000E−006 0.29 0.5961

B—Urea 0.10 34.96 < 0.0001 6.969E−004 25.55 0.0001

C—NaH2PO4 5.576E−003 1.93 0.1850 8.450E−005 3.10 0.0988

D—Temp 0.097 33.52 < 0.0001 9.976E−004 36.57 < 0.0001

AB 0.015 5.06 0.0399 1.562E−006 0.057 0.8141

AC 0.013 4.58 0.0491 2.481E−004 9.09 0.0087

AD 9.206E−003 3.19 0.0944 8.556E−004 31.36 < 0.0001

BC 2.657E−003 0.92 0.3527 8.556E−004 31.36 < 0.0001

BD 0.011 3.78 0.0707 1.580E−003 57.92 < 0.0001

CD 2.066E−003 0.72 0.4110 2.326E−004 8.53 0.0106

A2 1.570E−003 0.54 0.4723 4.219E−007 0.015 0.9027

B2 4.993E−004 0.17 0.6835 5.520E−004 20.24 0.0004

C2 6.318E−003 2.19 0.1598 4.348E−005 1.59 0.2261

D2 0.012 4.13 0.0601 1.915E−004 7.02 0.0182

Fig. 4 Perturbation graph of
independent variable affecting a
biomass and b estimated total
lipid. A—sodium silicate, B—
urea, C—sodium phosphate, D—
temperature
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study on the effect of different temperatures on the lipid pro-
file of a benthic diatom Amphora subacutiuscula that the total
lipid content was the highest at 23 °C in a range of 5–35 °C
and saturated fatty acid content was more at lower tempera-
tures. This could be the result of the adaptive mechanism of
the organism at low temperatures. Also, Fakhry and El
Maghraby (2015) reported that the degree of nitrogen avail-
ability in coupled effect with temperature has been identified
as the critical factor for the maximal production of lipid in
microalgae. In this work, the high diurnal temperature range

of 25–35 °C makes N. phyllepta suitable for the outdoor cul-
ture in tropical regions; however, more outdoor experiments
are needed to evaluate the feasibility.

Validation of the model

Statistical optimisation of growth medium and conditions of
N. phyllepta towards high biomass and lipid production using
RSM design provided the most simplest and accurate means for
obtaining the most efficient medium with the best combination

Fig. 6 RSM plots of estimated total lipid in N. phyllepta MACC8 as a function of a phosphate and silicate, b phosphate and urea, c temperature and
silicate, d temperature and urea and e temperature and phosphate in MSW medium

Fig. 5 RSM plots of biomass production in N. phylleptaMACC8 as a function of a urea and silicate and b silicate and phosphate in MSW medium
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of interacting factors. The validation experiments for confirming
the adequacy of the model designed in this study yielded a
maximum biomass of 1.2 ± 0.08 g L−1, which was 1.62-fold
higher (64% increase) than under un-optimized conditions
(0.74 ± 0.08 g L−1). The estimated total lipid content was mea-
sured to be 0.11 ± 0.003 g L−1, which was 1.2-fold higher (22%
increase) than in un-optimized conditions (0.09 ± 0.009 g L−1).
A study on improved culturing conditions for green microalga
Scenedesmus sp. byYang et al. (2014a, b) showed an increase of
13.41% in biomass and 36.32% in lipid content compared to the
original conditions. A report on application of factorial design of
experiment for biofuel production by the haptophyte Isochrysis
galbana (Chen et al. 2012) demonstrated a 3.93% increase in
lipid content uponmodifying the main interacting variables. The
maximum predicted value of biomass (2.95 g L−1) obtained was
increased by 1.3 timeswhen comparedwith the original medium
(2.27 g L−1) in the case of microalgae Chlorella pyrenoidosa
(Yadavalli and Rao 2013). The maximum biomass attained after
RSM based optimisation in microalga Desmodesmus sp. was
only 0.758 g L−1 (1.3-fold higher than initial medium) at the
end of 14th day of culturing (Ji et al. 2013). Cheng et al.
(2013) reported that statistical optimisation of culture media in
two-stage cultivationmethod ofChlorella protothecoides gave a
biomass concentration of 1.19 g L−1 in optimized biomass pro-
ductionmedium after 11 days of cultivation whichwas 1.8 times
higher than that in the original medium, whereas 12.9% lipid
content was obtained from the biomass in the lipid production
medium, which was three times higher than that from the orig-
inal medium. In this study, the amount of total lipid estimated for
1.2 g L−1 of biomass in biomass production medium was
0.132 g L−1 (lipid content 11% dcw) and 0.56 g L−1 of biomass
yielded 0.11 g L−1 of estimated total lipid in lipid production
medium (lipid content 19.6% dcw) at the end of 12 days. On
comparison with these reports, it could be concluded that the
optimisation of media components and culture conditions en-
hanced the biomass and total lipid production in the diatom from
that of the original conditions without subjecting to any stress
conditions. The results indicated that the media conditions opti-
mized for high biomass production can be adopted for culturing
the diatom, and the lipid productivity can be further augmented
by subjecting the cells to stress conditions by altering the growth
conditions. The present study on RSM-based optimisation of
biomass and total lipid production in the newly isolated
N. phyllepta identified the important parameters favouring aug-
mented production and, thus, is the first step towards designing a
two-stage cultivation method for increased biomass and lipid
production in this microalga.

Conclusions

In this study, an optimized process was developed for biomass
and lipid production in the lipid rich marine diatom

N. phyllepta MACC8. The high growth rate of the algal cells
in minimal sea water mediumwith minimum components and
urea as nitrogen source offers a great potential for the mass
production of the diatom in a cost effective process. The
Plackett-Burman design- and response surface methodology-
based optimisations of biomass and lipid production in
N. phyllepta MACC8 resulted in 1.62-fold increase (64%) in
biomass and 1.2-fold increase (22%) in estimated total lipid
production. The optimized process parameters and growth
medium obtained in this experiment can be further utilized
for large-scale biomass production from N. phyllepta and sub-
sequent augmented lipid production by limiting or altering the
factors such as urea, silicate, phosphate and temperature as
identified in the present study.
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