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Abstract Cement-based stabilization/solidification (S/S) is a
practical treatment approach for hazardous waste with anthro-
pogenic As sources; however, its applicability for geogenic
As-containing soil and the long-term leaching potential re-
main uncertain. In this study, semi-dynamic leaching test
was performed to investigate the influence of S/S binders (ce-
ment blended with fuel ash (FA), furnace bottom ash (FBA),
or ground granulated blast furnace slag (GGBS)) on the long-
term leaching characteristics of geogenic As. The results
showed that mineral admixtures with higher Ca content and
pozzolanic activity were more effective in reducing the
leached As concentrations. Thus, cement blended with FBA
was inferior to other binders in suppressing the As leaching,
while 20% replacement of ordinary Portland cement by
GGBS was considered most feasible for the S/S treatment of
As-containing soils. The leachability of geogenic As was sup-
pressed by the encapsulation effect of solidified matrix and
interlocking network of hydration products that were support-
ed by scanning electron microscopy (SEM), X-ray diffraction
(XRD), and X-ray photoelectron spectroscopy (XPS) results.
The long-term leaching of geogenic As from the monolithic

samples was diffusion-controlled. Increasing the Ca content in
the samples led to a decrease in diffusion coefficient and an
increase in feasibility for Bcontrolled utilization^ of the S/S-
treated soils.
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Introduction

Arsenic (As) is one of the most abundant naturally occurring
elements in the earth’s crust and considered a human carcino-
gen (Stea et al. 2014; Chakraborti et al. 2016; Rahman et al.
2017). Environmental contamination of As due to anthropo-
genic and geogenic sources has been widely reported in soil/
sediment and water around the world (Fendorf et al. 2010;
Wang et al. 2015a; Chakraborty et al. 2017). Arsenic contam-
ination resulting from human activities such as mining and
pesticide application often receives more attention about its
remediation, but natural sources of As have been increasingly
recognized as the potential long-term threats to human health
(Fendorf et al. 2010). The toxicity of As is dependent on the
As speciation and the stability and chemical phase of the
coexisting compounds (Kim et al. 2014; Ali et al. 2014;
Zhang et al. 2016). The geochemistry of As in soils is complex
with crosslinking interactions among Fe/Al minerals, organic
carbon, microbes, pH, Eh conditions, etc., which presents
challenge to practicing engineers and policy makers to design
appropriate remediation methods at different sites (Bisone
et al. 2016; Beiyuan et al. 2017a).

Among available techniques, cement-based solidification/
stabilization (S/S) is one of the most effective methods to
reduce the availability of metals in soils by transforming
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potentially hazardous phases into less hazardous ones (Leist
et al. 2003; Phenrat et al. 2007; Zhang et al. 2013; Clancy et al.
2015) and prevent human exposure and metal transformation
during the future land use. Over the past decade, S/S treatment
has been used as a remediation option for soils contaminated by
anthropogenic As (Leist et al. 2003). In the S/S process, an
interlocking framework of minerals encapsulates and precipi-
tates with the As present in the soil as cement hydration pro-
ceeds (Clancy et al. 2015; Wang et al. 2015b). The release of
As is minimized as the solidified soil has a higher mechanical
strength and lower surface area exposed to the environment
with reduced permeability. Therefore, this study evaluates the
efficacy of S/S technology for treating geogenic As-containing
soils in Hong Kong, as the existing remediation literature pri-
marily deal with anthropogenic As contamination of soils
(Tsang and Yip 2014; Singh et al. 2015; Beiyuan et al. 2017b).

A number of standard leaching protocols are available for
investigating the mobility of As in soils and S/S-treated sam-
ples. The Toxicity Characteristic Leaching Procedure (TCLP)
is the most commonly employed batch leaching test as a per-
formance indicator (Tsang et al. 2013a; Beiyuan et al. 2017b)
and a remedial goal of contaminated site remediation (HK
EPD 2011). However, the TCLP test is criticized for not
reflecting the actual field conditions and As leaching may be
underestimated because of the buffer capacity of the S/S-
treated samples (Camacho et al. 2009; Voglar and Leštan
2013; Sima et al. 2015). Other batch leaching tests such as
synthetic precipitation leaching procedure, simplified bioac-
cessibili ty extraction test, and rhizosphere-based
phytoavailability test can be performed to simulate different
exposure pathways of As (Karak et al. 2012; Tsang et al.
2013b; Bolan et al. 2015; Beiyuan et al. 2017c). The pH-
based leaching method, sequential extraction procedure, and
continuous column leaching procedure are also applicable for
assessing the effectiveness of contaminated soils (Wenzel
et al. 2001; Voglar and Leštan 2013; Tsang et al. 2014; Li
et al. 2016). However, these single-point tests or granular
leaching tests are less accurate for estimating contaminants’
release from the monolithic samples after S/S treatment.

Semi-dynamic leaching test is an experimental test de-
signed specifically for the S/S-treated samples considering
their low permeability and monolithic nature, which can sim-
ulate in a more realistic way the actual leaching conditions of
contaminants encapsulated in the solidified matrix (Li and
Poon 2017; Xue et al. 2017). The semi-dynamic leaching test
allows the determination of effective diffusion coefficient (De)
of the contaminants in the S/S-treated soils to assess the long-
term leaching potential of the contaminants (Song et al. 2013;
Du et al. 2014; Li et al. 2017). However, all of the reported
studies applied the semi-dynamic leaching test to investigate
the S/S-treated soils that had been contaminated by anthropo-
genic sources (Gwenzi and Mupatsi 2016; Li and Poon 2017).
Uncertainties remain in the effectiveness of S/S-treated

geogenic As-containing soils under semi-dynamic leaching
and the adequacy of mineral admixtures as environmentally
friendly cement substitutes.

In the present study, cement blended with mineral admix-
tures (fuel ash (FA), furnace bottom ash (FBA), and ground
granulated blast furnace slag (GGBS)) was used as the binding
agents for geogenic As-containing soils in Hong Kong in view
of economic advantages and carbon emission reduction. The
unconfined compressive strength (UCS) and the leaching
characteristics (including cumulative fraction of As leached
(CFL) and De) of the different S/S-treated soils under semi-
dynamic leaching tests were investigated. An effort was made
to reveal the possible As mobilization mechanism through
microscopic and spectroscopic analyses. These results could
facilitate the remediation design of geogenic As-containing
soils by using cement-based S/S technique.

Materials and methods

Geogenic As-containing soils
and stabilization/solidification

Four soil samples at varying depths from different boreholes
that contained high As concentrations (> 400 mg kg−1) were
collected from a geogenic As-containing site in Hong Kong,
China. The soil columns were sealed to be air-tight at the site,
frozen with ice packs in freezing boxes during transportation,
and stored at −20 °C in the dark until freeze-drying for subse-
quent analysis. For S/S experiments, the soils were oven-
dried at 60 °C and passed through a 2-mm sieve. The con-
centrations of total metals were determined by inductively
coupled plasma optical emission spectroscopy (ICP-OES,
SPECTROBLUE) after strong acid digestion (1:4 concen-
trated HNO3 and HClO4 (v/v)) according to ASTM D3974-
81. Based on X-ray diffractometer analysis (XRD, D8
Advance, Bruker), the main minerals of the soils were
quartz, kaolinite, muscovite, and iron oxides. The organic
matter content was measured by loss on ignition at 550 °C;
the cation exchange capacity (CEC) was measured after
percolation of 1.0 mol L−1 ammonium acetate solution at
pH 7. The grain-size distribution was analyzed by wet siev-
ing and hydrometer tests. The physico-chemical properties
of the four soils are shown in Table 1.

Four commercially available binders used in this study
were ordinary Portland cement (OPC), FA (class F), FBA,
and GGBS. The chemical compositions of the cementitious
materials based on XRF results are shown in Table 2. The
leaching characteristics of heavy metals in these four binders
based on TCLP leaching process are presented in supplemen-
tarymaterials (Table S1 in SupplementaryMaterials). It can be
concluded that all binders contain only trace amounts of heavy
metals and the S/S process would not be affected. To keep the
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same workability of the mixtures, the S/S-treated samples
were prepared with a water-to-solid ratio of 0.4 for soil 1, a
ratio of 0.3 for soil 2, and a constant ratio of 0.5 for soils 3 and
4, because of their variation in clay content and water absorp-
tion. The binder content was 5% for low alkalinity and eco-
nomic considerations. The FA, FBA, and GGBS were used to
replace OPC progressively as indicated, and the replacement
ratio was 20 and 50% for obtaining compressive strength
above 0.35 MPa. The mix designs for As-containing soils
are shown in Table 3. All the soils and cementitious powder
materials were first mixed uniformly for about 1 min using a
mechanical mixer before adding water. The blended paste was
further mixed for another 2 min and cast into steel molds
(2 × 2 × 2 cm) with vibration. The samples were cured at
23 °C and 75% relative humidity for 24 h, and then the hard-
ened S/S materials were removed from the molds and cured in
a steam cabinet at 60 ± 2 °C for 7 days.

Unconfined compressive strength

The UCS of the S/S product was measured by using a univer-
sal testing machine (Testometric CXM 500-50KN) at a

loading rate of 0.3 mm min−1 according to BSEN12390-3.
The strength was compared with the criteria for reuse as fill
materials for site formation in Hong Kong (i.e., ground
leveling/stabilization to the design formation level prior to
construction works) (HK EPD 2011). All the tests were dupli-
cated (or triplicated where necessary) and the average results
were reported.

Semi-dynamic leaching

Semi-dynamic leaching tests were applied to the long-term
leaching potential of monolithic samples after S/S treatment
(ASTM C1308). The ratio of volume of deionized water used
to the surface area of the specimen was 10:1. The leaching test
was conducted for 14 days at a constant temperature of
23 ± 2 °C, in which deionized water was replaced after 2, 5,
and 17 h in the first day, then daily for the following 9 days
and every other day for the last 4 days.

In the above tests, the final pH of leachate was measured
and the solution sample was separated by centrifugation at
4000 rpm for 15 min followed by filtration through a
0.45-μm glass fiber filter. Afterwards, the samples were acid-
ified by concentrated HNO3 to pH below 2 and stored at 4 °C
in the dark prior to ICP-OES analysis. The cumulative fraction
leached (CFL) of As in semi-dynamic leaching tests was cal-
culated using Eq. (1), and its plot against time square root (t1/2)
enabled the computation of the diffusion coefficients (De) of
As using Eq. (2). All experiments were carried out in tripli-
cate, and the average value with standard deviations less than
5% was reported.

Table 3 Mix design for As-containing soil (wt%)

Notation Dry soil OPC GGBS FA-F FBA

O5 95 5

O4G1 95 4 1

O2.5G2.5 95 2.5 2.5

O4F1 95 4 1

O2.5F2.5 95 2.5 2.5

O4B1 95 4 1

O2.5B2.5 95 2.5 2.5

Table 2 Chemical components of binders (wt%)

Components OPC GGBS FA FBA

MgO – 7.85 – –

Al2O3 5.95 13.2 31.9 17.4

SiO2 22.2 35.1 47.7 51.3

P2O5 – – – –

SO3 2.25 3.25 2.35 1.77

K2O 0.24 0.85 0.64 1.73

CaO 62.5 37.8 9.37 8.44

TiO2 0.37 1.00 1.29 0.93

V2O5 – – 0.13 0.09

Cr2O3 – – 0.03 0.05

MnO – 0.48 0.09 0.13

Fe2O3 3.37 0.33 6.48 18.1

CuO – – 0.04 0.06

ZnO – – 0.04 0.05

Table 1 Physico-chemical properties of As-containing soil

Bulk density
(g/cm3)

pH CEC
(cmol/kg)

Organic
matter (%)

Grain-size distribution (%) Total As
concentration (mg/kg)

Sand Silt Clay

Soil 1 1.59 6.7 8.23 0.43 35.3 57.2 7.5 557

Soil 2 1.66 5.2 10.4 0.25 47.8 46.3 5.9 1985

Soil 3 1.42 6.5 16.2 1.03 9.1 60.3 30.6 878

Soil 4 1.38 5.8 19.4 1.26 5.4 62.3 32.3 486
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CFL ¼ At
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where At = the cumulative mass of the metal contaminant
leached out of the medium surface (mg), A0 = total mass of
substance contained in the soil prior to the test (mg), V =

volume of specimen (cm3), t = leaching time (s), S = surface
of the sample used in the semi-dynamic leaching test (cm2), ci
= measured concentration of the leached metal contaminant in
the leachate at ith test interval during test (mg/L), and VL,i =
volume of the leachant (L).

Microscopic/spectroscopic characteristics

Scanning electron microscopy (SEM) with elemental map-
ping (VEGA3, TESCAN) was conducted on freeze-dried,
gold-coated soil samples to investigate the morphology and
elemental distribution (As, Ca, Si, and Al) on the surface of
the S/S-treated soils. The speciation of geogenic As in the
S/S-treated soils was characterized using Kratos Axis Ultra
Imaging X-ray photoelectron spectroscopy (XPS) with
monochromatic Al Ka X-ray. A broadscan was obtained
using 50 eV pass energy, while narrow high resolution
scans of As 3d were obtained using 20 eV pass energy.
The charge effect was corrected using the C 1s line at
285 eV. The component peaks were identified by compari-
son of their binding energies with values in the literatures.
The crystalline-phase mineralogy of the ball-milled soil
samples was evaluated by using a high resolution powdered
X-ray diffractometer (Rigaku SmartLab, Japan) using
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Fig. 2 Variation of leachate pH with leaching time: (1) soil 1, (2) soil 2, (3) soil 3, and (4) soil 4
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CuKα (λ = 1.54059 Å) radiation obtained at 40 kV and
30 mA. Soil 2 had the highest As concentration and its
microscopic and spectroscopic analysis was shown as the
representative sample for illustrating the effects of different
S/S treatments on As speciation.

Results and discussion

UCS and leachate pH of the S/S-treated soils

The results of the compressive strength tests are shown in
Fig. 1. The compressive strength of S/S soils varied signifi-
cantly, and soils 3 and 4 with higher clay content generally
showed higher strength. Cement content of 5% by mass of all
soils fulfilled the acceptance criteria (1 MPa) for reuse as on-
site fill materials in Hong Kong (HK EPD 2011), while 20–
50% cement replacement by mineral admixtures (GGBS, FA,
and FBA) provided UCS larger than 350 kPa for landfill dis-
posal (US EPA 2013). The UCS of the S/S-treated soils de-
creased as the content of mineral admixtures increased, which
was consistent with previous studies (Wang et al. 2015b). The
reduction in UCS of the S/S-treated soils followed the order of
FBA > FA > GGBS replacements. For example, addition of
2.5% FBA, FA, and GGBS resulted in a decrease of 48, 39,

and 33% in UCS, respectively. This may be attributed to the
difference in CaO content and pozzolanic activity of mineral
admixtures (Wang et al. 2015c). The pozzolanic activity of
GGBS, FA, and FBA can be activated in the presence of
cement and water to form cementitious gels, the amount of
which corresponded to the pozzolanic nature of supplementa-
ry cementitious materials.

Under semi-dynamic leaching, the S/S-treated soils
showed variations in the leachate pH with respect to
leaching time (Fig. 2). The pH of the leachate increased
sharply in the first few hours and gradually during the initial
2 days, then remained steady and unchanged in the follow-
ing days, but decreased slightly with time after approxi-
mately 8 days. The average values of the leachate pH
ranged from 7 to 11. The variations of leachate pH were
attributed to gradual dissolution of portlandite (Ca(OH)2)
from the S/S-treated soils, which resulted in hydroxyl and
Ca leaching (Du et al. 2014; Clancy et al. 2015). The pH
values of the leachate of OPC-treated soils were higher than
those of OPC-admixtures treatment due to the higher
amount of Ca(OH)2 formed by OPC hydration. Increasing
the incorporation of mineral admixtures in the binders de-
creased the leachate pHs, where the reduction of leachate
pH followed the order of FBA > FA > GGBS, which was
negatively correlated to their CaO content (Table 2).
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Fig. 3 Variation of leachate As concentration with leaching time: (1) soil 1, (2) soil 2, (3) soil 3, and (4) soil 4
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Leached concentrations of As and Ca with respect
to leaching time

The S/S-treated soils under semi-dynamic leaching showed dif-
ferent variations in the leached concentrations of As (Fig. 3)
and Ca (Fig. 4) with respect to leaching time. The leached Ca
concentrations were about 100 times greater than the leached
As concentrations. In all the leachate, the As concentrations
mainly ranged from 0.02 to 0.1 mg L−1, indicating a very low
concentration even subject to prolonged and repetitive leaching
in the long run. The leachedAs and Ca in the leachate increased
during the initial stage (0–2 days) and then decreased slightly
afterwards regardless of the difference in S/S treatments. The
patterns of temporal variations may reflect the physical durabil-
ity of solidified matrix of the S/S-treated soils as monolithic
materials under the prolonged leaching condition.

There was a slight difference in the leached As and Ca
concentrations between S/S treatments using different mineral
admixtures. Supplementary binding materials with higher Ca
content (GGBS > FA > FBA, Table 2) were more effective in
reducing the leached As concentrations (Fig. 3), yet associated
with an increase in the leached Ca concentrations (Fig. 4). As
a result, FBAwas inferior to other binders in suppressing the
As leaching, while GGBS was considered as a suitable and
environmentally friendly substitute of OPC (20–50%) for the
S/S treatment of geogenic As-containing soils.

To further investigate the effect of the leached Ca on the
leached As, Fig. 5 illustrated a negative but weakly linear
relationship between them. The decrease in the leached As
may be attributed to the sorption/co-precipitation of As with
calcite in the leaching solution from the S/S-treated soils
(Singh and Pant 2006). Arsenic can be also fixed within
particular cementitious species through sorption onto cal-
cium silicate hydrates (C-S-H) and substitution in the crys-
talline lattice of ettringite (Halim et al. 2004). It has been
well recognized that precipitates of calcium arsenates
could form in the reaction of As with Ca from the hydraulic
binders (Vandecasteele et al. 2002). Specific Ca-As precip-
itates have been reported as the stable compounds respon-
sible for As immobilization in the S/S processes, such as
Ca3(AsO4)2, CaHAsO3 (Dutré and Vandecasteele 1998),
Ca-As-O, Ca4(OH)2(AsO4)2·4H2O, and NaCaAsO4·
7.5H2O (Moon et al. 2008).

Spectroscopic and microscopic characteristics
of the S/S-treated As-containing soils

The XRD patterns of soil 2 with different treatments in our
study (Fig. 6), however, did not show any distinct peaks for
the As-containing precipitates. It was probably because of the
stability of geogenic As in soils (Beiyuan et al. 2017c), where
marginal amount of As leaching was insufficient to form
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noticeable amounts of Ca-As precipitates to be detectable by
XRD analysis. According to Fig. 6, iron oxides/hydroxides
and calcium silicate hydrate (C-S-H) were identified as the
major components, on which As in soils may be strongly
bound as adsorbed and/or co-precipitated species (Drahota
et al. 2012; Li et al. 2017). The XPS results (Fig. 7) further
indicated that the S/S treatment with OPC and different min-
eral admixtures did not alter the oxidation states and chemical
species of geogenic As in soils. The binding energies of As 3d
in the soil samples were 45.9 eV (untreated), 44.02 eV (O5-
treated), 44.1 eV (O2.5F2.5-treated), 44.08 eV (O2.5B2.5-

treated), and 43.77 eV (O2.5G2.5-treated), respectively.
These values resembled those of As(V)-O bonded (Kim
et al. 2015; Beiyuan et al. 2017c), suggesting that geogenic
As in soils remained its stable forms after different S/S treat-
ments. The slight change in the binding energy of As(V)-O in
the S/S soils might be attributed to the changes in pH or redox
conditions due to the S/S treatments.

Therefore, the S/S-treated soils primarily reduced the po-
tential mobility and exposure pathway of geogenic As by
means of physical encapsulation in the solidified matrix,
where an interlocking framework of hydration products
would increase with cement content. When the soil samples
were mixed with cementitious materials, the Ca(OH)2, CSH,
calcium aluminate hydrate (CAH) formed in the soil matrix
might gradually increase (Li et al. 2014; Hernandez-Bautista
et al. 2016), coupled with the filling of pore space and
blocking of As leaching flow paths. Therefore, the variation
in Ca content for hydration remarkably influenced the mono-
lithic structure and As immobilization. A more compact
structure was observed with higher OPC content in the ce-
ment blended with mineral admixtures (Subalakshmi et al.
2012). Partial OPC replacement by FA, GGBS, and FBA
showed the corresponding decline in the compressive
strength (Fig. 1) and increase in the leached As concentration
under semi-dynamic leaching (Fig. 3). The influence
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followed the order of FBA > FA > GGBS, in agreement with
their Ca content and pozzolanic activity.

The microstructural changes and the As distribution in S/S
soils were determined by SEM-EDS analysis with elemental
mapping (Fig. 8). The data indicated that Cawas present as the
dominant element along with Si and Al in the OPC-treated soil
(Fig. 8a), where more flocculent aggregate-like morphologies
with dense structure were observed. This may result from
quick release of Ca from OPC and subsequent precipitation
of hydrate compounds, which could form relatively imperme-
able layer on the surface of soil particles. Because elemental
dot maps indicated that As was rather evenly distributed on
the soil surfaces, immobilization of geogenic As in the S/S-
treated soils may be primarily attributed to its encapsulation
into the dense hydrate network that could prevent leaching
out, which was in agreement with the results of Randall
(2012). In comparison, Ca-containing precipitates were less
prevalent in the OPC/FBA-treated soil (Fig. 8b) due to the

low content of Ca and pozzolanic activity of FBA, corrobo-
rating the lower compressive strength and higher leached As
concentration under semi-dynamic leaching.

Temporal variation of CFL of As

The change of CFL of As with t1/2 showed that very low
percentages of total As were leached out during the semi-
dynamic leaching tests (Fig. 9). For all the S/S-treated sam-
ples, only below 0.5% of As could be leached out in the first
day. The plots of CFL-t1/2 for As, regardless of the differ-
ence in S/S treatments, were well represented by linear lines
throughout the entire leaching time. This indicated that the
leaching of As was mainly through diffusion from the
monolithic samples. Table 4 summarizes the computed
values of De of As in this study, which varied in the range
of 7.07 × 10−20–1.44 × 10−17 m2 s−1. In most cases, De

values of As from soils treated by O5 and O4G1 were lower

(a) (b)

As

Ca

As

Ca

20 m 20 m 

Fig. 8 SEM images, energy
dispersive spectra (EDS), and
elemental dot maps (Si, Al, Ca,
and As) of soil 2 amended with a
5% cement and b 2.5% cement
and 2.5% FBA
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than the other treatments. Increasing the OPC content or Ca
content of mineral admixtures in the S/S-treated soils led to
a decrease in CFL at a given leaching time and a reduction
of De values.

The De values below 3 × 10−13 m2 s−1 suggested low mo-
bility of As, while De values lied in the range of 3 × 10−13–
10−11 m2 s−1 indicated average mobility (Malviya and
Chaudhary 2006). Because the S/S-treated soils showed De

values four to six orders of magnitude below 10−13 m2 s−1 in
this study, they were considered appropriate for Bcontrolled
utilization^ in road bases and quarry rehabilitation, etc. (Song
et al. 2013; Xue et al. 2017). Therefore, the use of 5% binders
with/without 20% replacement of OPC by GGBS was consid-
ered most feasible for the S/S treatment and reuse of physical-
ly encapsulated geogenic As-containing soils.

Conclusions

This study reveals that the S/S treatment using cement
content of 5% by mass of geogenic As-containing soils

fulfilled the acceptance criteria in Hong Kong for reuse
as on-site fill materials. Partial replacement (20–50%) of
cement by mineral admixtures compromised the compres-
sive strength following the order of FBA > FA > GGBS,
which inversely followed the order of CaO content and
pozzolanic nature of mineral admixtures. Semi-dynamic
leaching tests show that very low concentrations and per-
centages of As leached out from the S/S-treated soils in the
long term. The leaching of As from the monolithic samples
was diffusion-controlled, and there was a negative and lin-
ear relationship between leached Ca and As content in the
leachate. The As oxidation state and species in the S/S
process were not changed according to the XRD and XPS
results, and the encapsulation of As into the dense net
structures formed by hydration products suppressed the
As leaching that was supported by the XRD results and
SEM images and elemental dot maps. The S/S-treated soils
with higher CaO content exhibited a higher leachate pH
and higher amount of Ca leached, but a lower cumulative
leached As fraction and decreased effective diffusion coef-
ficient of As. This enhanced the feasibility for Bcontrolled
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Fig. 9 Variation of CFL of As with leaching time: (1) soil 1, (2) soil 2, (3) soil 3, and (4) soil 4
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utilization^ of the S/S-treated geogenic As-containing
soils, for which 20% replacement of OPC by GGBS was
considered the most feasible.
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