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Abstract Drinking water is susceptible to the poor quality of
contaminated water affecting the health of humans. Thus, it is
an essential study to investigate factors affecting groundwater
quality and its suitability for drinking uses. In this paper, the
entropy theory, multivariate statistics, spatial autocorrelation
index, and geostatistics are applied to characterize groundwa-
ter quality and its spatial variability in the Sylhet district of
Bangladesh. A total of 91samples have been collected from
wells (e.g., shallow, intermediate, and deep tube wells at 15–
300-m depth) from the study area. The results show that
NO3

−, then SO4
2−, and As are the most contributed parameters

influencing the groundwater quality according to the entropy
theory. The principal component analysis (PCA) and correla-
tion coefficient also confirm the results of the entropy theory.
However, Na+ has the highest spatial autocorrelation and the
most entropy, thus affecting the groundwater quality. Based
on the entropy-weighted water quality index (EWQI) and

groundwater quality index (GWQI) classifications, it is ob-
served that 60.45 and 53.86% of water samples are classified
as having an excellent to good qualities, while the remaining
samples vary frommedium to extremely poor quality domains
for drinking purposes. Furthermore, the EWQI classification
provides the more reasonable results than GWQIs due to its
simplicity, accuracy, and ignoring of artificial weight. A
Gaussian semivariogram model has been chosen to the best
fit model, and groundwater quality indices have a weak spatial
dependence, suggesting that both geogenic and anthropogenic
factors play a pivotal role in spatial heterogeneity of ground-
water quality oscillations.
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Introduction

Groundwater is a dynamic renewable resource nurtured as a
potential source of quality water for human consumption and
other purposes in different regions of the world (Li et al. 2016;
Hasanuzzaman et al. 2017), whereas an extensive contamina-
tion has posed more threats to the groundwater quality rather
than the depletion of groundwater (Macdonald et al. 2016). In
most developing countries, groundwater quality has become a
serious problem due to shortage of freshwater sources; here-
after, the evaluation of groundwater quality is an essential
study for sustainable groundwater resource management. In
general, groundwater quality depends on precipitation quanti-
ty, recharge and discharge water qualities, water–rock interac-
tion, and residence time of water (Wagh et al. 2017).
Additionally, two main processes contribute to groundwater
quality; one is the natural processes including dissolution,
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weathering of rocks, and leaching of ion exchange which may
impact the groundwater quality, while the other is the anthro-
pogenic sources such as intensive agricultural activities, un-
planned urbanization, and industrial activities which may af-
fect it (Panaskar et al. 2016).

However, Bangladesh is blessed with plentiful groundwa-
ter resources, but limited. The climatic variability, shifting of
river direction, dewatering of aquifers for irrigation, popula-
tion increase, rapid urbanization, extensive agriculture, and
domestic and industrial activities are some factors that have
a direct effect on the quality and quantity of groundwater
resources in Bangladesh (Biswas et al. 2014; Bodrud-Doza
et al. 2016; Islam et al. 2017a). The occurrences of arsenic
in groundwater resources of Bangladesh are regarded as a
major calamity in the world (Karim 2000). Currently, the ele-
vated concentrations of arsenic (> 50 μg/L) have been found
in a shallow aquifer which affects the groundwater quality in
northeastern Bangladesh (BGS and DHPE 2001; Ahmed et al.
2004; Halim et al. 2010). Generally, trace metals such as ar-
senic (As), iron (Fe), and manganese (Mn) are common to
groundwater and the elevated concentrations of these metals
have long been a deep concern because of the potential ad-
verse effects on human health and the aesthetic or nuisance
problems that some present in the Sylhet district of northeast-
ern Bangladesh. Nevertheless, the groundwater quality is ter-
ribly degraded day by day in the Sylhet district, Bangladesh,
because of environmental changes, climatic variations, and
human activities. So continuous monitoring and characteriza-
tion of groundwater quality ranks are important to know the
groundwater quality status and to prevent further groundwater
contamination in the designated area.

Groundwater quality is always closely associated with the
health of humans; thus, finding an appropriate technique to
characterize groundwater quality for drinking use is an impor-
tant study in the recent decade. Various techniques have been
reported in the past literature on groundwater quality assess-
ment and decision-making in many parts of the world (Ishaku
2011; Rubio-Arias et al. 2012; Bhuiyan et al. 2016). However,
in the past several decades, groundwater quality index
(GWQI) is one of the most extensively used techniques which
is a numerical tool for assessing the suitability for drinking
purposes because of its practicality and effectiveness (Yan
et al. 2014). Although this index has been successfully applied
by various researchers, such as Rubio-Arias et al. (2012),
Sahooa et al. (2015), Bodrud-Doza et al. (2016), and
Bhuiyan et al. (2016), the weights of the parameters are com-
monly given by expert judgment based on the GWQI calcu-
lations in which lots of related and valuable data get lost
(Amiri et al. 2014). Another limitation is that the index deals
with the ambiguity and bias of the environmental issues in
various steps of decision-making. For example, some param-
eters in the index equations can affect the final score of
GWQIs significantly without any valid scientific reason. As

a result, a right decision cannot be taken (Duque et al. 2006).
Due to these limitations of the GWQI technique, an innovative
classification approach is necessary, which is able to provide
accurate and exact information about decision-making on the
groundwater quality appraisal.

At present, numerous methods have been applied to assess
the suitability of water quality, including the fuzzy logic mod-
el (Kamrani et al. 2016), set pair analysis model (Li et al.
2011; Feng et al. 2014), multivariate approach (Wu et al.
2014), matter–element extension method (Li et al. 2016),
blind number method (Yan and Zou 2014), and analytic hier-
archy procedure (Hosseinimarandi et al. 2014). However,
these methods have some critical drawbacks, such as too
many factors which need to be considered, while the evalua-
tion of groundwater quality is being performed. Another prob-
lem is that these techniques cannot delineate properly the wa-
ter pollutant ranks and we cannot express whether the vari-
ables involved in the evaluation meet the decision-making of
functional areas consequently (Varnosfaderany et al. 2009).
To solve this problem, the entropy-based weighted technique
is applied to estimate the weights of groundwater hydro-
chemical parameters that ignore the artificial weight dividing,
which can delineate clearly water quality categories. The
entropy-weighted water quality index (EWQI) can compute
the groundwater quality correctly which can simply elucidate
the comparison between two samples in the same rank (Li
et al. 2010). Hence, the comparison of the EWQI and GWQI
classifications is an appropriate approach for scientific justifi-
cation and decision-making; therefore, this study can present
reasonable results of water quality evaluation (Li et al. 2010;
Wu et al. 2011; Fagbote et al. 2014; Amiri et al. 2014; Su et al.
2017; Gorgij et al. 2017).

On the other hand, over the last three decades, geostatistical
models like semivariogram and kriging interpolation models
have been effectively employed to examine the spatial pat-
terns of continuously varying hydro-chemical parameters of
groundwater and to include this information into mapping
procedure (Burrough and McDonnell 1998). Consequently,
such type of information is essential for assessing the contam-
ination movement sources and spatial variation of the contam-
inants at various locations. In addition, geostatistics and other
spatial analyses such as spatial autocorrelation index can rec-
ognize and define the sites, magnitudes, and shapes of statis-
tically significant spatial patterns in the investigated region.
The spatial autocorrelation and geostatistical analyses have
been adopted as a decision-making tool by many researchers
for groundwater quality study. A detailed description of the
geostatistical model has been well-documented in various lit-
eratures (Goovaerts 1997; Webster and Oliver 2001; Kumari
et al. 2013; Islam et al. 2017b). In geostatistics, the kriging
technique is considered as the best interpolation method and is
the most extensively applied technique. The cross-validation
in each kriging interpolation technique is used to select the
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best fitted model. This technique deals with the spatial auto-
correlations among the sampling sites and has been extensive-
ly applied for mapping the spatial distribution of groundwater
quality parameters. Among the various chemometric tech-
niques, multivariate statistical technique has been extensively
used for identification of possible factors/sources that affect
groundwater quality in various regions of the world including
Bangladesh (Halim et al. 2010; Ahada and Suthar 2017; Islam
et al. 2017a). However, combining the methods of multivari-
ate statistics and geostatistics can provide a realiable outcome
on the detailed source history of contaminants.

Nevertheless, a thorough understanding of factors influenc-
ing groundwater quality and its spatial variability is vital for
decision-making in any particular region. In such a case, very
limited researches have been undertaken on the status of
groundwater quality for drinking purposes in the Sylhet dis-
trict, Bangladesh (Munna et al. 2015). The characterization of
groundwater quality ranks and its spatial variation by using
the integrated entropy method, spatial autocorrelation index,
and multivariate and geostatistical approaches is yet to be
conducted in Bangladesh. Considering all these facts, there-
fore, this study has been designed to outline the drinking water
quality ranks and its spatial distribution in the Sylhet district of
Bangladesh by using the above-mentioned approaches.

Material and methods

Study area description

The study area, Sylhet district, is located in the northeastern
part of Bangladesh. Geographically, it lies from 24.36° to
25.11° N latitude and from 91.38° to 92.30° E longitude and
encompasses an area of 3090.40 km2 (Fig. 1). The population
of the area is approximately 2.6 million, and most of the peo-
ple engage in agricultural activities (BBS 2014). The soil is
less fertile as the district is positioned in the floodplain of the
Surma and Kushiyara rivers; also, the physiographic setting
belongs to the class of the Tertiary hilly region. The land
surface represents an irregular geomorphic pattern, falling
from piedmont hills near India across a gently sloping region
with an elevation of about 33.5 m above the mean sea level
(MSL), but in some places, it consists of slightly higher ridges
and shallow depression. Land use patterns are mainly depres-
sions, agricultural lands, and settlement area in this area.
Climate is one of the important characteristics for water move-
ment and occurrence. The area has a subtropical humid cli-
mate with a hot and rainy summer season and a distinct cooler
dry season. The average annual temperature is 25.0 °C. The
highest temperature of 39 °C mainly occurs in April and the
lowest temperature of 4 °C in January. The study area experi-
ences the highest precipitation in Bangladesh. This area re-
ceives average rainfall ranging from 3000 to 5000 mm per

year. More than 80% of annual rainfall of about 3334 mm
occurs in June–September during the monsoon period while
less than 5% of rainfall occurs in November–March during the
dry period (Munna et al. 2015). The relative humidity varies
between 60% in the dry season and 88% in monsoon season.
Abstracted groundwater of approximately 90% is used for
agricultural purposes and the remaining for human consump-
tions. The primary source of water is mainly from the ground-
water which is available in the shallow and deep aquifers
extracted through shallow and deep wells. However, uncon-
trolled groundwater uses and regular monitoring of water
quality have yet to be performed. Thus, groundwater should
be assessed most effectively in terms of drinking water pur-
poses in the study area.

Geology and hydrogeology settings

Geologically, the investigated area is a part of the Surma ba-
sin. The Surma basin is a sub-basin of the Bengal basin of
Bangladesh (Fig. 2). This basin is also the extension part of the
Bengal foredeep, where tectonic activities occur after the
Bengal basin formation (Islam et al. 2013a, b). The basin
comprises a succession of thick sediments (± 16 km) which
is deposited during continual marine transgression and regres-
sion events that formed huge economic deposits (Islam et al.
2017c). It might have originated during the late orogenic stage
of the Bengal basin because of continuous subsidence along
the great Dauki fault system and the Plio-Pleistocene uplift of
the Shillong Plateau (Islam and Habib 2015). An immense
marine transgression has occurred in the Surma basin during
the Holocene period surrounding amajor region of the Ganges
Brahmaputra Meghna (GBM) river delta complex with supra-
tidal sediments (Khan et al. 2000). During that period, a well-
defined long depression known as the Sylhet depression is
confined by the great Dauki fault in the meandering alluvial
sediment of paleo-channels serving as compartments of
groundwater occurrence. The lithology of the area consists
of alluvial sand in the north part and deltaic sand, silt, and clay
in the south part. Tertiary sediments are folded, faulted,
uplifted, and deeply dissected by the river. Generally, the
hill/hillock range and river valleys are longitudinally aligned
in the study region. Recent to Plio-Pleistocene sediments have
been deposited on the eroded surface of late Tertiary rocks.
Sediments are gray to yellowish gray, loosely compacted
medium- to fine-grained sand, gray clay or clayey silt which
is largely composed of quartz, plagioclase feldspar, potassium
feldspar, mica, and clay minerals. The weathered Sylhet lime-
stone deposit is found in the north part of the study area. The
overall lithology of the area is highly discontinuous in nature
having less extensive to relatively broad layers with poor- to
moderate-yielding capacity aquifers.

In the study area, the primary Holocene aquifers mostly
consist of gray fine-grained sands, usually having plentiful
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organic matters, peat, and gravel which are overlain by
impervious silt and clay particles (Halim et al. 2010).
Based on subsurface geological information, it appears that
the thickness of a single aquifer varies from 20 to 98 m in
some areas and may be considered to be moderately good
aquifer. Figure 3 shows the hydrogeological cross-section
of the study area indicating the configuration of the multi-
layered aquifers. Hydrogeology and aquifer layers are
structurally controlled; the substantial lateral variations in
the lithological characteristics of sedimentation occur to
short distances which cause changes in the spatial patterns
of the aquifer geometry even within 100-m depth. The
transmissivity of the aquifer from 146.90 to 825.45 m2/
day and storage coeff ic ient f rom 1.5 × 10−3 to
3.48 × 10−2 (MOA 1997) belongs to Holocene to Late
Pleistocene alluvial sands. The hydraulic conductivity of
the aquifer is comparatively low (30–50 m/day; BGS and
DPHE 2001), which is attributed to the aquifer materials
by secondary weathering and the existences of well-sorted
fine sands. Although the aquifer is comparatively homog-
enous with respect to hydraulic properties and resources,
the Surma basin is hydro-structurally complex as it is con-
fined by tectonically active structures such as the Dauki
fault in the area. The alluvial aquifer is semi-confined to

unconfined in nature. The inverse distance-weighted (IDW)
interpolation method is used to prepare the groundwater table
contour map of the Sylhet area (Fig. 4). As observed from the
equipotential lines (m, PWD) of the piezometric map, the
groundwater flow direction is usually from north to south,
but in the north eastern part, the groundwater flow is driven
from west to east. The reasons for this erratic pattern of
groundwater flow might be attributed to the controlling of
single or coupled geological processes, such as topographical-
ly driven flow, free convection, and tectonically driven flow.
The Holocene alluvial aquifers are prevalent in the study re-
gion which are found in a shallow depth up to 70 m. In fact,
this region is exaggerated by heavy pumping activities and
over-exploitation of groundwater for irrigation (BGS and
DPHE 2001). The groundwater recharge is carried out mainly
from heavy rainfall and floodwaters during the monsoon sea-
son, resulting in groundwater level rise. The groundwater re-
charge also occurs from the lateral flow from the northern part
of the hilly region. After the monsoon season, part of the
water is recharged from the river, stream, pond, and low-
lying areas. The peizometric level of groundwater drops
during the dry period due to over-exploitation, and all
exploited water is replenished completely during the mon-
soon season.

Fig. 1 Location of the study area and sampling sites

Environ Sci Pollut Res (2017) 24:26350–26374 26353



Sampling analytical procedures

For this study, a total of 91 groundwater samples were collect-
ed from different locations (n = 91) in the Sylhet district,
Bangladesh, during the dry and wet seasons of the years
2014–2015. The information about well depths has been ob-
tained from the local well owners and the Department of
Public Health Engineering (DPHE) office at the study area.
Samples have been collected from three types of tube wells
including (1) shallow wells (15–70-m depth), (2) intermediate
wells (71–145-m depth), and (3) deep wells (146–300-m
depth) on the basis of the availability of the study sites. The
sampling locations of wells are displayed in Fig. 3, which are
recorded using a portable GPS (global positioning system)

device. These wells are pumped for several minutes prior to
sampling to eradicate any stagnant water. All samples are
collected and preserved in prewashed high-density polyethyl-
ene (HDPE) bottles. Each sample is stored in three HDPE
bottles at each sampling location following the standard meth-
od recommended by the APHA (2005). A total number of 91
samples are put in a cooler box and transferred into the labo-
ratory and kept in a fridge for subsequent uses where they are
stored at 4 °C temperature. The precisions of analyses are
performed by the running duplicate analyses of the selected
samples. Cation and anion charge balances (< 10%) are also
verified for the precision of the data. The relative standard
deviation for measured variables for groundwater samples is
found to be within ± 2%. All analytical procedures of

Fig. 2 The geology of the study
area (After Alam et al. 2003)

26354 Environ Sci Pollut Res (2017) 24:26350–26374



groundwater samples recommended by the APHA (2005) are
followed in this study (Table 1).

The determination of water quality indices

Entropy water quality index

The information entropy theory was introduced by
Shannon Claude (1948), where the entropy is considered
as the measure of uncertainty or information. Shannon
entropy states that the degree of uncertainty influences
the predicting of the outcome of an event (Shyn et al.
2011). It principally shows how much a probabilistic
event can be stochastic (Gorgij et al. 2017). In fact, this
technique reports the randomness of an event mathemati-
cally (Shyn et al. 2011). The justification for using the
entropy theory is that this method can completely express
the information of groundwater quality and successfully
eradicate the problems that arise in other techniques for
groundwater quality appraisal. So the determination of the
EWQIs has been introduced and analyzed in the past
literature by Li et al. (2010) and Wu et al. (2011). In this
study, the EWQI is applied to characterize groundwater
quality due to its simplicity, accuracy, and consistency
(Li et al. 2010; Wu et al. 2011; Amiri et al. 2014;
Gorgij et al. 2017).

Entropy weight is a popular method to determine the pa-
rameter weights, and three steps are used to compute the
EWQI as follows (Li et al. 2010):

The first step is the calculation of the eigenvalue matrix, X,
which is associated withm groundwater samples and n hydro-
chemical parameters of each in Eq. 1.

X ¼
x11 x12
x21 x22

⋯ x1n
x2n

⋮ ⋱ ⋮
xm1 xm2 ⋯ xmn

2
64

3
75 ð1Þ

The eigenvalue matrix, X, is then converted into a
standard-grade matrix, Y, to remove the effect of different
units and quantity grades of groundwater quality parameters.
The standard-grade matrix is defined in Eq. 2

Y ¼
y11 y12
x21 x22

⋯ y1n
y2n

⋮ ⋱ ⋮
ym1 ym2 ⋯ ymn

2
64

3
75 ð2Þ

The ratio of parameter index value, j, and the i sample is
calculated by Eq. 3

Pij ¼ Y ij

.
∑m

i¼1Y ij ð3Þ

Then, the information entropy, ej, is computed by Eq. 4

e j ¼ −
1

lnm
∑m

i¼1PijlnPij ð4Þ

Fig. 3 Hydrogeological cross-section of the study area showing the configurations of the aquifer
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Fig. 4 Groundwater flow direction map in the Sylhet district of Bangladesh

Table 1 The analytical method
for selected hydro-chemical
parameters of groundwater

Parameters Unit Method Detection limits

EC μS/cm Portable conductivity meter –

TDS mg/L Portable conductivity meter –

Na+ mg/L Ion chromatography 0.001

K+ mg/L Ion chromatography 0.005

Ca2+ mg/L Ion chromatography 0.004

Mg2+ mg/L Ion chromatography 0.002

NO3
− mg/L Ion chromatography 0.043

SO4
2− mg/L Ion chromatography 0.072

Cl− mg/L Ion chromatography 0.024

HCO3
− mg/L Point infection titrimetric method –

As2+ μg/L Hydride atomic absorption spectrophotometer (HAAS) 0.08

Fe2+ mg/L Flame atomic absorption spectrophotometer (FAAS) 0.001

Mn2+ mg/L Flame atomic absorption spectrophotometer (FAAS) 0.0005
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The smaller the amount of entropy, the bigger is the effec-
tiveness of the parameter, j , index. Equation 5 is used to cal-
culate the entropy weight, ωj, of each parameter

ω j ¼ 1−e j
∑n

j¼1 1−e j
� � ð5Þ

The second step is the determination of the quantitative
rating scale, qj, for each parameter using Eq. 6

qj ¼
C j

S j
� 100 ð6Þ

where Cj denotes the concentration of the parameter j (mg/L)
and Sj indicates the permissible limit of Bangladesh drinking
water quality standards of the parameter j (mg/L).

The third step is the computation of EWQI by using Eq. 7

EWQI ¼ ∑n
j¼1ω jq j ð7Þ

According to Wu et al. (2011), groundwater quality can be
categorized into five ranks, varying from Bexcellent water^ to
Bextremely poor water^ quality domains for drinking purposes
in the study area.

Groundwater quality index

The GWQI technique reveals the composite effect of various
water quality parameters on the suitability for human con-
sumption (Bodrud-Doza et al. 2016). In the present study,
the Bstandards^ (permissible concentrations of hydro-
chemical parameters) for the drinking water are recommended
by the Department of Environment, Bangladesh (DoE 1997).
The groundwater quality is computed by using Eq. 8 for
GWQI, according to the Vasanthavigar et al. (2010):

GWQI ¼ ∑SIi ¼ ∑ Wi� qið Þ

¼ ∑
wi

∑n
i¼1wi

� �
� Ci

Si
� 100

� �� �
ð8Þ

Where, qi is water quality rating, Wi is the relative weight, Ci
is concentrations of each parameter, and Si is the Bangladesh
standard. Then, SIi is the subindex of ith parameters.
Groundwater quality can be then ranked into various classifi-
cations based on the GWQI values in the study region.
According to Kamrani et al. (2016), groundwater quality can
be then characterized into five classes/ranks based on the
GWQI values (Table 2).

Spatial autocorrelation and geostatistical analyses

Statistical techniques cannot evaluate properly the current ten-
dency of groundwater dataset properties in the sampling loca-
tions because of data discontinuity and spatial heterogeneity.
In such a case, an efficient technique is required for evaluating
qualitative data including spatial pattern analysis. Spatial au-
tocorrelation is one of the developed geographic models that
can allow the evaluating of geographically distributed phe-
nomena in terms of spatial analysis. The spatial pattern has
three shapes such as clustered, random, and dispersed which
are applied in this method. Spatial autocorrelation measures
the relationship between one parameter and the neighboring
parameter’s proximity in a geographic location (Griffith
2003). It appears that the Moran’s I (Anselin 1995) is the most
popular model for spatial clustering analysis in recent studies
in comparison with other spatial autocorrelation index models
(Fu et al. 2014; Gorgij et al. 2017). Subsequently, this model
has been employed in this study and can be expressed in Eq. 9:

I ¼ n∑wij xi−�xð Þ x j−�x
� �

w∑ xi−�xð Þ2 ð9Þ

where�x is the mean value of xiwith the sample number n, xi is
the value of the parameter at site i, xj is the value at other sites,
and wijis the distance weighting between xi andxj, which can
be expressed as the inverse of the distance. The Moran’s I
values vary from − 1 to 1, where 1 is for a positive spatial
autocorrelation, indicating the more clustered the parameter,
and − 1 is for a negative one, suggesting more dispersed pa-
rameters. If the Moran’s I value is equal to 0, it indicates a
spatial randomness (Fu et al. 2014). The outcomes of the
Moran’s I index can be then standardized; thus, its signifi-
cance level is tested based on an assumption of a normal
distribution (Fig. 5). To investigate the spatial pattern using
the Moran’s I index, the outcomes may be influenced by the
function of weight function, data conversion, and existence of
any extreme value. This study has taken into consideration
these factors to get more reliable results.

The geostatistical model describes the spatial variability of
the phenomenon which estimates the unknown values of con-
stantly distributed variables. Nowadays, numerous spatial in-
terpolation models are used to measure the spatial variation of
groundwater quality in a particular site. The kriging interpo-
lation models estimate unknown values from the information
which is collected from the neighborhood. Different types of
kriging interpolation models such as simple, ordinary kriging,
and universal kriging models are available in geostatistical
interpolation techniques. The universal kriging model is one
of the optimal geostatistical techniques that can be applied for
mapping groundwater quality where observations near each
point are more similar than those far away. Both universal
kriging and ordinary kriging yield similar interpolaing
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estimates, but the only diference is the extrapolating estimates
based on a trend fitted to the last few dataset values. For
extrapolation, universal kriging has an advantage where an
attribute suggests a particular function form for extrapolating
a trend fitted from the sampled dataset values. Furthermore,
the spatial variation of groundwater quality indices shows
some spatial heterogeneity and their index values are seldom
available for each possible site of a particular region. The
measurement of these index values at each site is not always
possible in view of the time and the cost involved in data
collection and processing. Consequently, prediction of such
index values at other sites based upon the selectively estimat-
ed indices values could be one of the alternative options. In
such a case, to predict the index values at unmeasured sites,

geostatistics like the universal kriging method can be
employed as the right tool. The justification for using this
model is that it represents the probability of interpolated esti-
mation error of the regionalized variable, where there are no
preliminary extents and its simplicity and prediction accuracy
results make it better in comparison with other models like the
IDW interpolation technique (Islam et al. 2017b). The spatial
distribution can be calculated by Eq. 10 (Delhomme 1978):

ẑ̂ xoð Þ ¼ ∑n
i¼1λi z xið Þ ð10Þ

where ẑ is the estimated value of an attribute at the point of
interest x0, z is the observed value at the sampled pointxi, λi is
the weight assigned to the sampled point, and n represents the
number of sampled points used for the estimation (Webster and

Fig. 5 The significance levels
and their corresponding Z scores
of the spatial autocorrelation
index (After modification from
ESRI 2009)

Table 2 Standard classification
of groundwater quality for
drinking purpose according to
GWQIs

Water class GWQI
range

Rank Water class Corrected GWQI
range

Corrected
rank

Excellent < 50 1 Excellent < 50 1

Good 50–100 2 Good 50–100 2

Poor 100–200 3 Medium 100–150 3

Very poor 200–300 4 Poor 150–200 4

Unsuitable for
drinking

> 300 6 Extremely
poor

> 200 5
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Oliver 2001). The attribute is usually called the primary input
parameter, particularly in the geostatistical model. Spatial vari-
ability is measured by a semivariogram. The semivariogram
model is obtained from the sampling data by Eq.11:

γ hð Þ ¼ 1

2n
∑n

i¼1 z xið Þ−z xi þ hð Þ½ �2 ð11Þ

where n is the number of pairs of sample points separated by the
standard distance called lag h (Burrough andMcDonnell 1998).
The z(xi)is the value of the variable z at the location of xi. On the
other hand, the ordinary krigingmodel uses the above equations
to determine the spatial variability of the groundwater quality
indices of the investigated samples. The predictive performance
of the fit model is tested on the basis of cross-validation results.
The mean error (ME), mean square error (MSE), root mean
square error (RMSE), average standard error (ASR), and root
mean square standardized error (RMSSE) values are evaluated
to determine the best model performance. The model attains the
best goodness of fit resulting from the minimum MAE, RME,
MSE, and RMSE values and ASE and RMSSE values that are
close to 1, which is considered as the best fit model (ESRI
2009). The best explanation is that if a model has the lowest
value of RMSE, then, the applied model simulates the fact very
well. After conducting the cross-validation test, krigedmaps are
generated which provide insights into the graphical representa-
tion of the spatial distribution of the groundwater quality indi-
ces. For this study, Arc GIS (10.2 version) is applied to produce
these kriged maps.

Pearson’s correlation coefficient is employed to recognize
the relationship between the pairs of physio-chemical param-
eters. The terms Bstrong/significant,^ Bmoderate,^ and Bweak/
insignificant^ are used in correlation coefficient analysis (Liu
et al. 2003) which relate to the absolute values as more than
0.75, 0.75–0.50, and 0.50–0.30, respectively.

The principal component analysis (PCA) is a widely applied
multivariate statistical technique to analyze the inter-
relationship among different sets of groundwater
hydrochemical data to extract the most significant factors and
to reduce the data with minimum loss of information. Its goals
are to make the data easy to explore and visualize and to infer
the underlying geogenic and/or anthropogenic factor influenc-
ing groundwater quality. The PCA methodology is applied
where the corresponding eigenvalues (> 1) for the Euclidean
matrix are computed by using the SPSS version 22.0 software.

Results and discussion

General groundwater characteristics

General physico-chemical parameters such as total dissolved
solids (TDS), electrical conductivity (EC), Na+, K+, Ca2+,

Mg2+, HCO3
−, Cl−, SO4

2−, NO3
−, and trace elements includ-

ing As, Fe, and Mn are statistically analyzed. Table 3 reveals
that the mean concentrations of these parameters do not ex-
ceed the Bangladesh (DoE 1997) and WHO (1998) drinking
water guideline values except in some sampling locations. The
preliminary evaluation of the analyzed parameters shows that
HCO3

− and Na+ ions have the highest mean concentrations
among all physico-chemical parameters followed by Cl− with
the third highest concentration (Table 3). The Na+ and HCO3

−

ions represent the base ion exchange reaction in the study area.
In addition, variations in the concentrations of the trace metals
such as the concentrations of As (range 0.03–148 μg/L with a
mean value of 27.20 ± 32.75μg/L), Fe (range 0.01–22.7mg/L
with a mean value of 6.83 ± 6.04 mg/L), and Mn (range 0.01–
0.83 mg/L with a mean value of 0.28 ± 0.21 mg/L) are ob-
served in the studied samples. The higher concentrations of Fe
and Mn in groundwater samples may be due to the reduction
of their oxy-hydroxides through the biodegrading of organic
particles (Halim et al. 2010). The elevated levels of As (> 50
μg/L) that are found in 18 sampling sites (S2, S5, S8, S10,
S18–19, S21, S27–28, S31, S33, S40, S49–50, S86, and S88–
89) may have some effects on groundwater quality, which is
distributed over the central, northeastern, and southern regions
of the study area (Fig. 1). Out of 91 wells, 48 tube wells
exceed the WHO guideline value of 10 μg/L for drinking
purposes. It is mentioned that the concentrations of As, Fe,
and Mn in most of the sampling locations are higher than the
water quality guideline values set by Bangladesh (DoE 1997)
and international organizations (WHO 2011) in the study area.
The high contents of As, Fe, andMnmay be due to the toxic to
sub-toxic conditions of the shallow aquifer system (Rahman
et al. 2016). Reza et al. (2010) have reported that high As and
low Fe andMn concentrations have been found in the ground-
water of the Meghna floodplain at southeastern Bangladesh,
but their findings vary from this observation in the Surma
floodplain of the northeastern Bangladesh area, where the el-
evated concentrations of As, Fe, and Mn exist.

All the water samples are classified as freshwater type in the
study area, because the TDS mean concentration (mean
188.67 ± 93.58 mg/L) is less than 1000 mg/L (Freeze and
Cherry 1979). Groundwater flows from the relatively high areas
toward the southwest from the northeast direction (Fig. 2). This
may decrease the residence time for rock–water interactions
and also decrease the concentrations of groundwater ions.
Groundwater with the concentration of Na+ (mean
47.16 ± 30.96 mg/L) exceeds the Cl− concentration (mean
12.33 ± 15.73 mg/L) which is likely to show an origin from a
freshwater source (Hounslow 1995). This is because the study
area is located in the highest-precipitation region in
Bangladesh. The highest concentration of Na+ in groundwater
may be due to cation exchange and the dissolution of silicate
rock (such as albite) in the study sites (Oinam et al. 2012).
Although K+ ion (mean 2.39 ± 1.78 mg/L) is naturally
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occurring in groundwater, industrial and domestic wastes are
also responsible in adding it into groundwater (Garg et al.
2009). Furthermore, the concentration of Ca2+ (mean
7.18 ± 6.35 mg/L) exceeds that of Mg2+ (mean
4.15 ± 3.08 mg/L), indicating that the dissolution of calcite
may be a dominant factor governing the groundwater chemis-
try. The HCO3

−concentration (mean 147.65 ± 72.06 mg/L) is
commonly the outcome of carbonate dissolution. In general,
water in the aquifer is of the freshwater category characterized
with high concentration of HCO3

− (Wu et al. 2017). The con-
centration of Cl− in groundwater originates from geogenic
(chloride-rich minerals) or anthropogenic sources, such as do-
mestic sewage, chemical fertilizers, and septic tanks (Ahada
and Suthar 2017). The NO3

− concentration (mean
3.18 ± 7.32 mg/L) in groundwater occurs from non-point
sources including leaching of fertilizers, pesticides, domestic
sewage, and animal waste disposal. The elevated contents of
NO3

− (> 10 mg/L) are found in six sampling sites (S3–5, S14,
and S61). The SO4

2− concentration (mean 2.95 ± 5.21 mg/L) in
groundwater mostly occurs due to sulfate-bearing mineral dis-
solution and oxidation (Krouse andMayer 1999). However, the
normal skewness of the measured parameters should be within
the standard range ± 2; otherwise, it is regarded as an extreme
(Islam et al. 2017b). Moreover, Cl−, NO3

−, and SO4
2− ions

reveal the highly positive skewed datasets and are considered
to be extremes that influence mostly the aquifer system.
Likewise, in case of kurtosis, these ions, i.e., K+, Cl−, NO3

−,
and SO4

2−, are identified in the leptokurtic scale (value more
than 3), while the remaining ions are found in the platykurtic
scale, since their values are less than 3 (Table 3).

Factors affecting the groundwater quality

After initial evaluation of the studied parameters, the Pearson
correlation analysis of these 13 parameters is applied to find the
influence of parameter pairs that affect the groundwater quality.
As given from Table 4, the various physico-chemical parameter
pairs of groundwater samples have a significant positive corre-
lation such as EC-TDS (r = 0.994), EC-Na+ (r = 0.753), EC-
HCO3

− (r = 0.882), EC-As (r = 0.617), Na+-HCO3
− (r = 0.681),

Ca2+-Mg2+ (r = 0.840),Mg2+-NO3
− (r = 0.563), andAs-HCO3

−

(r = 0.541), respectively, at the 99% confidence level. The
positive significant correlation can show the same sources,
which can be natural or anthropogenic sources, and mobility
(Haloi and Sarma 2012). For example, the positive significant
correlation between EC and Na+ has a geogenic origin, which
can be found in the study area from similar sources. In addition,
the moderate significant correlation existing between As and
HCO3

− in the groundwater further indicates the mobilization
of As in the groundwater under an anoxic environment
(Halim et al. 2010). It is clear that trace metals with a moder-
ately significant positive correlation [r (Fe-Mn) = 0.502] at the
99% significance level probably originated from alike point
sources. Similar findings have been reported by Islam et al.
(2017b) in the shallow groundwater in Rangpur district,
Bangladesh, where occurrences of trace element are affected
by redox levels and the nature of the underlying rock of the
aquifer. In addition, some pairs have also shown an insignifi-
cant negative correlation such as EC-Mn (r = −0.355), Na+-Fe
(r = −0.324), and Mn-HCO3

− (r = −0.287). The insignificant
correlations are observed in other parameters. This indicates

Table 3 Descriptive statistic of physico-chemical parameters and trace metals in the study are (n = 91)

Parameters Minimum Maximum Mean Std.
deviation

Variance Skewness Kurtosis Bangladesh
standarda

WHO
standardb

EC (μS/cm) 36.8 730 294.803 146.218 21,379.82 0.873 0.878 1500c 500

TDS (mg/L) 23.55 467.2 188.674 93.580 8757.174 0.873 0.878 1000 1000

Na+ (mg/L) 5.51 184.84 47.167 30.962 958.668 1.583 3.606 200 200

K+ (mg/L) 0.6 13.28 2.396 1.782 3.177 3.149 15.388 12 200

Ca2+ (mg/L) 0.02 34.22 7.183 6.354 40.377 1.68 3.427 75 75

Mg2+ (mg/L) 0.43 17 4.156 3.083 9.504 1.857 4.15 30–35 50

HCO3
−

(mg/L)
10 312 147.659 72.066 5193.56 0.268 −0.784 500b 500

Cl− (mg/L) 0.83 132.12 12.331 15.738 247.699 5.471 38.288 150–600 250

SO4
2− (mg/L) 0.05 27.12 2.952 5.214 27.187 3.082 10.067 400 250

NO3
− (mg/L) 0 55.23 3.188 7.320 53.587 4.919 29.677 10 40–70

Fe (mg/L) 0.01 22.7 6.832 6.046 36.552 0.577 −0.76 0.3–1.0 0.3

Mn (mg/L) 0.01 0.83 0.281 0.217 0.047 0.647 −0.578 0.1 0.4

As (μg/L) 0.03 148 27.204 32.752 1072.685 1.519 1.991 50 10

aDoE 1997
bWHO 1998
cGorgij et al. 2017
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that the source of these parameters is independent from each
other (Kamrani et al. 2016).

In order to understand the contributing factors of physico-
chemical parameters affecting the groundwater quality, hydro-
chemical data are employed to PCA that allows grouping
them based on their inherent characteristics. The PCA is per-
formed with an orthogonal Kaiser’s varimax rotation to make
the factors more interpretable without changing the original
data structure (Mertler and Vannatta 2005). Thus, the PCA of
the current dataset can successfully reduce the contribution of
less important parameters in the assessment of groundwater
quality. However, the scree plot is employed to detect the
number of principal components PCs/groups to be retained
to know the original physico-chemical parameters (Fig. 6).
Based on the scree plot results, eigenvalues are greater than
1, and three PCs/three groups are extracted which contribute
65% of the total variance (Table 5).

It is evident that the groundwater sample data can be clus-
tered into three PCs/groups. The first PC (PC1) explaining
31.28% of the total variance is positively loaded with EC,
TDS, Na+, HCO3

−, and As. This factor defines the shallow
to intermediate groundwater geochemistries and explains the
weathering of silicate rock. The cation exchange may be at-
tributed to a source of Na+ ion because of the dissolution of the
less soluble minerals rather than halite dissolution. Among the
analyzed parameters, Na+ and HCO3

− factors contribute the
most and are grouped together in the first PC. Both Na+ and
HCO3

− are very strongly correlated with EC [r(Na-EC) = 0.753
and r(HCO3-EC) = 0.882)] as well as TDS [r(Na-TDS) = 0.743 and
r(HCO3-TDS) = 0.881] at the 95% significance level. The aque-
ous As and HCO3

− may originate from the dissolution of
carbonate rock, such as limestone, in the study area which
accompanied the release of As due to the groundwater–rock

interaction (Harvey et al. 2002) which is also confirmed by the
strong correlation with each other [r(As-HCO3) = 0.541). The
second PC (PC2) that explains 22.09% of the total variance is
positively loaded with Ca2+, Mg2+, NO3

−, and Fe. The Ca2+

andMg2+ factors explain the natural origin of the ions through
the dissolution of calcite by carbonic acid. Water recharge in
the area is mostly from Holocene alluvial aquifer containing
the carbonate rock which consists of Ca2+ and Mg2+ ions
resulting in higher concentrations of Ca2+ and Mg2+ into the
groundwater. Also, Sylhet limestone formation is located in
the study area which controls the groundwater geochemistry.
Water samples in the aquifer may be under-saturated with
calcite dissolution (Bhuiyan et al. 2016), therefore playing a
role in increased Ca2+ and Mg2+ ions along groundwater flow
path. Additionally, geogenic factors like oxidation of Fe
(Rahman and Gagnon 2014) and rain water through the dis-
charge of secondary salts which infiltrated into the aquifer
might be another possible factor contributing to groundwater
quality. However, the NO3

− is derived from leaching of NO3
−

with the percolating water due to the various agricultural ac-
tivities such as extensive use of chemical fertilizers and agro-
chemicals (pesticides) in the study locations, thus representing
the anthropogenic factor (Amiri et al. 2014). The third PC
(PC3) is positively loaded of SO4

2−, Mn, and Fe with
11.19% of total variance. This factor explains the geogenic
origin of groundwater through rock–water interaction with
ionic exchange (Omo-Irabor et al. 2008). In addition to natural
rock–water interaction factors such as gypsum dissolution,
excessive use of sulfate fertilizers, and agricultural activities,
it can be regarded as another factor in enhancing SO4

2− ion
concentration in the aquifer. The climatic variability may be
caused by the movement of NO3

− and SO4
2− between PCs

(factors) 2 and 3. In the study region, Mn and Fe are

Table 4 Correlation coefficient results of physico-chemical parameters in the study area

EC TDS Na K Ca Mg HCO3 Cl SO4 NO3 Fe Mn As

EC 1

TDS 0.994a 1

Na 0.753a 0.753a 1

K − 0.016 − 0.016 − 0.097 1

Ca 0.238b 0.238b − 0.183 0.141 1

Mg 0.394a 0.394a − 0.063 0.275a 0.840a 1

HCO3 0.882a 0.882a 0.681a 0.15 0.261b 0.393a 1

Cl 0.294a 0.294a 0.303a − 0.158 − 0.004 0.048 − 0.036 1

SO4 − 0.1 − 0.1 − 0.053 0.01 − 0.052 − 0.075 − 0.116 − 0.092 1

NO3 0.428a 0.428a 0.052 0.266b 0.437a 0.563a 0.328a 0.058 − 0.021 1

Fe − 0.063 − 0.063 − 0.324a 0.051 0.313a 0.361a − 0.197 0.089 0.146 0.364a 1

Mn − 0.356a −0.356a − 0.343a 0.241b 0.151 0.062 − 0.287a − 0.132 0.240b − 0.099 0.506a 1

As 0.617a 0.617a 0.467a 0.079 0.245b 0.435a 0.541a 0.409a − 0.14 0.277a 0.065 − 0.266b 1

a Correlation is significant at the 99% level
b Correlation is significant at the 95% level
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moderately loaded, which may originate from natural factors
that can be released by chemical weathering of the parent rock
(Bodrud-Doza et al. 2016). Bacterial activities are also related
to releasing Mn and Fe into the groundwater system (Islam
et al. 2013a, b).

An interesting finding in comparing the PCA results is the
difference in the PCAweight of concentrations of NO3

−, SO4
2

−, As, Na+, and HCO3
−. The NO3

− concentration shows high
positive loading with PC2, while As concentrations indicate
high positive loading with EC, TDS, Na+, and HCO3

− in PC1
and moderate positive loading with SO4

2− in PC3. It implies
various sources of contaminants contributing to groundwater
quality. The analyzed results indicate that PCA can help as a
significant means to recognize the major factors affecting
groundwater quality in the study area.

Inter-relation of parameters with entropy and spatial
autocorrelation index

Before the EWQI and GWQI classifications of each sample, it
is essential to know the relationship between information en-
tropy value and entropy weight with physico-chemical param-
eters. It is generally accepted that the physico-chemical pa-
rameters with the highest entropy weight and the lowest infor-
mation entropy value have the maximum effects on overall
groundwater quality (Shyu et al. 2011; Wu et al. 2011; Gorgij
et al. 2017). So the maximum entropy value shows a more
stable groundwater quality. The entropy value reduces the
relative error derived by ignoring the artificial weights
(Amiri et al. 2014). This value ignores the artificial weight
dividing following an efficient and rational weighting method.
It depends on the information entropy value’s disarranging of
factors. The results of the calculated entropy weight and
groundwater quality weight for the 13 analyzed parameters
is given in Table 6. It is observed that NO3

− has the highest
effect on water quality in the study region. It is because this
parameter has the minimum entropy value and the maximum
entropy weight of the physico-chemical parameters that were
evaluated. The effects of other parameters on overall

Fig. 6 Scree plot for the
component of groundwater
samples

Table 5 The rotated common factors for loadings, the percentage of
variance, and the total cumulative percentage of variance

Parameter Factor

F1 F2 F3

EC 0.934 0.245 − 0.085

TDS 0.929 0.242 − 0.083

Na 0.877 − 0.259 − 0.047

K 0.045 0.311 0.153

Ca 0.034 0.855 − 0.041

Mg 0.205 0.906 − 0.031

HCO3 0.892 0.21 − 0.132

Cl 0.221 0.074 0.002

SO4 0.057 − 0.179 0.798

NO3 0.292 0.676 0.047

Fe − 0.239 0.576 0.536

Mn − 0.379 0.195 0.674

As 0.61 0.359 − 0.117

Eigenvalues 4.066 2.872 1.454

% of variance 31.279 22.089 11.186

Cumulative % 31.279 53.368 64.554

Values in italics denote significant positive factor loading
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groundwater quality are assessed which decrease in the fol-
lowing order: SO4

2− > As > Cl− > Fe > K+ > Ca2+

> Mn > Mg2+ > Na+ > EC > TDS > HCO3
−. It is also

observed that HCO3
− has a minimal impact on overall ground-

water quality of the study region. Similar findings are found
by Amiri et al. (2014) in the Lenjanat plain aquifer, Iran, but
this observation differs from the previous results of Gorgij
et al. (2017) where HCO3

−has the highest influence of
groundwater quality in the Azarshahr plain aquifer, Iran.

On the other hand, in the case of groundwater weight, as
given in Table 6, the weights of the most parameters are 4
based on the influence of expert evaluation. They have relative
significance with regard to water quality criteria

(Vasanthavigar et al. 2010; Bodrud-Duza et al. 2016; Islam
et al. 2017a). As seen from Table 6, the three parameters
NO3

−, SO4
2−, and As are the most contributed parameters

and thus cause the groundwater quality deterioration in the
Sylhet district of Bangladesh. Similar results of PCA also
confirm that the NO3

− and SO4
2− ions are one of the major

contaminants influencing groundwater quality. However, EC,
TDS, Na+, Ca2+, and Mg2+ have higher factor loading in F1
and F2, respectively, which have more importance compared
to other parameters in the study area. It is considered that the
weathered Sylhet limestone formation comprises gypsum as
the key source of SO4

2− and the higher concentration of NO3
−

is derived from anthropogenic inputs which cannot change

Table 6 The entropy weight and
groundwater weight of physico-
chemical parameters

Parameters Information
entropy (ej)

Entropy
weight
(wj)

Groundwater
weight (wi)

Ground water
relative weight
(Wi)

Limit
values

EC (μS/cm) 0.965 0.027 4 0.095 1500

TDS (mg/l) 0.964 0.026 4 0.096 1000

Na+ (mg/L) 0.945 0.043 4 0.095 200

K+ (mg/L) 0.920 0.063 2 0.048 12

Ca2+ (mg/L) 0.923 0.060 2 0.048 75

Mg2+ (mg/L) 0.936 0.050 2 0.048 35

HCO3
−

(mg/L)
0.967 0.026 1 0.024 500

Cl− (mg/L) 0.890 0.086 3 0.071 600

SO4
2− (mg/L) 0.788 0.166 4 0.095 400

NO3
− (mg/L) 0.738 0.205 4 0.095 10

Fe (mg/L) 0.904 0.075 4 0.095 1

Mn (mg/L) 0.925 0.059 4 0.095 0.1

As (μg/L) 0.855 0.114 4 0.095 50

Values in italics indicate the most significant parameters

Table 7 Results of spatial autocorrelation index and spatial distribution of physico-chemical parameters

Parameter Moran’s I Variance Z score P value Distribution

EC 0.521449 0.024616 3.394406 0.000688 Clustered

TDS 0.521443 0.024612 3.394403 0.000684 Clustered

Na 0.632745 0.023877 4.166791 0.000031 Clustered

K 0.1631 0.020686 1.21125 0.2258 Random

Ca 0.183797 0.023925 1.260085 0.207639 Random

Mg 0.212684 0.02373 1.452799 0.14628 Random

HCO3 0.574004 0.025066 3.695752 0.000219 Clustered

Cl 0.081103 0.014486 0.766178 0.44357 Random

SO4 0.075775 0.022127 0.584095 0.559156 Random

NO3 − 0.006902 0.016817 0.032458 0.974107 Random

Fe 0.361032 0.025059 2.350865 0.01873 Clustered

Mn 0.449793 0.02501 2.914438 0.003563 Clustered

As 0.316958 0.024314 2.103953 0.035383 Clustered
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over a short time; the factor affecting these parameters mainly
contribute to regional climate change. For instance, changes in
temperature, precipitation amount, and atmospheric CO2 con-
centrations have affected the agricultural NO3

− source through
changes in both soil processes and agricultural productivity
(Stuart et al. 2011). However, the major physico-chemical
parameters have a higher effect on GWQI computation such
as NO3

−, SO4
2−, EC, TDS, Na+, As, Mn, and Fe. Therefore,

special attention should be required to NO3
−, SO4

2−, and As
parameters which contaminate the groundwater, because these
three parameters have mostly larger entropy weights and
stress high effects on overall groundwater quality. Once the
groundwater is contaminated by NO3

−, SO4
2−,and As, it is

quite difficult and more expensive to be treat and restore the
groundwater system of the study area.

The spatial autocorrelation of physico-chemical parameters
has been investigated using Moran’s I values to exhibit how
neighboring values are related to each other which affects the
overall groundwater quality. Table 7 shows the Moran’s I value
and spatial pattern of the analyzed hydro-chemical parameters.
Na+ has the highest Moran’s I value with statistical significance
(P<0.01) and is thus the most clustered pattern of positive spa-
tial autocorrelation while the NO3

− has the lowest Moran’s I
value with a statistical non-significance (P > 0.10) and a ran-
dom spatial pattern of negative spatial autocorrelation. Half of
the parameters (e.g., EC, TDS, HCO3

−, As, Fe, and Mn) ex-
hibited a clustered spatial distribution with a high positive spa-
tial autocorrelation in the study area.

It is hypothesized that decreasing the entropy value de-
creases the spatial pattern of hydro-chemical parameters as
well as decreases the spatial autocorrelation. The comparison
between the information entropy value and Moran’s I value of
each parameter is displayed in Fig. 7. Na+ has the highest
spatial autocorrelation and the most entropy value whereas
NO3

− has the lowest spatial autocorrelation and thus a mini-
mum entropy value. Figure 6 reveals that the spatial autocor-
relation values and their corresponding information entropy

values agreed well, indicating a significant proportional rela-
tionship with each other. The results of spatial autocorrelation
analysis and the entropy values of each hydro-chemical pa-
rameter confirm the observation that a higher information en-
tropy value indicates the high degree of spatial autocorrelation
and also a vice versa relationship. This finding differs from the
observation of Gorgij et al. (2017) where a significant inverse
relationship is found between the degree of spatial autocorre-
lation and the entropy of physico-parameters in the Azarshahr
plain in Iran.

Characterization of groundwater quality ranks

After conducting preliminary investigation and analysis of the
linear relationships among the parameters and possible factors
that contribute to the groundwater quality through PCA, inter-
relationship of parameters with information entropy, and spa-
tial autocorrelation index that affects the water quality, the
EWQI value and, subsequently, the rank of each sample for
drinking purposes are computed by using Eqs. 1–7. The cal-
culation of GWQI values for each sample is also carried out
using Eq. 8. These index classifications give the overall status
of water quality with a unique number, which is easy to rec-
ognize. The suitability of the groundwater quality for drinking
purposes has been determined using the Bangladesh standard
(DoE 1997) values, and the results are shown in Tables 8
and 9, respectively. Table 9 reveals that the ranges and mean
value of EWQIs of the samples are 4.36–331.31 and 86.10,
respectively. The critical limit for EWQIs is 100, indicating
that 40.66% of the samples fall above the critical limit. Only
19 groundwater samples (20.87% of all samples) are catego-
rized as good-quality water (rank 2), which is fit for drinking
purposes, while 35 groundwater samples (39.56% of all col-
lected samples) are categorized as excellent-quality water
(rank 1), showing that the groundwater is fit for drinking uses
(Table 8). In addition, 20 samples (21.98%) are marginally
suitable for drinking purposes. Thirteen groundwater samples
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Fig. 7 The information entropy
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(S4, S11, S15, S18, S20, S21, S30, S44, S53, S58, S61, S62,
and S74) are classified as poor-quality water (rank 4), which
suggests that these samples are unsuitable for drinking pur-
poses. Only three samples (S5, S31 and S48) are extremely
poor-quality water (rank 5). Fe, As, Mn, SO4

2−, and NO3
− are

the most common contaminants in samples S5, S31, and S48.
This is a common indicator of anthropogenic effects on
groundwater quality. The extremely poor quality is due to
the generally higher concentrations of these parameters than
the acceptable limit in these samples.

However, the results show that the GWQI values vary from
6.23 to 307.21 with the mean of 108.85 (Table 9).
Vasanthavigar et al. (2010) have proposed the critical limit
(100) for drinking purposes. The results indicate that
49.45% of water samples exceed the critical limit (100) of
GWQI classification (Table 9). But interestingly, the same
sampling locations fewer less good-quality ranks in most of
the sampling sites in terms of GWQI values compared to
EWQI values. Based on GWQI classification, 53.84% (49
samples of all analyzed samples) groundwater samples fall
in the group of excellent- to good-quality water ranks, whereas
18.68% of samples (S7, S15, S16, S19, S21, S28, S32, S37,
S42, S44, S58, S60, S61, S73, S78, S80, S82) belong to the
group of poor quality (rank 4) and 12.08% of water samples
(S4, S5, S11, S18, S20, S30, S31, S48, S53, S62, and S74) are
identified in the extremely poor categories (rank 5) which are
not fit for drinking purposes. Out of 91 samples, 14 samples
(15. 38%) are classified as of medium water quality (rank 3)
which can be suitable after pre-treatment for drinking uses
(Table 8). These findings are echoed by the similar works of
Bodrud-Doza et al. (2016) and Bhuiyan et al. (2016) where
they have characterized the groundwater quality based on

GWQI classification for drinking uses around the central and
southeastern parts of Bangladesh, respectively. According to
Table 9, 11 samples (S4, S5, S11, S18, S20, S30, S31, S48,
S53, S62, and S74) have trace element contents more than the
prescribed values. Therefore, these 11 samples show the ex-
tremely poor-quality water (rank 5) for drinking uses based on
GWQI calculation. But results of EWQI classification exhibit
two quality ranks for these 11 samples; this is because the
parameters of this technique have various weights. For in-
stance, based on EWQI calculation, only three samples (S5,
S31, and S48) have extremely poor water quality (rank 5)
while another eight samples (S4, S11, S18, S20, S30, S53,
S62, and S74) are of poor water quality (rank 4). It is also
found that 46 samples have the same rank between the EWQI
and GWQI classifications.

In fact, there are some paradoxes in ranking water quality
for the EWQI and GWQI classifications. The main reason is
that the GWQI classification needs to assign artificial weight
for calculation of water quality and the concentrations of some
parameters are higher than their corresponding acceptable
limits. It can be seen as a weakness in the accuracy of a tool
like GWQI classification. As a consequence, in these locations
where groundwater chemistry demonstrates the presence of
some toxic trace metals like arsenic in the groundwater sys-
tem, the EWQI calculation of groundwater for drinking uses
provides more reliable results than GWQIs and is also consis-
tent with the outcomes of field investigation. The results of
EWQIs are consistent with previous observations of Amiri
et al. (2014) where they have shown that comparing the two
index classifications, the entropy weight made EWQIs perfect
and the assessment results are more reasonable than other
index methods. These findings are in disagreement with the

Table 8 Classification of groundwater quality indices for drinking purpose compared with other studies

Index method Range Rank Water class This study Amiri et al. (2014) Gorgij et al. (2017)

No. of
location

EWQI %
of sample

No. of
location

% of sample No. of
location

% of sample

EWQI < 50 1 Excellent 36 39.56 5 8.47 3 14.28

50–100 2 Good 19 20.87 25 42.38 6 28.57

100–150 3 Medium 20 21.98 14 23.73 6 28.57

150–200 4 Poor 13 14.28 5 8.47 5 23.81

> 200 5 Extremely
poor

3 3.29 10 16.95 1 4.76

Index method Range Rank Water class This study Kamrani
et al. (2016)

Bodrud-Doza
et al. (2016)

No. of location % of sample No. of location % of sample No. of location % of sample

GWQI < 50 1 Excellent 27 29.67 6 7.59 1 1.67

50–100 2 Good 22 24.17 40 50.63 17 28.33

100–150 3 Medium 14 15.38 31 39.24 11 18.33

150–200 4 Poor 17 18.68 1 1.27 29 48.33

> 200 5 Extremely poor 11 12.08 1 1.17 3 4.00
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results of Kamrani et al. (2016) who have reported that among
three index classifications, the fuzzy-based water quality

indexmethod acts more accurately than the two other methods
GWQIs and EWQIs.

Table 9 Assessment results of
the EWQI and GWQI value
classifications with the quality
rank of 91 total samples based on
the Bangladesh standard

Sample no. EWQIs Rank GWQIs Rank Sample no. EWQIs Rank GWQIs Rank

1 4.36 1 6.23 1 47 121.31 3 155.18 4

2 69.24 2 76.38 2 48 214.37 5 279.48 5

3 107.31 3 113.34 3 49 64.99 2 75.41 2

4 188.93 4 203.47 5 50 65.62 2 77.71 2

5 225.88 5 242.77 5 51 48.65 1 62.09 2

6 11.48 1 13.04 1 52 34.37 1 45.43 1

7 117.91 3 154.31 4 53 151.17 4 203.12 5

8 73.61 2 81.76 2 54 56.13 2 70.97 2

9 150.61 3 198.73 4 55 107.38 3 140.71 3

10 105.42 3 130.31 3 56 106.95 3 132.53 3

11 163.12 4 221.31 5 57 40.24 1 49.36 1

12 16.81 1 23.19 1 58 155.39 4 197.54 4

13 6.55 1 8.03 1 59 84.17 2 112.76 3

14 116.70 3 111.26 3 60 131.58 3 179.49 4

15 162.54 4 198.05 4 61 169.07 4 192.32 4

16 132.96 3 174.05 4 62 151.72 4 207.91 5

17 77.21 2 104.59 3 63 94.45 2 135.03 3

18 193.37 4 226.15 5 64 50.19 2 71.25 2

19 126.06 3 154.68 4 65 30.95 1 35.95 1

20 165.75 4 215.05 5 66 107.77 3 138.36 3

21 151.37 4 174.89 4 67 81.06 2 108.31 3

22 7.04 1 8.33 1 68 23.98 1 30.78 1

23 18.27 1 25.96 1 69 25.21 1 31.36 1

24 48.51 1 74.57 2 70 45.12 1 61.75 2

25 33.95 1 52.40 2 71 15.51 1 21.35 1

26 19.01 1 17.85 1 72 23.15 1 31.51 1

27 45.99 1 53.89 2 73 140.05 3 189.99 4

28 125.06 3 161.32 4 74 164.62 4 222.62 5

29 86.88 2 116.42 3 75 130.67 3 138.76 4

30 163.53 4 217.69 5 76 13.72 1 18.98 1

31 331.31 5 307.21 5 77 65.11 2 87.73 2

32 127.66 3 169.38 4 78 124.27 3 166.82 4

33 38.59 1 43.94 1 79 43.78 1 60.48 2

34 62.66 2 82.54 2 80 123.86 3 154.84 4

35 57.62 2 79.01 2 81 74.43 2 101.67 3

36 47.47 1 64.28 2 82 122.30 3 161.67 4

37 122.62 3 164.18 4 83 49.98 1 66.71 2

38 35.48 1 48.69 1 84 20.72 1 33.41 1

39 37.74 1 55.63 2 85 84.34 2 110.76 3

40 96.21 2 127.00 3 86 23.79 1 27.86 1

41 13.18 1 17.18 1 87 37.30 1 46.83 1

42 136.52 3 181.67 4 88 56.15 2 64.43 2

43 9.32 1 16.49 1 89 42.23 1 53.11 2

44 155.81 4 213.19 4 90 54.01 2 61.71 2

45 25.46 1 30.88 1 91 22.41 1 29.49 1

46 46.86 1 68.68 2
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Furthermore, Pearson’s correlation coefficient is also ap-
plied to explain the association between the pairs of water
quality indices and physico-parameters and how the parame-
ters affect the two index methods (Table 10). For example, the
EWQI values in groundwater have significantly positive cor-
relation to Fe (r = − 0.957). But they are moderately positively
correlated to Mn (r = − 0.530), NO3

− (r = − 0.552), and Mg2+

(r = 0.500) suggesting the moderate impact from NO3
−, Mn,

and Fe on the overall groundwater quality. The EWQI values
have insignificantly negative correlation to Na+ (r = − 0.226)
and HCO3

− (r = − 0.033) in the study area. Likewise, the
GWQI values have significantly positive correlation to Fe
(r = − 0.972) and Mn (r = − 0.639). They are also positively
correlated to NO3

− (r = − 0.401) and Mg2+ (r = 0.418), where-
as GWQIs have insignificantly negative correlation to Na+

(r = − 0.268) and HCO3
− (r = − 0.114) in the studied samples.

It is evident that both water quality index classifications show
a moderate positive correlation with NO3

− in the study loca-
tions, suggesting that anthropogenic inputs, such as the dis-
charges of domestic and small industrial wastewater, are the
major reason that contributes to high NO3

− concentration in
underground water (Su et al. 2017). This finding is in good
agreement with the results of Fogbate et al. (2014) in western

Nigeria, where they have found a significant correlation be-
tween water quality index and NO3

−. Both index values are
highly correlated with each other (r = 0.983 at the 99% sig-
nificance level), indicating the consistency of the results in the
analyzed samples. Hence, these correlation coefficient results
provide a useful numerical insight into the similarity between
the pairs of two parameters that affect the groundwater quality
at northeastern Bangladesh.

The results of EWQI and GWQI methods exhibit more or
less alike trends for most of the groundwater samples (Fig. 8).
The GWQI values have demonstrated higher spatial variabil-
ity, whereas EWQI values have shown lower spatial variabil-
ity in the study area. Overall, groundwater quality in most
parts of Sylhet district shows a large spatial variation
(Fig. 8). Most of these sampling locations with excellent to
good qualities are located in urban, semi-urban, municipal,
and rural areas along the study sites (Fig. 1). Increasing the
concentrations of trace elements such as As, Mn, and Fe and
ions including NO3

−, SO4
2−, and Cl− is mostly responsible in

contaminating the groundwater because of excessive uses of
fertilizers in agricultural fields, gypsum dissolution, and ionic
exchange in the urban and rural wastewaters infiltrating into
the aquifer. Under these settings, the concentration of solutes

Table 10 Pearson correlation coefficient analysis of the EWQIs and GWQIs with physico-chemical parameters

Parameter EC TDS Na+ K+ Ca2+ Mg2+ HCO3
−

EWQIs 0.087 0.086 − 0.225b 0.182 0.423a 0.501a − 0.033

GWQIs − 0.009 − 0.008 − 0.268b 0.151 0.368a 0.418a − 0.114

Parameter Cl− NO3
− SO4

2− As2+ Fe2+ Mn2+ EWQIs

EWQIs 0.111 0.552a 0.138 0.205 0.956a 0.531a 1

GWQIs 0.088 0.401a 0.117 0.121 0.972a 0.639a 0.983a

a Correlation is significant at the 99% level
b Correlation is significant at the 95% level

Fig. 8 Spatial variations in groundwater quality index values in the study area
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and groundwater contaminants could be influenced by mete-
orological causes including rainfall as the most dynamic factor
(by change in the dissolution rate and dilution of contami-
nants), thus the groundwater quality oscillations.

Figure 9 shows that the overall water quality in a deep
well (146–300 m) is better than that in a shallow well
(15–70 m) and intermediate well (71–145 m), which
may be attributed to the direct infiltration from the rain-
fall during the monsoon season (July to October), which
is the dominant recharge source of the groundwater. It
can be said that the deep aquifer can be considered as

suitable for human consumption and less contamination
occurs here currently.

Semivariogram model and spatial distribution analysis

The semivariogram (h) model is computed, and the scatter
plot of (h) vs. h (distance) was made after standardizing the
groundwater dataset. Like other interpolation methods, the
universal kriging technique is employed in the study which
is regarded as a robust tool for initial policy-making of
groundwater quality assessment at northeastern Bangladesh.
Various theoretical semivariogram models are applied to fit
the measured values, the model with the most fitted value,
and the minimum nugget value choice (Goovaerts 1997).
The nugget, sill, lag size, nugget/sill ratio, and range of the
best fit semivariogram model are given in Table 11. Figure 10
shows that the binned sign donates the experimental
semivariogram model around the omnidirectional model
showing the blue line and the plus sign indicates the average
of the semivariogrammodel. In this study, RMSE is applied to
examine the best fit model by its minimum value, ME and
MSE which are nearly zero, RMSSE which is close to 1, and
the lowest values of RMSE and ASE which indicate the most
suitable model to the datasets (Islam et al. 2017b). The
Gaussian model has been chosen to be the best fit experimen-
tal semivariogram model for the EWQI and GWQI values
according to the minimum values of RMSE and ASE and
RMSSE values which are close to 1. Such finding is echoed
by the related research of Munna et al. (2015), who have
analyzed the spatial structure of groundwater physico-
checmical parameters in the Sylhet city corporation area,
Bangladesh. Moreover, the ranges vary due to topographic
and geometric factors in any region where the large distance
and variation of groundwater quality parameters may be af-
fected by meteorological factor such as rainfall, runoff, wind
speed, and agronomic practices. The range of the model in this
study for the two index methods varies from 5.78 km for
EWQIs to 5.69 km for GWQIs, which is enough to examine
the spatial distribution of groundwater quality indices in
Sylhet district, Bangladesh. Figure 11 displays the scatter plots
for the predicted and measured groundwater quality index
values. After fitting the best model, the cross-validation tests
are applied to investigate how well the index model predicts at
unsampled sites. Results show that the comparisons between
predicted and measured values are reasonably good (Fig. 11).

The spatial dependence of groundwater quality index
values depends on the nugget/sill ratio. The nugget/sill values
of both indices are 0.885 and 0.836, respectively. As a stan-
dard classification, the variable is regarded to be a strong
spatial dependence if the nugget/sill ratio is less than 0.25, a
moderate spatial dependence if the ratio is between 0.25 and
0.75, and a weak spatial dependence if the ratio is more than
0.75 (Shi et al. 2007). Both indices exhibit a weak spatial

Fig. 9 Depth-wise distributions of the groundwater quality index values
for water samples
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dependence in the semivariogram model (Fig. 10a, b); it sug-
gests that the moderate natural and anthropogenic influences
spatially affect the groundwater quality. Similar findings are
obtained from the most recent study in the southeastern part of
Bangladesh by Bhuiyan et al. (2016), but these findings differ
from the results of Bodrud-Doza et al. (2016) and Islam et al.
(2017b) where the moderate to strong spatial dependencies
have been identified in the semivariogram model in the north-
ern and central parts of Bangladesh.

The universal kriging method is used to generate spatial
maps of groundwater datasets (n = 91) for two groundwater
quality indices (EWQIs and GWQIs). The spatial distribution
maps demonstrate an increasing trend from the southwest to
northeast directions in the study area (Fig. 12). The high
EWQI values (rank 5) are found in the north and northeastern
parts of Gowainghat, Jaintapur, and Kanaighat upazila of the
sampling locations, while low EWQI values (rank 1) are ob-
served in the southwestern and central parts of Biswanath,
Fenchuganj, Sylhet Sadar, and Gopalganjupazila of Sylhet
district, Bangladesh, showing amalgamate point factors that
affect groundwater quality (Fig. 12a). Enormously medium
EWQI values are identified in southwestern, northwestern,
eastern, and southeastern parts including Balaganj,
Companiganj, Zakiganj, and Bianibazarupazila of Sylhet dis-
trict, indicating the existence of heterogeneous factors that

contribute to the groundwater quality contamination
(Fig. 12a). However, the relatively high GWQI values (rank
4) are found in the northern, northeast, and southeastern parts
such as Ja intapur, Gowainghat , Kanaighat , and
Beanibazarupazila of Sylhet district which may be attributed
to the integrating effects of contamination from escape of ions,
over-exploitation of groundwater, release of effluents, and
runoff from agronomic fields (Dash et al. 2010; Islam et al.
2017b). Islam et al. (2015) have found a poor water quality
type (rank 4) in several sampling sites in the northwestern part
of Bangladesh, where detrimental health impact happens due
to consumption of drinking water. The rural area in the north-
ern part (Gowainghatupazila) of the sample locations such as
S31, passing through a highway road boundary, an evidence
of dumping waste, and an excessive use of NO3

− fertilizer in
agricultural areas can confirm this finding (Fig. 1). This is an
alarming condition from a human health perspective due to
the extremely poor water quality (rank 5). In fact, both indices
exhibiting high values in the northern part of Gowainghat and
Jaintapurupazila of the sampling locations is alarming, as
most of the households rely on groundwater for domestic pur-
poses. The irregularities observed in the northeastern part of
Kanaighat upazila of the GWQI map have the highest GWQI
values (rank 5 in sampling site S48) restricting its use for
human consumption (Fig. 12b). The GWQI distribution

Table 11 The best fit semivariogram models of groundwater quality indices and their variance using universal kriging interpolation technique

Indices Fitted model type Nugget Major range (m) Sill Nugget/sill Lag size ME RMSE MSE RMSSE ASE

EWQI Circular 1483.186 5698.934 1617.513 0.917 712.367 − 0.631 54.317 − 0.014 1.272 42.338

Spherical 1517.441 5698.934 1607.386 0.944 712.367 − 0.577 54.492 − 0.013 1.275 42.425

Exponential 1544.271 4280.822 1544.271 1.000 535.103 − 0.724 54.873 − 0.017 1.303 41.929

Gaussian 1445.294 5788.935 1633.692 0.885 712.367 − 0.708 54.137 − 0.015 1.269 42.203

GWQI Circular 2386.406 5698.934 2749.496 0.868 712.367 − 0.685 65.954 − 0.011 1.198 54.695

Spherical 2432.561 5698.934 2731.249 0.891 712.367 − 0.653 66.225 − 0.011 1.201 54.837

Exponential 2659.955 26.757 3969.886 0.670 3.345 − 0.480 67.100 − 0.009 1.000 67.096

Gaussian 2325.005 5698.934 2781.946 0.836 712.367 − 0.770 65.667 − 0.012 1.195 54.453

Italics indicate the best fit semivariogram model

Fig. 10 The best fit semivariogram models of groundwater quality indices in the study area. a EWQI. b GWQI
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Fig. 12 The spatial distribution maps of two index values obtained by groundwater quality indices in the study area. a EWQI. b GWQI
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pattern demonstrates a spatial heterogeneous trend in various
directions. It shows a decreasing trend from the center to the
southwest and an increasing trend in the center toward the
northern part (Gowainghatupazila) of the study region.
However, the spatial distribution of GWQI maps shows that
the medium values are widespread, not localized in any par-
ticular part of the study site. It is advisable that proper treat-
ment measures be taken to check the groundwater quality
status for drinking purposes as a serious basis for the Sylhet
district, Bangladesh. Otherwise, long-term drinking of con-
taminated groundwater will pose a great threat to the health
of humans. Therefore, groundwater should be pre-processed
before consumption for drinking uses by local inhabitants,
particularly in Gowainghat, Jaintapur, and Kanairghatupazila
study areas. However, future studies will be concentrating on
more sampling locations of groundwater to gain better insights
into the geogenic and human factors that contaminate the
aquifer system.

Conclusions

In this research, an attempt is carried out to characterize the
groundwater quality for drinking purposes and spatial vari-
ability of the groundwater quality indices by using the inte-
grated approaches of the entropy method, multivariate statis-
tics, spatial autocorrelation index, and geostatistics in the
Sylhet district of Bangladesh. The dominance of the major
cations is in the following order, Na+ > Ca2+ > Mg2+ > K+,
whereas the major anion trend is in the following order,
HCO3

− > Cl− > NO3
− > SO4

2−. The results show that NO3
−,

SO4
2−, and then As are the most contributed parameters, thus

causing groundwater quality degradation, and special atten-
tion should be required to these parameters to prevent further

groundwater contamination in the study region. The outcomes
of PCA and correlation coefficient analysis are also consistent
with these findings. However, a significant proportional rela-
tionship exists between spatial autocorrelation index and the
entropy of a physico-chemical parameter. The relationship
illustrates the application of the entropymethod and the spatial
autocorrelation index, which provide a useful insight in clar-
ifying the issues of groundwater quality disquiet.

The results reveal that 39.55 and 46.14% of groundwater
samples (n = 36 and 44 locations)are categorized as of the
Bmedium^ to Bextremely poor^ quality domains using the
EWQI and GWQI classifications, respectively, which are not
fit for drinking purposes. In fact, groundwater quality is se-
verely degraded along the main flow path of groundwater,
because the concentration of solutes and groundwater contam-
inants could be altered by the meteorological factors like rain-
fall as the most dynamic agent. Furthermore, a moderate spa-
tial dependency has been observed in the semivariogrammod-
el; it indicates the weak natural and anthropogenic influences
affecting groundwater quality. Spatial distribution maps dem-
onstrate that high index values are mainly concentrated to the
northern and northeastern parts of Gowainghat, Jaintapur, and
Kanaighat upazila of the sampling locations. These areas need
to adopt a long-term monitoring policy of groundwater qual-
ity. On the other hand, low index values are distributed to the
southwestern and central parts of Biswanath, Fenchuganj, and
Sylhet sadar of Sylhet district, Bangladesh, showing less de-
graded groundwater quality. This research provides not only a
comprehensive information on the drinking water quality for
policy-making, but also a meaningful reference for regional
water managers and practitioners.
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