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Abstract This study investigates the effects of copper and
mercury on growth rate, chlorophyll a content, superoxide
dismutase (SOD) activity, SOD mRNA gene expression, and
frustule morphology of the benthic freshwater diatom
Halamphora veneta (Kützing) Levkov and the potential utility
of each for toxicity assessment in aquatic habitats. Results
showed the following: (1) Compared to mercury, exposure
to copper resulted in greater growth inhibition of H. veneta
even at low concentrations and after short durations of expo-
sure; (2) high accumulation of chlorophyll a in H. veneta is a
stress response to the presence of heavy metals; (3) SOD ac-
tivity and SOD gene expression varied inH. veneta according
to the concentration, exposure time, and type of heavy metal;
and (4) exposure to mercury resulted in deformity in the shape
and an increase in size of the frustule of H. veneta. Growth
rate, chlorophyll a content, SOD activity and gene expression,
and frustule morphology of H. veneta are all potential candi-
dates for the toxicological assessment of copper and mercury
in aquatic habitats.
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Introduction

Heavy metals of pollutants of global importance are derived
from numerous sources including industrial processes, min-
ing, transport, agricultural, and urban activities (Ouyang et al.
2017). The toxicity of heavy metals to aquatic animals is well
documented (Mzimela et al. 2003; Zhang et al. 2005), and in
recent years, increasing attention is being paid to the develop-
ment of protocols for environmental risk assessment of water
environments (Fang et al. 2016; Marks et al. 2017; Zhang
et al. 2017).

Copper (Cu) is a necessary micronutrient, which plays im-
portant functional roles in the biochemistry of aquatic organ-
isms, but becomes toxic at high concentrations (Ahsan et al.
2007; Castruita et al. 2011). Mercury is considered one of the
most dangerous metals in the environment (Goyer et al. 1995),
mainly because it can accumulate in biological food chains
and ultimately affected human health (Campbell et al. 2005;
MacDougal et al. 1996; Raimundo et al. 2014). Copper and
mercury contamination in the aquatic environment is mostly
derived from industrial processes and anthropogenic activities
(Ciji and Bijoy Nandan 2014; Nriagu and Pacyna 1988). The
development of rapid and efficient biological monitoring tech-
nology to evaluate the effects of heavy metal contamination is
an urgent scientific problem needed to be solved (Dai et al.
2014; Torres et al. 2008). It is showed that the nontarget or-
ganisms especially microalgae were frequently useful in pro-
viding information on the physicochemical characteristics of
the aquatic environment (Celekli et al. 2017).

Microalgae exhibit various physiological and biochemical
responses to changes in water quality (Leung et al. 2017).
These include inhibition of growth and damage to photosyn-
thetic pigments including chlorophyll a. It has long been
known that such changes can be used as indicators of envi-
ronmental stress (Allen et al. 1983). In addition, the heavy
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metal pollutants can induce oxidative stress by generating
reactive oxygen species (ROS) in microalgae. For example,
Choudhary et al. (2007) reported that heavy metal stress is
closely associated with the induction of oxidative stress bio-
markers in Spirulina. Pollutants in the environment can lead to
the inducement or inhibition of the antioxidant enzyme activ-
ity in aquatic organisms; therefore, such enzymes can be used
as biomarkers of the toxicity of these pollutants (Lionetto et al.
2003; Monserrat et al. 2007). Superoxide dismutase (SOD) is
an enzyme which can be induced by exogenous pollutants
such as heavy metals and pesticide and has been used as a
biomarker to detect oxidative stress in plants (Ibrahim et al.
2014; Piotrowska-Niczyporuk et al. 2012). Furthermore, mor-
phological changes in algae can also be used as indicators of
environmental pollution (Adshead-Simonsen et al. 1981;
Cattaneo et al. 2004).

Diatoms are abundant in terrestrial, freshwater, and marine
habitats and are a predominant group of microalgae (Torres
et al. 2008). They play important roles in the food chain as
primary producers, thereby sustaining food webs (Armbrust
et al. 2004). Due to their cosmopolitan distribution, short life
cycles, and rapid response to environmental perturbations,
they are commonly employed in ecotoxicological and envi-
ronmental studies for evaluating the effects of chemicals and
other stressors in the marine environment (Falasco et al. 2009;
Guo et al. 2013; Pandey et al. 2014).

Regarding the diatoms’ toxic responses to a variety of
heavy metals, there are several reports available from physio-
logical endpoints such as growth, photosynthetic efficiency,
and antioxidant enzyme activity. For example, cadmium ex-
posure can lead to inhibition of cell growth in Phaeodactylum
tricornutum (Torres et al. 2000). Increasing heavy metal con-
centrations can result in a decrease in chlorophyll and induce
cellular superoxide dismutase in Odontella mobiliensis,
Nitzschia palea, and Chaetoceros calcitrans (Anu et al.
2016; Branco et al. 2010; Manimaran et al. 2012). At the
molecular level, it has been reported that exposure to heavy
metals including copper and nickel can induce the stress-
associated biomarker HSP70/90 in Ditylum brightwellii
(Guo et al. 2013). Diatoms subjected to heavy metal stress
also exhibit morphological changes, including changes in
valve outline, striae pattern, costae and septae modification
of the raphe, and raphe canal pattern (Gautam et al. 2017).
These morphological changes can be excellent specific indi-
cators of metal contamination (Cattaneo et al. 2004). Benthic
diatoms in particular have been used in a number of monitor-
ing studies and for a variety of different stressors (Bellinger
et al. 2006; Szczepocka and Szulc 2009). However, informa-
tion regarding the interacting effect of copper or mercury on
benthic diatoms is still limited.

Halamphora veneta is a widely distributed freshwater ben-
thic diatom that can be easily cultured in the laboratory (Dedić
et al. 2015; Novais et al. 2014). In this study, H. veneta was

used as a test organism to elucidate the toxicity response of
copper and mercury exposure under different treatment con-
centrations. An integrative measurement of growth, photosyn-
thetic efficiency, enzyme activity, molecular responses, and
morphological change was employed to reveal the biochemi-
cal defense mechanisms used by this diatom to cope with
heavy metal stress. We also attempted to evaluate the best
potential biomarkers in diatoms for risk assessment in aquatic
ecosystems.

Materials and methods

Diatom species and culture conditions

H. veneta was obtained from the Institute of Hydrobiology,
Chinese Academy of Sciences and cultured by the Aquatic
Laboratory, Harbin Normal University, China, as follows:
Cells of H. veneta were inoculated into 500 mL sterile flasks
containing 200 mL modified CSI medium (Watanabe et al.
1988) and incubated at 20 ± 1 °C with 12:12 h light-dark
photoperiod using a cool-white fluorescent light (4000 lx/
cm2). The composition of nitrate, phosphate, silicate, trace
metals, and vitamins used in the CSI medium is presented in
Table 1. All the flasks were shaken three times per day to keep
the diatoms under good growth conditions (Foster et al. 2008).
Diatoms in the exponential growth phase were harvested for
the following tests.

Toxicity treatments

H. veneta cells were exposed to Cu (0, 0.1, 0.2, 0.5, 1, and
2 mg L−1) and Hg (0, 0.1, 0.5, 1, 2, and 5 mg L−1), with each
dose series being tested at four time intervals (24, 48, 72, and
96 h). Each treatment was performed in triplicate in 500-mL

Table 1 Chemical composition of CSI medium

Components Final concentrations in medium

Ca(NO3)⋅4H2O 150 g L−1

KNO3 100 g L−1

MgSO4⋅7H2O 40 g L−1

β-Na2 glycerophosphate⋅5H2O 25 g L−1

Vitamin B12 0.1 μg L−1

Soil leachate solution 30 ml L−1

Na2EDTA 0.75 g L−1

FeCl3⋅6H2O 0.097 g L−1

ZnCl2⋅7H2O 0.05 g L−1

CoCl2⋅6H2O 0.002 g L−1

MnCl2⋅4H2O 0.041 g L−1

Na2Mo4O4⋅2H2O 0.004 g L−1
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flasks. During the acute toxicity experiment, the growth inhi-
bition rates, chlorophyll a content, SOD activity, and gene
expression of H. veneta were measured at each time interval.

Growth rate test

Samples of 250 mL were taken at each time interval (24, 48,
72, and 96 h). Optical density values were measured using
UV-1700 UV/vis spectrophotometer (Unico Instrument,
Shanghai, China) at 540 nm. The growth rate was calculated
by the logistic equation (Wang et al. 2010):

μi− j ¼ lnX j−lnX i
� �

=t j−ti day−1
� �

where μi-j is the average growth rate from time i to j, Xi is the
optical density at time i, and Xj is the optical density at time j.

Determination of chlorophyll a content

Measurements of chlorophyll a (Chl a) content were applied
as previously described (Harborne 1998). In brief, triplicates
of 8 mL blended cultures were centrifuged at 4000×g for
10 min every 24 h. After the supernatant was removed,
5 mL acetone was added to the retentate, and the mixture
was ultrasonically disrupted for about 30 min and placed in
the dark at 4 °C for 24 h. The methanol-extracted samples
were centrifuged at 4000×g for 10 min and the supernatants

were transferred into tubes. The absorbance value at 646 and
663 nm were measured. The Chl a content was computed by
the following equation:

Chl a mg L−1� � ¼ 12:21A663−2:81A646

where A663 is the absorbance value at 646 nm and A646 is the
absorbance value at 646 nm.

Assay of total superoxide dismutase content

Total superoxide dismutase (T-SOD) activity (including Mn-
SOD and CuZn-SOD) was determined according to Ji (1991),
using an enzymatic method by using the SOD assay kit
(Nanjing Jiancheng, China). At each time interval and each
treatment with heavy metals, 200 mL of cultured diatoms was
centrifuged at 6000×g for 5 min, and then diatoms were
washed in 0.1 mol/L PBS buffer. Assay conditions were
65 μmol phosphate buffer, pH 7.8, 1 μmol hydrochloric hy-
droxylamine, 0.75 μmol xanthine, and 2.3 × 10−3 IU xanthine
dismutase. One hundred microliters of the supernatant was
incubated in the system for 40 min at 37 °C, and the reaction
was terminated with 2 mL 3.3 g L−1p-aminobenzene sulfonic
acid and 10 g L−1 naphthylamine. An SOD unit is defined as
the amount of enzyme that inhibits the superoxide-induced
oxidation (monitored at 550 nm) by 50%.

The SOD activity was calculated as the following equation:

ASOD U mg prot−1
� � ¼ absorbance at 550 nm of the control−absorbance at 550 nm of the sampleð Þ

=absorbance at 550 nm of the control=50%� total volume of the reaction

=the volume of sample=the protein concentration of the sample mg prot mL−1� �

Quantitative analysis of the messenger RNA expression
of superoxide dismutase enzymes by real-time PCR

After exposure to heavy metals, cells of the treated and control
groups were harvested, and the total RNAwas extracted from
the diatoms by TranZol Up (TransGen Biotech, Beijing,
China) according to the manufacturer’s protocol. The total
RNA integrity was confirmed using 1% formaldehyde/
agarose gel with ethidium bromide (EtBr) staining and UV
transilluminator (Bio-Rad, USA). The quality of RNA sam-
ples was determined by using Beckman DU800 spectropho-
tometric measurements of the ratio of absorbance 260 and
280 nm (A260/280) in a range from 1.8 to 2.0. The cDNAwas
synthesized from 1 μg of the total RNA, using a kit of
Transcript One-Step gDNA Removal and cDNA Synthesis
Supermix (TransGen Biotech, Beijing, China). Real-time
PCR assays (25 μL) of each individual sample were run in
triplicate wells using UltraSYBR Mixture (with ROX) on an

Applied Biosystems 7500 Fast Real-Time PCR System (ABI
7500, USA). The PCR cycling conditions comprised an initial
polymerase activation step of 95 °C for 3 min, followed by
40 cycles of 95 °C for 30 s and 60 °C for 30 s, 72 °C for 30 s,
and 72 °C for 10 min. Primers of sod and 18s are shown in
Table 2. The housekeeping gene 18s was used as an internal
standard. To confirm the primer specificity, melting curve
analysis of amplification products was performed at the end
of each PCR reaction to ensure that only one PCR product was
amplified and detected. The relative expression levels of dif-
ferent genes were calculated using the 2−ΔΔCT method (Livak
and Schmittgen 2001).

Scanning electron microscopy

To study the morphological changes induced by heavy metals,
H. veneta was exposed to copper and mercury at concentra-
tions of 1.5 and 4.8 mg L−1 (i.e. their own 96 h EC50),
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respectively. The diatoms were cleaned by acid treatment,
then cells were harvested by centrifugation at 2500×g for
5 min, and frustules were washed by centrifugation several
times with ultrapure water. The samples were sputter-coated
with gold/palladium and viewed under a Hitachi S-4800 scan-
ning electron microscope at 20 kV.

Statistical analysis

All experiments were performed in triplicate and results were
presented as mean value ± standard deviation (SD). The ex-
perimental data was analyzed by SPSS version 18.0. The EC50

values with 95% confidence intervals were calculated by
probit analysis. One-way ANOVAwith Tukey’s test was used
to determine whether the outcomes were significantly differ-
ent from the control treatments without heavy metals
(p < 0.05).

Results

Influence of heavy metal on H. veneta growth rates

Exposure of H. veneta to copper and mercury induced chang-
es in growth rate during the assay. Figure 1a shows the effects
of copper on the growth rates of H. veneta. A clear dose-
response trend was observed during the 96-h exposure.
Compared with controls, growth rates were significantly low-
er in all tested treatment concentrations at 24 and 48 h of
exposure (p < 0.05). In 0.1, 0.2, 0.5, 1, and 2 mg L−1 copper
treatments, growth rates decreased by 28.2, 41.6, 43.8, 45.0,
and 70.1% at 24 h and by 47.9, 58.0, 46.6, 47.1, and 64.8% at
48 h compared with the control group, respectively. However,
after 48 h exposure, the growth rate of H. veneta was signif-
icantly lower in the treatments with low concentrations rela-
tive to the controls (0.1, 0.2 mg L−1), and there was no signif-
icant difference between the other concentrations at 48 and
96 h (p < 0.05). Figure 1b illustrates the effects of mercury
on the growth rates of H. veneta. In 2 and 5 mg L−1 mercury
treatments, growth of H. veneta was lower compared with the
controls at 24 h exposure (p < 0.05). There was no significant
difference between the controls and the treatments with mer-
cury at 48 h exposure (p < 0.05). After 72 h exposure, mercury
significantly inhibited the growth ofH. veneta in all treatment
concentrations (p < 0.05).

Effects of heavy metal on chlorophyll a content

The effects of copper and mercury on the chlorophyll a con-
tent differed in H. veneta. As shown in Fig. 2a, the Chl a
content of H. veneta was significantly increased at higher
concentrations of copper (0.2, 0.5, and 1 mg L−1), at 24 and
96 h exposure, compared to the control group. The Chl a
content was 3.6, 3.12, and 2.65 mg L−1 in 0.2, 0.5, and
1 mg L−1 copper treatments, respectively, which were higher
by 68.2, 45.8, and 19.2%, respectively, compared with that of
the controls at 24 h exposure. In addition, Chl a content was
3.93 mg L−1 in 0.2 mg L−1 copper, significantly increased by
47.2% compared with that of the controls at 96 h exposure
(Fig. 2a, p < 0.05). Meanwhile, the Chl a content ofH. veneta
was significantly lower at higher concentrations of copper
(e.g., 1 mg L−1) at 48 and 72 h. Figure 2b indicates that the
Chl a content ofH. venetawas obviously affected by mercury
at higher concentration during 96 h exposure relative to the
controls. But the Chl a content in 0.1 mg L−1 mercury treat-
ment was significantly higher than that of the controls at 72
and 96 h exposure. The Chl a content in 0.1 mg L−1 mercury
treatment was significantly higher, i.e., by 33.1 and 69.3%,
compared with that of the controls at 72 and 96 h exposure,
respectively (Fig. 2b, p < 0.05).

Effects of heavy metal on SOD enzyme activities

SOD activities increased gradually with increasing treatment
concentrations (Fig. 3). For the 0.5 and 2 mg L−1 copper
treatments, SOD activity was higher by 92.5 and 57.6%, re-
spectively, compared to the control at 24 h exposure (Fig. 3a,
p < 0.05). At 48 h, SOD activity was higher in all the tested
concentrations, i.e., by 95.4, 110.1, 97, 91, and 105.8% com-
pared with the control at 0.1, 0.2, 0.5, 1, and 2 mg L−1 copper,
respectively. SOD activity in H. veneta did not increase sig-
nificantly in copper treatments at 72 h (p < 0.05) but was
significantly higher at 96 h, i.e., by 70.7 and 57.8% in 0.1
and 0.2 mg L−1 copper treatments (p < 0.05), respectively,
relative to the controls (Fig. 3a). As shown in Fig. 3b, mercury
caused a significant increase of SOD activity, by 32.7, 36.9,
and 38.9% in 0.1, 0.5, and 5 mg L−1, respectively, at 24 h; by
39.8, 79.3, and 51.3% in 0.1, 0.5, and 2 mg L−1, respectively,
at 48 h; and by 54.7 and 37.3% in 0.1 mg L−1 at 72 and 96 h
exposure, respectively (p < 0.05, Fig. 3b). By contrast, SOD
activity was significantly lower, i.e., by 73.4 and 55.6% in

Table 2 Primers used for real-
time reverse transcription
polymerase chain reaction
assessment of superoxide dismut-
ase gene expression in H. veneta

Gene Oligo name Sequence (5′–3′) Amplicon size (bp)

18S RT-F TTCCACCACGATAAGCACCAC 145
RT-R GAGGTAGTAAGCGTGTTCCCA

SOD RT-F TCTTACTTACGACTACGCCTCCCTC 284
RT-R CAGAAAAGAGTGTGGTTCAAGTGGC
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5 mg L−1, at 72 and 96 h mercury exposure, respectively
(p < 0.05, Fig. 3b).

Messenger RNA relative expression levels of SOD

The effects of copper on SOD messenger RNA (mRNA) ex-
pression were significantly decreased inH. veneta during 96 h
exposure, whereas SOD expression level increased in lower
concentrations of mercury with increasing times of exposure
(Fig. 4). SOD mRNA levels decreased rapidly and were sta-
tistically lower than controls after 96 h of Cu exposure
(p < 0.01), except the concentration of 0.5 mg L−1 (Fig. 4a).
In contrast to copper treatment, the SOD mRNA levels after
96 h of Hg exposure at different time points under different
concentrations did not show a trend of change (Fig. 4b). At
24 h from the beginning of the exposure, mRNA accumula-
tion was temporarily higher than controls at 0.5, 2, and

5 mg L−1 (p < 0.01). Then, SOD mRNA levels significantly
increased over the controls after 48 h of Hg exposure at the
lower concentration of 0.1 mg L−1 (p < 0.01). In addition,
significantly decreased SOD mRNA levels compared to the
controls after 48 h of Hg exposure were observed at 0.5, 1, and
5 mg L−1 (p < 0.01). At 72 h exposure, mRNA accumulation
was temporarily higher than controls at 1 and 2 mg L−1, lower
than the controls at 5 mg L−1 (p < 0.01). At 96 h exposure, the
mRNA level was significantly higher than the controls at
2 mg L−1 (p < 0.01).

Morphological changes after heavy metal treatments

TheH. veneta cells in control cultures had a semilanceolate, or
slightly concave, shape with both ends narrowly rounded or
slightly curved inward (Fig. 5). Cells treated with copper were
not conspicuously deformed (Fig. 6). However, after mercury

Fig. 1 Growth rates of
Halamphora veneta after 96 h
exposure to different
concentrations of copper (a) and
mercury (b)
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treatment, the frustules were enlarged and irregularly de-
formed with the dorsal margin bulging, the ventral margin
concave, and both ends slightly rounded (Fig. 7).

Discussion

Because heavy metals can affect the growth rate of diatoms, it
has been suggested that this function can be used as an indi-
cator of heavy metal pollution in water (Kim et al. 2013;
Leung et al. 2017). Copper and mercury are common pollut-
ants in many aquatic environments, especially those which are
surrounded by densely populated areas (Anu et al. 2016; Mico
et al. 2006; Nolde 2007). The toxicity of these two heavy
metals to microalgae, such as the marine diatom
(C. calcitrans) and the green algae (Tetraselmis chuii and
Chlorella sorokiniana), has previously been reported (Anu
et al. 2016; Davarpanah and Guilhermino 2015; Gomez-

Jacinto et al. 2015). However, there are relatively few data
on the acute effects of copper and mercury to freshwater
benthic diatoms although Johnson et al. (2007) found that
the growth of Nitzschia closterium was acclimated in culture
medium containing 5 or 25 μg L−1 copper. In the present
study, the growth rate ofH. veneta showed differing responses
to copper and mercury. It is noteworthy that the concentration
of copper in this study was in the range 0.1–2 mg L−1, which
was much greater than that used previously for acclimating
N. closterium (Johnson et al. 2007). One reason for this was
thatH. veneta could not be fully adapted to copper stress in the
present work. Furthermore, the sensitivity of H. veneta to
copper varied with the duration of exposure, the growth rate
being significantly lower after 24 and 48 h compared with the
control group. This means that copper, at initial treatment
time, will give rise to a greater growth inhibition compared
with those exposed for longer durations, thereby disrupting
the function of the diatoms from the outset. This finding is

Fig. 2 Chlorophyll a content of
Halamphora veneta after 96 h
exposure to different
concentrations of copper (a) and
mercury (b)
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consistent with of Anu et al. (2016), who reported that the
growth rate of C. calcitrans was significantly inhibited by
copper at concentrations ≥ 0.18 mg L−1 (Anu et al. 2016).
However, it is of no significant effect in H. veneta at 96 h of
copper exposure in this study. It has been established that toxic
effects induced by copper depend on many factors, including
the species used for the test, initial cell density, light illumina-
tion, temperature, media used, and exposure time (Manimaran
et al. 2012). Our findings are consistent with the fact that
exposure time is one of the most important factors in the
impact of heavy metals on diatoms. In addition, our results
may indicate that benthic diatoms H. veneta may develop
some tolerance for copper with the passage of time.

In contrast to copper, mercury inhibits the growth rate of
H. venta most at concentrations of greater than 2 mg L−1 (not

the lower concentrations), at 24 h of exposure. At 48 h expo-
sure, there was no significant decrease in the growth rate of
H. venta (except for 5 mg L−1 mercury treated). In addition,
very low concentrations of mercury were found to inhibit the
growth rate of H. veneta at 72 h and 96 h exposure. This is
consistent with Horvatić and Peršić (2007) who reported that
the growth of the marine diatom P. tricornutum was inhibited
bymercury at low concentrations of 0.01mg L−1. In a study of
another marine diatom, Thalassiosira weissflogii, growth rate
gradually decreased from the concentration of 5 to 500 nM
under mercury treatments over a 6-day exposure period
(Morelli et al. 2009). Furthermore, our results showed that
mercury stress has a similar trend at 72 and 96 h on diatom
growth rates. Some reports have indicated that diatom growth
does not change significantly with time during chronic

Fig. 3 SOD activity of
Halamphora veneta after 96 h
exposure to different
concentrations of copper (a) and
mercury (b)
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mercury exposure experiments (Horvatić and Peršić (2007);
Morelli et al. 2009). This phenomenonmight be attributed to a
modest allocation of cellular components in diatom which
might be integrated into other processes leading to a reduction
in damage to cell and enhanced resistance (Calabrese 2015).

Another parameter that has been used in plants and algae as
an indicator of environmental pollutants is chlorophyll a con-
tent (Lau and Lane 2002). It is noteworthy that, in the present
study, the chlorophyll a content ofH. venetawas higher in the
copper and mercury treatments than in the controls. The in-
crease in chlorophyll content following exposure to copper
contrasted with previous reports. Dao and Beardall (2016),
for example, found that Chl a content in Scenedesmus acutus
and Chlorella sp. declined with increasing heavy metal con-
centrations at 24 h exposure. Chen et al. (2012) and Branco
et al. (2010) both reported that the content of photosynthetic
pigments, including Chl a, Chl b, and carotenoids, increased

in algae exposed to cadmium and titanium dioxide, respective-
ly. These findings show that the response of chlorophyll con-
tent to metal stress varies among different species and with
metal concentration. Furthermore, it has also been reported
that in algae exposed to toxic compounds, other pigments
can convert to Chl a leading to an increase in Chl a content
(Fang et al. 1998). Chen et al. (2012) suggested that it might
be due to increased ROS which was caused by exogenous
substances such as exposure to contaminants. In the present
study, we also observed higher Chl a levels in H. veneta ex-
posed to copper and mercury compared to the control group,
which might be caused by resistance response of diatoms to
heavy metals. Knowledge on the tolerance and response of
microalgae to heavy metals is important in order to determine
the potential utility of microalgae for pollution assessment.
Although several previous studies have focused on the bio-
chemical responses of microalgae to heavy metals, the effects

Fig. 4 SOD gene expression of
Halamphora veneta after 96 h
exposure to different
concentrations of copper (a) and
mercury (b)
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of copper and mercury on antioxidant enzyme activity
coupled with gene expression levels are poorly known
(Glanemann et al. 2003). It is established that ROS such as
superoxide, hydroxyl radicals, and hydrogen peroxide are pro-
duced in microalgae on being exposed to heavy metal con-
tamination (Dao and Beardall 2016; Li et al. 2006). Although
ROS play an important role in host defense, overproduction
and residuals can cause oxidative damage (Sharma et al.
2012). SOD is an important component in preventing oxida-
tive damage in microalgae and is widely used as an indicator
of environmental stress (Blaise and Menard 1998; Peterson
and Stauber 1996). In the present study, SOD activity in
H. veneta was induced by both copper and mercury
treatments. This finding is consistent with several previous
studies including Li et al. (2006) and Verlecar et al. (2007)
for the marine dinoflagellate Pavlova viridis and Choudhary

et al. (2007) for the cyanobacterium Spirulina platensis.
Based on the findings of the present study, we concluded that
SOD activity in the benthic diatom H. veneta is a reliable
biomarker of oxidative stress.

The present study also investigated the expression pattern of
the SOD gene inH. veneta at different concentrations of copper
and mercury. Previous studies have demonstrated changes in
expression of the SOD gene in the ciliate Euplotes vannus
induced by exposure to nitrofurazone (Hong et al. 2015) and
in the copepod Tigriopus japonicus induced by exposure to
copper, zinc, and mercury (Kim et al. 2015). By contrast,
SOD gene expression in T. japonicus was not affected by ex-
posure to triphenyltin chloride (Yi et al. 2014). Lauritano et al.
suggested that SOD gene expression is related both to the pol-
lutant and to the duration of exposure (Lauritano et al. 2012).
The present study showed that SOD gene expression was

Fig. 6 SEM images of
Halamphora veneta in copper
treatment: a the whole frustule
(bar, 2 μm), b the anterior ends of
the frustule (bar, 3 μm), c the
posterior ends of the frustule (bar,
3 μm), and d the ventral surface
of the frustule (bar, 3 μm)

Fig. 5 SEM images of
Halamphora veneta in the
absence of heavy metal treatment:
a the whole frustule, b the anterior
end of the frustule, c the posterior
end of the frustule, and d the
ventral surface of the frustule.
Bars, 2 μm
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suppressed by exposure to copper at all concentrations except at
0.5 mg L−1. By contrast, SOD gene expression levels were
significantly induced at lower concentrations of mercury (0.1,
0.5, 1, and 2 mg L−1) at 96 h. It has been suggested that the
differences in gene expression might be explained by the struc-
tural differences between the various intracellular targets of
these contaminants (Lauritano et al. 2012). In addition, the
increased SOD gene expression level in H. veneta when ex-
posed to mercury might imply that the cells have developed
defense systems consisting of several antioxidant enzymes as
protective mechanisms (Kim et al. 2013).

Previous studies have shown that morphological abnormal-
ities in diatom frustules can be used as an effective tool for
biomonitoring of heavy metal pollution in water bodies
(Falasco et al. 2009; Pandey et al. 2014; Morin et al. 2012).
Studies of raphe-bearing diatoms including Gomphonema
parvulum and Pinnularia conica showed deformities at ele-
vated concentrations of heavy metals (Duong et al. 2008;
Victoria and Gomez 2010). These findings are consistent with
the present study, that is heavy metal stress results in defor-
mation of the frustule in H. veneta. Pandey et al. (2014) ob-
servedmodifications of the raphe in diatoms exposed to Cu. In
the present study, the morphological changes in H. veneta
were more pronounced in cells exposed to mercury than to
copper, showing a deformity of shape and increase in size of
the frustule. We speculated that mercury could directly
interact with the microalgal cells surface, leading to physical
effects, such as cell membrane disruption. In a previous study,
Branco et al. (2010) reported that a higher concentration than
control of cadmium was found loosely bound to the frustule,
and concluded that this was evidence of an effective metal-
exclusion mechanism that binds the metal to the extracellular
structures preventing its entrance into the cell. Morphological
changes were far less pronounced in cells exposed to copper.

Analysis of the frustule will be required in order to demon-
strate the presence of copper and the possible existence of a
mechanism for excluding it from the cells of H. veneta.

Conclusions

To the best of our knowledge, this is the first study of the
effects of copper and mercury on a benthic diatom. Based on
our findings, we infer the following conclusions:

1. Copper will lead to a greater growth inhibition, destroying
diatom and ecology at the very beginning, and exposure
time is one of the important factors.

2. High accumulation of chlorophyll a in the cell is indica-
tive of resistance of the diatom to heavy metals.

3. SOD activity and gene expression are reliable biomarkers
of oxidative stress in H. veneta.

4. Change in the morphology of the frustule ofH. veneta is a
potential indicator of mercury contamination in water.
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