
RESEARCH ARTICLE

Source apportionment of polycyclic aromatic carbons (PAHs)
in sediment core from Honghu Lake, central China: comparison
study of three receptor models

Huang Zheng1 & Dan Yang2 & Tianpeng Hu1
& Ying Li1 & Gehao Zhu1

& Xinli Xing1,3 &

Shihua Qi1,3

Received: 9 July 2017 /Accepted: 11 September 2017 /Published online: 22 September 2017
# Springer-Verlag GmbH Germany 2017

Abstract The spatial distribution of polycyclic aromatic hy-
drocarbons (PAHs) and their source contributions employing
receptor models has been widely reported. However, the tem-
poral distribution of PAH source contributions is less studied.
Thus, in this paper, three receptor models including principle
component analysis-multiple linear regression (PCA-MLR),
positive matrix factorization (PMF), and Unmix were used
to PAH source apportionment study in a sediment core from
Honghu Lake, China. Sixteen USEPA priority PAHs in 37
sliced sediment layers (1-cm interval) were measured, with
the concentrations of∑16PAH (sum of 16 PAHs) ranging from
93.0 to 431 ng g−1. The source apportionment results derived
from three receptor models were similar, with three common
sources: mixed sources of biomass burning and coal combus-
tion (31.0–41.4% on average), petroleum combustion (31.8–
45.5%), and oil leakage (13.1–21.3%). The PMF model
segregated an additional source: domestic coal combustion
(contributed 20.9% to the ∑16PAHs). Four aspects including
intra-comparison, inter-comparison, source numbers and
compositions, and source contributions were considered in

comparison study. The results indicated that the PMF model
was most reasonable in PAH source apportionment research in
this study.
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Introduction

It is generally known that polycyclic aromatic hydrocarbons
(PAHs) are both from natural (Readman et al. 2002; Micić
et al. 2011) and anthropogenic sources (Larsen and Baker
2003; Huang et al. 2012), and they have been found in various
environmental medias (Larsen and Baker 2003; Ma et al.
2010; Zhang et al. 2012; Yang et al. 2013a). PAHs originated
from anthropogenic activities including coal combustion, oil
spill, vehicular emission, and industrial discharge (Stout and
Graan 2010). These activities are thought to be the main
sources of PAHs in the environment (Zakaria et al. 2002). In
the aquatic environment, petrogenic PAHs are usually intro-
duced directly into the water body, while pyrogenic PAHs are
first emitted into the air and subsequently settled down into the
water body and ultimately the sediments. The contents and
compositions of the PAHs in sediment varied at different times
resulting in temporal distribution, which revealed the anthro-
pogenic impacts and economic development (Guo et al. 2010;
Liu et al. 2012). Therefore, the dated sediment cores are good
archives to reconstruct the chronology of PAHs in the aquatic
system (Guo et al. 2006; Lin et al. 2012; Xu et al. 2014).

Several studies have identified the possible sources of
PAHs in the sediment core employing diagnostic ratios and
receptor models (Guo et al. 2006; Guo et al. 2010; Wang et al.
2010). The source category of PAHs can be qualitatively iden-
tified using PAH isomeric ratio methods. For receptor models,
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however, the source category and contribution can be quanti-
tatively apportioned (Feng et al. 2007; Malik et al. 2011).
Three commonly applied receptor models without employing
source profile data are principle component analysis-multiple
linear regression (PCA-MLR) (Bzdusek et al. 2004; Shi et al.
2009; Hu et al. 2017), positive matrix factorization (PMF)
(Sofowote et al. 2011; Zhang et al. 2012; Yang et al. 2013b),
and Unmix (Henry 1997; Yang et al. 2013a; Lang and Yang
2013). These source unknown receptor models have been
widely used to source apportionment studies. Although these
models aim at source apportionment, they differ to each other
in mechanisms. The target of PCA-MLR is dimension reduc-
tion and explains the dataset with smaller number of indepen-
dent factors, while PMF makes full use of available data to
retain missing and below detection limit values and estimates
the confidence of each input value. Unmix reduces the dimen-
sionality of data using a singular value decomposition (SVD)
(Henry 2003). PMF and Unmix are originally developed to
identify and quantify the source of air pollutants including
particulate matters and volatile organic hydrocarbons. In
recent years, these receptor models are applied to PAH
source apportionment in surface sediments. For example,
Zhang et al. (2012) utilized these three models to study the
spatial distribution of PAH source contributions and risk as-
sessment in sediment from Taihu Lake, China. Similar studies
applying the receptor model to investigate the spatial distribu-
tion of PAH sources and risk in surface sediments can be
found elsewhere (Yu et al. 2015; Xu et al. 2016). Inspired by
these studies, the goal of figuring out the historical distribution
of PAH source contributions could be achieved by the receptor
models and dated sediment core.

Honghu Lake, the largest freshwater lake in Hubei province,
was chosen as the study area for its significant values in agricul-
ture, ecology, and flood control. In this study, 16USEPApriority
PAHs in each layer were determined. The potential sources and
average contributions were apportioned utilizing PCA-MLR,
PMF, and Unmix models. Furthermore, the comparison study
of three different receptor models was conducted through (1) the
fitting degrees between the observed and predicted (O/P) PAH
concentrations, (2) inter-comparison of different models, (3)
source numbers and compositions, and (4) the historical distri-
bution of each source to the total concentrations. Results of this
study could provide the information about the historical varia-
tion of PAH source contribution in Honghu Lake and
contributed to developing the countermeasures of PAH control.

Materials and methods

Field works

A sediment core (φ 100 mm × 37 cm) was collected in the
central area of Honghu Lake (Fig. S1) with the help of a gravity

corer in December 2014. The sediment core was sliced into a 1-
cm interval, wrapped in acetone-cleaned aluminum foil, and
transported to the laboratory in an ice cooler. The sediment
samples were stored at − 20 °C until further treatment.

PAH analysis

The detailed PAH analysis procedure was reported elsewhere
(Grimalt et al. 2004). Briefly, approximately 3–5 g freeze-
dried, homogenized sediment sample spiked with surrogate
(mixture of five deuterated PAHs: naphthalene-d8,
acenaphthene-d10, phenanthrene-d10, chrysene-d12, and
perylene-d10) was ultrasonic extracted with 1:1 (v/v)
dichloromethane-acetone (3 × 20 mL, 15 min). A rotary evap-
orator was used to concentrate the extract to 10 mL, and hy-
drolyzation was operated by adding an extra 20 mL KOH in
methanol (6%, w/w). The neutral fractions were recovered
with 30mL hexane (3 × 10mL), vacuum evaporated to almost
dryness, and fractionated using a column filled with alumina-
silica (1:1, v/v). PAH fractions were eluted by 15 mL
dichloromethane-hexane (2:1, v /v) . High-purified
(> 99.999%) N2 was used to concentrate target elutes (PAHs
fractions) to 0.2 mL. Prior to GC/MS analysis, 1000 ng inter-
nal standard (hexamethylbenzene) was spiked.

Sixteen US EPA priority PAHs—naphthalene (Nap), ace-
naphthylene (Acy), acenaphthene (Ace), fluorene (Fl), phen-
anthrene (Phe), anthracene (Ant), fluoranthene (Fla), pyrene
(Pyr) , benz[a]anthracene (BaA), chrysene (Chr),
benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF),
benzo[a]pyrene (BaP), indeno[1,2,3-cd] pyrene (IcdP),
dibenz[a,h]anthracene (DBA), and benzo[ghi]perylene
(BghiP)—were analyzed. Samples (1 μL) were injected
(splitless mode) into an Agilent GC (6890N) coupled with
DB-5MS capillary column (30 m, 0.25 mm ID, 0.25 μm film)
to separate PAHs with helium carrier gas at a constant flow of
1 mL min−1 and programmed temperature of the GC oven:
initially 50 °C holding for 2 min, 20 °C min−1 to 180 °C and
4 °C min−1 to 250 °C and 10 °C min−1 to 300 °C min−1 and
holding for 5 min. An Agilent MS (5975) with EI source
(70 eV) operated in selected ion monitoring (SIM) mode
was used to analyze PAHs. Injector and mass transfer line
temperatures were held at 280 °C.

The procedural blank, blank-spiked, matrix-spiked, and
duplicated samples were processed in every 10 field samples
for quality assurance (QA) and quality control (QC).
Surrogate standard recoveries for QA/QC samples were
88 ± 11, 84 ± 38, 95 ± 38, 95 ± 14, and 92 ± 22% for naph-
thalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-
d12, and perylene-d12, respectively. Recoveries of the same
surrogate standards for field samples were 79 ± 16, 93 ± 13,
102 ± 23, 89 ± 13, and 84 ± 22%, respectively. Three times of
the signal-to-noise level in the lowest standard sample con-
centration (0.2 mg mL−1) was defined as instrument detection
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limit (IDL) and ranged from 0.10 to 0.73 mg L−1 (Table S1,
supplementary materials). All concentrations were reported
after normalized to dry weight, and blank corrected but not
surrogated recovery corrected (Zhang et al. 2013).

Receptor model description

Receptor models use statistical or mathematical methods to
identify and quantify the source of pollutants at receptor sam-
ples. Unlike the dispersion models such as backward trajecto-
ry and photochemical models, receptor models do not use the
meteorological data and chemical transformation mecha-
nisms. Instead, the PCA-MLR, PMF, and Unmix models gen-
erate possible Bcandidate^ source fingerprints, and then iden-
tify the source profile by comparing them with the known
source profiles. Usually, these receptor models can be
expressed as the following equation (Hopke 2003):

xij ¼ ∑p
k¼1gip fpj þ eij ð1Þ

where xij is the jth compound concentration measured in the
ith receptor sample; gip is the contribution of the pth source to
the ith sample; fpj is the concentration of the jth compound in
the pth source; and eij is the error.

PCA-MLR

The SPSS (22.0, IBM USA) software was used to run the
PCA-MLR. The dimension reduction of a matrix (37 × 16)
was conducted using the factor analysis. The principle com-
ponent method was used to extract the factors based on eigen-
values > 1. The Varimax rotation was also applied to make the
factor loading values more physically interpretable. The
Kaiser-Meyer-Olkin and Bartlett’s test of sphericity results
indicated that the raw data was suitable to employ the factor
analysis model (Table S2). To calculate the contribution of
each factor, multiple linear regression analysis was performed
on the PCA score. More details can be found in the researches
of Larsen and Baker (2003) and Cao et al. (2011).

PMF

The concentration file (a dataset of 37 × 16) and uncertainty
file (equation based) were introduced into the PMF 3.0 model
(https://www.epa.gov/air-research/positive-matrix-
factorization-model-environmental-data-analyses). The 16
species were firstly categorized to strong due to the signal-
to-noise ratio (S/N) higher than 2. A base run was conducted,
starting a random seed for each iteration in each run of 20
times. After the first base run, Nap, Acy, Fl, Ant, and Pyr were
categorized to weak for their residuals greater than ± 3 stan-
dard deviation (Fig. S2). Modified species categories were re-
run to find the optimum factor numbers. The sixth run for four

factors reached the lowest Qtrue value (the goodness-of-fit pa-
rameter calculated including all data) being 374.8, which was
close to the Qtheoretical value (380, i × j − p × (i + j)). Besides,
the correlation between observed PAH concentrations and
predicted values performed by PMF was significant with
r = 1.00 (p < 0.01). After the four-factor solution considered
as the local minima, bootstrap runs and F-peak (0.7) tech-
niques were performed to estimate the stability and
uncertainty of the solution and examine the rational ambigu-
ity, respectively. More information about the PMF operation
can be found elsewhere (USEPA 2008).

Unmix

Unmix is also one of the recommended receptor models by
USEPA and available at https://www.epa.gov/air-research/
unmix-60-model-environmental-data-analyses. Different
from the PMF model input files, only concentration data
were introduced into Unmix 6.0 software. No species were
excluded in the model after evaluating the noise of species
using the suggested exclusion function. The dataset of fitting
PAH species was used in factor analysis to determine the
source numbers. Three sources (factors) were extracted by
the Unmix model with Min. R2 and Min. S/N being 0.90
and 4.13, respectively. The residual scale was within ± 3 stan-
dard deviation (Fig. S3), which satisfies the operation of the
model. More details about the Unmix model can be found
elsewhere (Henry 2003, 2007).

Dating of sediment core

The activities of 137Cs, 210Pb, and 226Ra in each sediment
sample were measured using an Ortec HPGe GWL series
well-type coaxial low-background intrinsic germanium detec-
tor. 137Cs was determined by its emissions at 662 keV. 210Pb,
226Ra, and 214Pb (daughter isotope of 226Ra) were measured
via its gamma emissions at 46.5, 295, and 352 keV, respec-
tively. 210Pbexe activities were calculated by subtracting

226Ra
activities from total 210Pb activities (Wu et al. 2006). The
210Pbexe activities were shown to exponentially decrease with
depth (Fig. 1a), indicating a possibility to date the sediment
core using the constant initial concentration (CIC) model
(Krishnaswamy et al. 1971; Zhang et al. 2013). The average
sedimentary rate based on the CIC model was 0.46 cm year−1.
The peak value of 137Cs was measured at the depth of 24 cm
(Fig. 1b), which was most likely in 1963 due to the large-scale
nuclear test world-widely. The average sedimentary rate was
0.47 cm year−1 based on 137Cs, which was almost equal to the
result of 210Pbexe. The similarity from both methods suggested
that the dating results were credible. The dating results re-
vealed that the 37-cm sediment core tracked the past 80 years’
sedimentary history (1934–2012).
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Results and discussion

The level of PAHs in sediment core

As shown in Table 1, Phe was the most abundant species with
an average of 62.0 ± 32.8 ng g−1, followed by BbF
(28.1 ± 13.9 ng g−1), and Fla (26.0 ± 10.9 ng g−1). The total
concentrations of 16 PAHs (∑16PAHs) ranged from 93.0 to
431 ng g−1, with an average value of 244 ng g−1. Compared
with other studies, the concentrations range of ∑16PAHs in

this study was higher than the values reported in Qinghai
Lake (11–279 ng g−1) (Wang et al. 2010) and the Nador
Lagoon in Morocco (59.0–107.7 ng g−1) (Giuliani et al.
2015), but was lower than those measured in Haizhou Bay
(72.5–805 ng g−1) (Zhang et al. 2013), a reservoir in northeast
China (243–1004 ng g−1) (Lin et al. 2012), the Lake Lille
Lungegårdsvannet in Norway (260–58,360 ng g−1)
(Andersson et al. 2014), five lakes in western China (626–
1398 ng g−1) (Xu et al. 2014), and the Lake Baiyangdian
(97–2404 ng g−1) (Guo et al. 2011).

Source apportionment

The diagnosis ratio method was firstly used to identify the
possible PAH sources before the application of receptor
models. The diagnostic PAH ratios which exhibited differen-
tiation were the BaA/(BaA + Chr) and IcdP/(IcdP + BghiP)
ratios (Fig. S4). The ratios of BaA/(BaA + Chr) > 0.35 and
IcdP/(IcdP + BghiP) > 0.5 suggested coal or biomass (wood,
grass) burning; the ratios of BaA/(BaA + Chr) < 0.35 and
IcdP/(IcdP + BghiP) < 0.5 indicated liquid fossil fuel and
petroleum combustion (Yunker et al. 2002). For the ratio of
BaA/(BaA + Chr), the values ranged from 0.23 to 0.42,
reflecting liquid fossil fuel combustion and coal, grass, or
wood combustion. The same results were also found from
the ratio of IcdP/(IcdP + BghiP) with the values ranging from
0.49 to 0.55. The diagnosis ratio indicated that PAHs in
sediment core of this study were mainly from the liquid fossil
fuel combustion and biomass/coal combustion.

PCA-MLR

Based on the principle component and Varimax rotation
methods, three factors with the eigenvalue greater than 1 were
extracted, and these three factors accounted for 84.8% of the
total variances (Table S3). The rotated factor loadings obtain-
ed by the PCA-MLR model are shown in Fig. 2a. Factor 1,
accounting for 57.5% of variance, was highly loaded on BaA,
Chr, BbF, BkF, and IcdP, which indicates diesel combustion
(Harrison et al. 1996). In addition, factor 1 was also loaded on
Fla, Pyr, DBA, and BghiP, which represent the profile of gas-
oline engine emission (Larsen and Baker 2003; Wang et al.
2009). Therefore, factor 1 was identified as petroleum com-
bustion. Factor 2 (accounting for 18.7% of the total variance)
was dominated by Fl, Phe, and Ant. Nap, Fla, and Pyr also
accounted for some loadings in this factor. Phe and Fl are often
from coal combustion (Mai et al. 2001; Mai et al. 2003), while
Ant is used as the marker of wood combustion source
(Harrison et al. 1996). Nap could also originate from incom-
plete combustion (Simcik et al. 1999). Therefore, factor 2
might be the mixed sources of wood and coal combustion
sources. Factor 3 (accounting for 8.67% of the total variance)
got high loadings on Acy, Ace, Fl, Phe, and Ant. These low
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Table 1 Summery of PAH concentrations (ng g−1) in sediment core
form Honghu Lake

Range Average SD

Nap 3.47–36.4 15.9 6.50

Acy 0.23–10.3 1.66 2.21

Ace N.D.–29.8 3.88 7.50

Fl 5.14–27.4 11.5 6.11

Phe 21.9–129 62.0 32.82

Ant 0.66–7.84 3.30 1.95

Fla 8.45–47.5 26.0 10.9

Pyr 6.43–38.4 18.30 7.99

BaA 1.47–12.5 6.02 3.05

Chr 3.77–24.0 13.8 6.92

BbF 7.12–51.9 28.1 13.9

BkF 1.68–19.2 7.86 4.46

BaP N.D.–15.4 7.92 4.89

IcdP 3.57–30.6 17.6 9.07

DBA 0.79–12.3 4.12 2.68

BghiP 3.18–28.2 16.3 8.58

∑16PAHs 93.0–431 244 95.1

SD standard deviation, N.D. not detected
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molecular weight PAHs are abundant factions in petrogenic
sources such as crude oil and petroleum (Liu et al. 2009; Yu
et al. 2015). Therefore, factor 3 was labeled as oil leakage. The
calculated average contributions based on MLR were 45.5,
41.4, and 13.1% for petroleum combustion, mixed sources
of coal and wood combustion, and oil leakage, respectively.

Unmix

Three sources were extracted by the Unmix model, and the
source compositions are shown in Fig. 2b. Ace was the dom-
inating species in factor 1. Acy, Fl, Fla, and Pyr also accounted
for some loadings in factor 1. The source profile of factor 1
was similar to factor 3 in PCA-MLR analysis. Thus, factor 1
was identified as oil leakage. Factor 2 was heavily weighted
by Phe and moderately influenced by Fl, Fla, and Nap.
Consequently, factor 2 was labeled as mixed sources of coal
and biomass combustion. Factor 3 was significant influenced
by Nap, Fla, Pyr, Chr, BbF, BkF, IcdP, and BghiP, which was
similar with factor 1 in PCA-MLR. Therefore, factor 3 repre-
sented petroleum combustion. The estimated average contri-
butions were 21.3, 39.5, and 39.2% for petrogenic source,
mixed sources, and petroleum combustion, respectively.

PMF

Four factors were identified by the PMFmodel, and the source
profiles are shown in Fig. 2c. Factor 1, which accounted for

31.0% of the ∑16PAHs, strongly reflected the variation of Phe
and was also influenced by Ant, Fl, and Fla, to some extent. It
has been reported that Phe can be identified as the marker of
coal combustion sources (Sofowote et al. 2008) and Ant can
be used as the tracer of wood combustion sources (Harrison
et al. 1996). Therefore, factor 1 indicated the mixed sources of
coal and wood combustion. Factor 2 was responsible for
20.9% of the ∑16PAHs, which was mainly loaded on Nap
and moderately on Pyr, Chr, Fla, BbF, BkF, and BaA. Nap
can be derived from sources related to incomplete combustion
(Simcik et al. 1999) or oil leakage (Dahle et al. 2003), while
Fla and Pyr have been used as markers of coal combustion
emission (Kulkarni and Venkataraman 2000; Fang et al.
2006). In addition, BbF, BkF, and Chr are the main PAH
components emitted by domestic coal combustion in China
(Chen et al. 2005). Therefore, factor 2 indicated contributions
from domestic coal combustion. Factor 3, which explained
31.8% of the ∑16PAHs, was highly loaded on BaA, BbF,
BaP, IcdP, and BghiP. The same profile was also found in
diesel and gasoline combustion (Harrison et al. 1996; Mai
et al. 2003). Therefore, factor 3 was labeled as petroleum
combustion. Factor 4 was predominately weighted on Acy
and Ace, and moderately loaded on Pyr, Fla, Ant, and Fl.
Acy and Ace are low molecular weight PAHs, which are
abundant factions in petrogenic sources such as crude oil
and petroleum (Liu et al. 2009; Yu et al. 2015). Pyr, Fla, and
Phe are also associated with the contribution of crude oil
(Lang et al. 2015). Fishery is one of the most important
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Environ Sci Pollut Res (2017) 24:25899–25911 25903



functions of the Honghu Lake, and the oil spills from the
fishing boat were inevitable. Therefore, factor 4 indicated oil
leakage, and this factor accounted for 16.3% of the ∑16PAHs.

Comparison of three receptor model results

PCA-MLR, PMF, and Unmix are source unknown receptor
models, which do not require the source profile informa-
tion. These models presume that species with similar var-
iability are clustered together in a minimum number of
factors that explain the variability of the whole dataset, or
rather that each factor is associated with a source or source
type (Larsen and Baker 2003; Yang et al. 2013a). In addi-
tion, these three receptor models are factor analysis-based
methods. Therefore, they have been widely used in pollut-
ant source apportionment studies due to their convenience.
However, these models have their own advantages and
disadvantages. For example, PMF is very complicated
and time consuming for that the number of factors is un-
known and needs further evaluation. By contrast, PCA-
MLR and Unmix are relatively simple and easy to operate.
To better understand the PAH source apportionment in the
sediment core, results from multi-receptor models were
applied and compared.

It is recommended that four aspects should be priori-
tized when comparing the results applying different recep-
tor models. The four aspects include (1) the correlation
coefficient between the observed and predicted (O/P)
PAH concentrations in a certain model (Larsen and Baker
2003; Yang et al. 2013a), (2) the correlation efficiency
between the O/P among the different models (Song et al.
2006; 2008), (3) the source numbers and compositions
identified by different models, and (4) contributions of
each source to the total concentrations (Cao et al. 2011;
Zhang et al. 2012).

Intra-comparison of observed and predicted concentrations
by a certain model

The fitting degree between the observed and predicted con-
centrations of ∑16PAHs in a certain model was evaluated
by scatter plot as shown in Fig. 3. Significant correlations
(p < 0.01) between O/P scatter plots were found with r,
slop, and intercept ranging from 0.998 to 1.000, 1.00 to
1.02, and − 1.45 to 0.49, respectively. In particular, PMF
showed the best fitting degree with almost one-to-one
fitting. In addition, high correlation coefficients between
observed and predicted concentrations of 16 PAH species
were also found with the r ranging from 0.37 to 1.00
(Fig. S5). Pearson correlation is known to be sensitive to
the phase in the trend of two variables, and it tells little
about the differences in amplitude (Belis et al. 2015).
Therefore, another three statistical parameters were

computed to better quantify the differences between solu-
tions reported for O/P data (Table 2): the root mean square
error (RMSE), the absolute fractional bias (AFB), and the
weighted difference (WD) defined as the following equa-
tions, respectively (Cesari et al. 2016):
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m
∑m

N¼1 XN−YNð Þ2
r

ð2Þ

AFB ¼ 2=m∑m
N¼1 XN−YNj j= XN þ YNð Þ ð3Þ

WD ¼ 1=m∑m
N¼1

XN−YNj j
ffiffiffiffiffiffiffiffiffiffi

S2Nþ
q

r2N
ð4Þ

0

100

200

300

400

500

0

100

200

300

400

500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500
0

100

200

300

400

500

(c)

(b)

y=1.02x-1.45

r=0.998

(a)

Observed (ng g-1)

y=1.00x+0.14

r=1.00

y=1.00x+0.49

r=1.00

P
re

d
ic

te
d
 (

n
g
 g

-1
)

P
re

d
ic

te
d
 (

n
g
 g

-1
)

P
re

d
ic

te
d
 (

n
g
 g

-1
)

Fig. 3 Fits among the observed and predicted concentrations of
∑16PAHs in the sediment core by PCA-MLR (a), Unmix (b), and PMF
(c) receptor models
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where m is the total number of samples; XN and YN are the
observed and predicted PAH concentrations; SN and rN repre-
sent their uncertainties. RMSE is always used to indicate the
spread of the O/P series; the AFB is an indicator of the fitness
of the concentrations (accepted range is 0 to 2); the WD is
commonly used to test the relationship of the distance between
two-variable series considering their uncertainty (the range of
acceptability is considered between 0 and 2). Seen from
Table 2, RMSE values suggested a certain level of scatter in
∑16PAH concentrations (8.83 ± 0.17 ng g−1) for the three
models mainly due to Phe (9.21 ± 2.23 ng g−1). WD and
AFB were in the acceptable ranges indicating the similarity
of amplitude.

Inter-comparison of modeled ∑16PAHs within different
models

Significant correlations (p < 0.01) were also found between
the observed and predicted concentrations of ∑16PAHs in the
inter-comparison. Seen from Fig. 4, the r and slope ranged
from 0.98 to 1.00 and 0.96 to 1.02, respectively. The best
fitting was found between PMF/Unmix, followed by PCA-
MLR/Unmix and PCA-MLR/PMF. Same results were also
found in source apportionment for PAHs in atmosphere
(Larsen and Baker 2003; Ma et al. 2010), sediments (Zhang
et al. 2012), and soil (Yang et al. 2013a). Good correlations
between the inter-comparisons indicated that the source ap-
portionment results obtained from these models were
comparable.

Source numbers and compositions

Three sources (mixed sources of coal and biomass combustion,
petroleum combustion, and oil leakage) were both identified by
PCA-MLR andUnmix receptor models as discussed above. The
source numbers identified by PCA-MLR is eigenvalue based,
while the Unmix model needs mass receptor sample data to
generate certain source numbers (i.e., 200~300 samples generate
five sources and 2000~3000 samples produce seven sources). In
this study, only 37 samples were available and three sources
were identified by the Unmix model. As for the PMF model,
four factors were apportioned including the three commonly
identified sources and the domestic coal combustion. In PMF
model analysis, the appropriate numbers of source are co-
determined by Q values, scaled residuals, predicted versus ob-
served concentration interpretation, and the physical meaning of
factor profiles (Baudic et al. 2016).

To better compare the source compositions, the source
profiles/loadings were normalized and exhibited in Fig. 5. The
mixed sources were characterized by high loadings on Fl, Phe,
and Ant. Petroleum combustion was characterized by high load-
ings on high molecular weight PAHs (BbF, BkF, BaP, IcdP,
DBA, and BghiP), whereas oil leakage source got high loadings
on low molecular weight PAHs. The Pearson correlation analy-
sis between the source profiles obtained from different models
exhibited significant correlations (p < 0.01), with r ranging from
0.51 to 0.68, 0.57 to 0.80, and 0.80 to 0.86 for mixed sources,
petroleum combustion, and oil leakage, respectively (Table S4).
The results suggested that the source profiles derived from three
receptor models agreed with each other.

Table 2 Comparison of observed
and predicted PAH concentrations
using three different receptor
models

PCA-MLR PMF Unmix

Species RMSE AFB WD RMSE AFB WD RMSE AFB WD

Nap 3.41 0.18 0.54 4.60 0.14 0.53 4.18 0.30 0.71

Acy 0.99 0.37 0.72 0.75 0.46 0.79 0.75 0.33 0.69

Ace 2.26 0.77 0.91 0.85 0.36 0.73 0.98 0.31 0.74

Fl 1.80 0.14 0.66 1.77 0.16 0.71 1.79 0.13 0.65

Phe 9.79 0.14 0.62 10.67 0.01 0.20 10.97 0.15 0.65

Ant 0.95 0.25 0.82 0.94 0.28 0.82 0.97 0.25 0.80

Fla 2.41 0.08 0.48 2.58 0.04 0.38 2.65 0.08 0.52

Pyr 4.15 0.18 0.71 4.40 0.12 0.63 4.40 0.18 0.70

BaA 0.68 0.09 0.59 0.73 0.07 0.50 0.75 0.09 0.56

Chr 3.04 0.17 0.71 3.07 0.14 0.71 3.15 0.19 0.78

BbF 3.82 0.09 0.57 4.18 0.10 0.55 4.22 0.13 0.66

BkF 1.90 0.11 0.62 1.93 0.10 0.53 1.97 0.11 0.62

BaP 1.62 0.23 0.56 1.71 0.26 0.59 1.66 0.31 0.65

IcdP 1.70 0.09 0.50 1.65 0.08 0.47 1.70 0.08 0.48

DBA 0.91 0.13 0.54 0.89 0.10 0.50 0.90 0.11 0.52

BghiP 2.39 0.13 0.61 2.42 0.10 0.52 2.46 0.53 0.62

∑16PAHs 8.97 0.07 0.71 12.10 0.03 0.42 11.94 0.07 0.49
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Source contributions

Figure 6 exhibited the average contributions of each identified
source to the ∑16PAHs by different receptor models. For the
average contributions of three common sources, petroleum
combustion was highest (31.8 to 45.5%), followed by mixed
sources (31.0 to 41.4%) and oil leakage (13.1 to 21.3%). The
recent studies indicated that biomass burning and coal com-
bustion were the main PAH sources in surface sediments in
China (Table 3). However, the source contributions of mixed
sources derived from PCA-MLR and Unmix in this study
were different from previous studies. For example, Xu et al.
(2006) and Zhang et al. (2007) found that coal combustion
and biomass burning were the dominant PAH sources in

China. The source apportionment results from the PMFmodel
indicated that biomass burning and coal combustion
contributed most (50.9%) to PAHs in the sediment core. The
average contribution of each source to ∑16PAHs did not
convey detailed information of source contribution in each
sample/layer. Therefore, the historical distributions of each
identified PAH source contribution estimated by the three re-
ceptor models were as shown in Fig. 7. It should be noted that
the mixed sources in the PMF model included biomass
burning and coal combustion.
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Seen from Fig. 7, before 1949, the temporal variations of
three sources deduced from three models were similar. In this
period, the mixed source contributions (ng g−1) decreased
from 131 ± 26.4 to 70.1 ± 13.9 ng g−1 and petroleum com-
bustion increased from 4.44 ± 13.5 to 23.5 ± 8.06 ng g−1.
Despite that the mixed sources showed an opposite trend to
petroleum combustion, the mixed sources still contributed
most (69.8 ± 12.4%) to ∑16PAHs in sediment of Honghu
Lake, followed by oil leakage (19.5 ± 6.28%) and petroleum
combustion (10.7 ± 8.26%) in this period. From 1949 to 1960,
the source contributions (ng g−1) of mixed sources and petro-
leum combustion dramatically increased, while the percentage
contributions (%) of mixed sources decreased. In this period,
mixed sources still contributed most (62.6 ± 13.9%) to
∑16PAHs. From 1960 to 1978, the variations of source con-
tributions were complex due to social activities. The percent-
age contributions of petroleum combustion derived from
PCA-MLR (61.7 ± 9.93%) and Unmix (59.8 ± 11.6%) were
higher than that derived from PMF (41.5 ± 8.03%) during this
period. From 1978 to 1995, the mixed sources and petroleum
combustion both exhibited an increasing trend and petroleum
combustion was still the dominant PAH source (> 50%) cal-
culated by PCA-MLR and Unmix models. From 1997 to
2005, both the concentration and percentage contributions of
mixed sources and petroleum combustion source decreased
significantly due to the floods and the pollution control mea-
surements. Compared with the temporal variation calculated

from PCA-MLR and Unmix models, the PMF-derived varia-
tion was relatively stable without an outlier in this period.
From 2005 to now, the contributions of mixed sources and
petroleum combustion increased again due to another round
of urbanization and industrialization (Xu et al. 2006; Zhang
et al. 2007).

For oil leakage source, it exhibited a relative stable tempo-
ral variation except three peak values apportioned from
Unmix and PCA-MLR that occurred in 1997, 2006, and
2012, which accounted for 17.5–66.4, 54.1–92.0, and 26.8–
73.6% to ∑16PAHs, respectively. Larsen and Baker (2003)
suggested that the PMF model employed uncertain files to
down-weight the outlying variables and it allowed for addi-
tional dimensions affecting the measured concentrations not
explained by the sources alone, such as weather, additional
transient source, or sampling artifacts. Therefore, the temporal
distribution of oil leakage deduced from the PMF model was
stable compared with the PCA-MLR and Unmix models.

Given the fact that biomass burning and coal combustion
are the main PAH sources in surface sediments in China
(Table 3), the source contributions of petroleum combustion
calculated from PCA-MLR and Unmix were higher than 50%
during some periods (i.e., 1960 to 1978). While the results
from the PMF model agreed with the real situation that coal
combustion and biomass burning are the dominant PAHs in
China. The historical statistical data of coal consumption and
domestic coal combustion from the PMF model also

Table 3 The published papers concerning PAH source contributions (%) in surface sediment in China

Areas Sampling
year

Traffic-
related
emission

Coal
combustion

Biomass
burning

Petrogenic
source

References

Taihu Lake, China 2010 53.6–54.3 23.8–28.8 11.9–16.0 – (Zhang et al. 2012)

Baiyangdian, China 2008 36 64 – – (Liu et al. 2010)

Chaohu Lake, China 2011 41.1 44.0 14.5 – (Li et al. 2014)

Fenhe reservoir, China 2010 45.0 35.0 – – (Li et al. 2012)

Rizhao offshore area, China 2007 15.0 75.7 – 9.3 (Xue et al. 2010)

Dahuofang Reservoir, Northeast
China

2010 10.0 31.0 21.0 16.0 (Lin et al. 2013)

Yellow River, China 2005 25.1–36.7 34.0–41.6 29.2–33.2 – (Feng et al. 2014)
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21.3%
39.2%
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31.7%

31.1%

Mixed sources  Petroleum combustion   Oil leakage  Domestic coal burning

Fig. 6 Average contribution of
each source to ∑16PAHs
apportioned from PCA-MLR (a),
Unmix receptor models (b), and
PMF (c) receptor models
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correlated well with each other (Fig. S6). Therefore, we think
that the source apportionment results employing the PMF
model were most reasonable due to the following reasons:
(1) best fits between the observed and predicted PAH concen-
trations, (2) the segregation of the domestic coal combustion
sources, and (3) the reasonable temporal distribution of source
contributions as discussed above.

Suggestion to source apportionment studies

The identification and quantification of the sources of
pollutants at the receptor samples employing the receptor
models are mathematical or statistical procedures. In view of
mathematical or statistical procedures, the source apportion-
ment results from three different receptor models were accept-
able. However, the source apportionment is more than just
mathematics; the source apportionment results should be rea-
sonable. In this study, the real situation that coal and biomass
combustion still contributed most to PAHs in the environment
at present in China, not to mention several decades ago.
Therefore, the PMFmodel was thought to bemore reasonable.
In source apportionment studies concerning temporal varia-
tion, we suggested that the correlation between the statistical
data (i.e., the energy consumption) and the corresponding
historical source contribution should be checked. In other
source apportionment studies related to spatial distribution,
we suggested that the relationship between the geographic

location of pollution source and the spatial distribution of
source contributions should be taken into account.

Conclusion

In this paper, the source apportionment of 16 US EPA priority
PAHs in the sediment core from the Honghu Lake employing
three different receptor models was carried out. The four as-
pects including the observed and predicated PAH concentra-
tions in a certain model or different model, source numbers
and compositions, and source contributions were prioritized in
the comparison study. The results suggested that PMF was
more reasonable compared with PCA-MLR and Unmix
models. The high-resolution temporal distribution of source
contributions indicated that biomass burning and coal com-
bustion were the main sources before 1960 and after 1993,
while petroleum combustion increased from the bottom sedi-
ment to the surface. Suggestions were also made for source
apportionment studies concerning the temporal/spatial
distribution of pollutants.
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