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Abstract Due to their bioaccumulation and biomagnification
pathways, inorganic elements can accumulate in high-level
aquatic organisms in the food web. Then, this species can be
used to monitor the quality of the environment. Blood concen-
tration of nine inorganic elements, including possible toxic
metals (An, Cu, Mn, Se, As, Ni, Cd, Pb, and Hg), in 20 males
and 20 females from eight different locations with high industry
and agriculture activities in Iran were evaluated in this work.
Additionally, size, sex, condition index, and locations were also

included and analyzed. Among the essential elements, Zn and
Se presented very high concentrations (56.14 ± 2.66 and
8.44 ± 0.77 μg/g ww, respectively) in all locations. Regarding
possible toxic elements, Pb and Cd presented concerning con-
centrations as well (0.52 and 0.58 μg/g ww); this is especially
true for Pb, an element found in very high concentrations in
tissues of turtles from the same area in a previous study. The sex
and the size of the individuals also had significant differences in
concentration of Pb, Cd, As, and Hg.
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Introduction

In recent decades, the rapid development of industry and agri-
culture has resulted in the use and release of many chemical
elements in the environment, including trace elements (Olowu
et al. 2010). Inorganic elements, including possible toxic
metals, occur as trace constituents of primary minerals in igne-
ous rocks (which crystallize from molten magma) (Alloway
1995). The concentration of trace elements in a living organism
first depends on their presence in the environment from natural
(geological) or anthropogenic (pollution) sources. Second, it
depends on the intake of this element in the organism, generally
through food, thus impacting the ecology of the organism.
Lastly, it depends on the assimilation and excretion of the ele-
ment as well as on the physiology of the organism (Rainbow
2002).Metals accumulate in aquatic animals almost exclusively
through their diet (Clemente et al. 2011; da Silva et al. 2016;
Langston and Spence 1995; Yu et al. 2011 or maternal transfer
to the eggs (Guirlet et al. 2008; Paez-Osuna et al. 2010a).

Possible toxic metals, such as cadmium (Cd), mercury (Hg),
and lead (Pb) are important to be monitored due to their toxicity
and bioaccumulative behavior in aquatic organisms (Kalantzi
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et al. 2013). These elements are released in the environment in
different ways, for example, through extraction, diffusion, com-
bustion, and industrial activities. They subsequently enter the
aquatic environment through the discharge of domestic, indus-
trial, and agricultural waste water, accidental leakage, ballast
water discharges by ships, and soil erosion (Bahnasawy et al.
2009; Javed 2005). These metals can be strongly accumulated
along water and aquatic food chains, thus resulting in sublethal
effects or death in local fish populations and, eventually, in
humans (Grillitsch and Schiesari 2010; Pérez-López et al. 2008).

The increasing concerns about global declines in reptilian
populations have derived investigations to evaluate the effects
of contaminants on this group of species (Martínez-López
et al. 2017). Additionally, their high trophic-level position of
carnivorous and omnivorous species (such as Mauremys
caspica) and their long life spans make them of particular risk
to environmental contaminants. In turtles, metals have been
shown to correlate with health biomarkers (Day et al. 2010;
Day et al. 2007) and hatching success (Perrault et al. 2011).
Pb, for instance, influences survival and righting (ability to
turn over from their back) of hatchling slider turtles (Burger
et al. 1998). Cd can disrupt reproduction in turtles by decreas-
ing germ cell numbers and increasing oocyte apoptosis
(Kitana andCallard 2008). However, few studies have inves-
tigated the population-concentration impact of environmental
contamination in turtles. Albers et al. (1986a) observed a low-
er abundance of common snapping turtles (Chelydra
serpentine) at sites with high concentrations of metals (Hg,
Cd, Cr, Cu, Ni, Pb, and Zn) compared to sites with lower
concentrations, but a similar effect was not detected in a more
recent study (Yu et al. 2013). Inorganic elements, defined as
those not present among the 10 most frequent elements in the
earth’s crust (Alloway 1995), have beenmeasured in the seven
marine turtle species from several populations, but only in five
freshwater turtle species worldwide.

Caspian pond turtle (M. caspica) is a freshwater turtle from
the family Geoemydidae (Guillon et al. 2012), from the
Eastern Mediterranean region, located in the Northwester
Saudi Arabia, Iraq, Bahrain, Turkey, Caucasus, and Tbilisi
to the northern, central, and southwestern parts of Iran
(Vamberger et al. 2013). This species is widely dispersed in
different provinces of Iran, such as Mazandaran, Golestan,
Guilan, Ardabil, Azerbaijan, Kurdistan, Fars, and Khuzestan
(Honda et al. 2002). There are two previous works done in
M. caspica from Iran, where Pb, Cd, and Hg were determined
in the liver, muscle, and shell (Adel et al. 2015; Yadollahvand
et al. 2014). Pb in the liver and muscle of these turtles was
found to be extremely high compared with other turtle species,
such as Aspideretes gangeticus previously reported by Malik
et al. (2013) or Trachemys scripta elegans (Yu et al. 2011)
from other contaminated areas. However, the use of blood to
assess the level of exposure to elements is an attractive option
for studies on wildlife health because blood can be non-

lethally collected and allows the determination of many envi-
ronmental pollutants with a small blood sample.

The aims of this work were (1) to assess the concentrations
of nine inorganic elements (Zn, Cu, Mn, Se, As, Ni, Cd, Pb,
and Hg) in the blood of free-ranging male and female turtles
from 8 different locations of Caspian pond turtles from the
Southern basin of Caspian Sea and (2) to evaluate the influ-
ence of location, sex, size, and corporal index on metal
concentrations.

Material and methods

Sampling

Permission to collect of Caspian pond turtle was authorized by
the Iran Department of Environment (Permission Number:
1184-N/14/2; 2014; 22th September). The sample sites are
located in Northern Iran within the Kopet Dagh and Alborz
mountain ranges in Mazandaran and Golestan provinces
(Fig. 1a). These mountains form a barrier between the South
Caspian Sea and the Iranian plateau (Ghorbani 2013). A total
of 40 Caspian pond turtles were collected from the southern
basin of the Caspian Sea during September and October 2014.
Individuals (males and females) were caught in eight different
continental aquatic systems (Fig. 1b); three males and three
females originated from each Noor, Babolsar, Sari, and
Miankaleh locations and two males and two females originat-
ed from each Alagol, Aliabad, Gorgan, and Gonbad-e Qabus
locations.

Turtles were transported alive to the central laboratory of
the Caspian Sea Ecology Research Centre, and their carapace
length (cm) and total mass (g) were measured. A 3-ml blood
samplewas then collected from the dorsal coccygeal veins and
transferred into tubes containing heparin according to the pro-
tocol described in Ley-Quiñónez et al. (2011). At the end of
the study, turtles were set free. Samples were kept at 4 °C and
sent immediately to be analyzed.

For each individual, sex, carapace length, and mass were
recorded. Carapace length is use as age indicator in turtles
(Suzuki et al. 2012) or age at which individual has reached
maturity (Tucek et al. 2014). Mass relates to both the age and
health of individuals. To eliminate the strong relationship be-
tween length and mass, a condition index (CI) was estimated.

Condition index analysis

From mass and length to CI The model linking mass and
length is an exponential model with two fitted parameters, a
and b: mass = a × lengthb. Values a and b were estimated
using a generalized linear model (GLM). Likelihood (L) was
estimated with a Gaussian distribution of mass and an identity
link. The CI for each individual was the residual of the fitted
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relationship between mass and length (Stevenson and Woods
2006).

Differences between males and females for the relationship
between mass and length were tested by the fit of males (m),
females (f), and then both sexes together (mf) along with the
estimation for each model using the Akaike information
criteria (AIC). The AIC (Akaike 1974) for each model
(AICm, AICf, and AICmf, respectively) was calculated as
AIC = − 2 ln L + 2 p, where p is the number of parameters in
the model and L the likelihood of the data for the model. The
AIC is a measure of the quality of the fit that penalizes the
number of parameters. It reduced the risk of over-parameter-
ization. The Akaike weight (Burnham and Anderson 2002)
between AICm + AICf and AICmf estimated the probability
of a single model for males and females being sufficient to
model the data.

Metal analysis

Trace element concentrations in blood samples were deter-
mined using the procedure described previously by Ley-
Quiñónez et al. (2013). Briefly, all laboratory materials
were acid and deionized water washed to prevent samples
contamination. Approximately 0.5 g of the homogenized
wet sample was added to 5 ml of concentrated (65%) ultra-
pure HNO3 (Merck, Germany), HCl, and H2O2 (proportion
of 2:2:1). Each sample was subjected to acid digestion in a
microwave system for 40 min. A repetition of two blood
samples with added standard multielement SIGMA 6000
(Perkin-Elmer) (0.06 μL) and another with deionized water
were used to evaluate the efficiency of the method and
observe whether the analysis matrix could generate inter-
ference. The digested material including residues obtained

B

AFig. 1 Map of Iran with outlined
provinces. a Iran is shown in dark
gray and the sampled locations
included within the rectangle. b
The detailed map of the northern
region shows the eight sampled
localities with a symbols
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from the blood digestions, blanks, and standard was dis-
solved in 25 mL of deionized water. Calibration curves
were made for the spectrophotometer using SIGMA 3000
(Perkin-Elmer). The detection and reading limits for each
metal were achieved using the wavelength (nm) recom-
mended by the distributor. The limit of detection (LOD)
was 0.01 μg/g for Pb, Cd, As, and Ni; 0.001 μg/g for
Hg; and 0.04 μg/g for Zn, Cu, Mn, and Se. To determine
the percentage of recovery and evaporation during the di-
gestion process, replicates were used in the reference ma-
terial (RM) TORT-2. Recovery of RM (TORT-2) and stan-
dard repetition were added with SIGMA 3000, and the
percentage of recovery was between 85 and 97%.
Concentrations of trace elements are expressed as micro-
grams per gram of blood on wet weight basis.

Exploration of the data

Univariate exploration The distribution of each metal con-
centration in the blood of individuals was tested for normality
using histogram visual inspection and the Shapiro test for
normality.

Multivariate exploration Permutational MANOVA (also
known as PERMANOVA) is a method used for partitioning
sums of squares using semimetric and metric distance matri-
ces (Anderson 2001). The distance matrix using Euclidean
distance for all metal concentrations between individuals
was regressed against sex, location, length, and CI. The ad-
vantage of this method is that it allows all metal concentra-
tions to be tested in a single step. If a significant effect is
detected, univariate analyses must be performed to determine
which factors are involved. PERMANOVA has the advantage
over other multivariate analysis in producing a test with a
significance level. Before this analysis, the concentration of
each metal Ci was standardized (named SCi) from 0 to 1 (see
Warton et al. 2012 for justification).

Metal concentration spatial pattern The Mantel test was
used to test for a possible relationship between metal concen-
tration and the great-circle distances (geographic distance) be-
tween individual locations. The Harversine formula was used
to produce the geographic distance matrix, and Euclidean dis-
tance with standardized metal concentrations was used for the
metal concentration matrix. Distances were computed with all
elements in a single metric or on an element-by-element basis.

Statistical analysis

The same analysis was done for each element: A GLM with
Gaussian distribution and identity link was fitted against sex,
sites, length, and CI. All first-order interactions were initially
included:

C∼sexþ siteþ lengthþ CIþ sex*siteþ sex*length

þsex*CIþ site*lengthþ site*CIþ length*CI

Model simplification was based on the AIC. At each step,
the AIC was calculated with one factor being removed, and
the model was retained when the removed factor led to a better
AIC. A factor could not be removed if it was used in an
interaction. All statistical analyses were performed with R
3.3.0 and the MASS, visreg, HelpersMG, mapdata, fields,
ppcor, vegan, fossil, and FactoMine R packages.

Results

Biometry of animals

Males presented a length mean (± SD) of 11.78 ± 1.78 cm,
mass mean of 279.6 ± 100.6 g, and a condition index mean of
− 0.07 ± 0.23. Female’s biometrics in the same order were
10.87 ± 1.52 cm, 272.5 ± 63.5 g, and 0.07 ± 0.14 CI. For both
sex biometrics were 11.36 ± 1.71 cm, 273.9 ± 83.0 g, and
0.0 ± 0.20 CI. As expected, length and mass were strongly
correlated (r = 0.74, p < 0.000), and thus both factors cannot
be simultaneously analyzed. The fit of mass = a × lengthb for
males, females, and both sexes together led to AIC being 1.99,
− 18.26, and − 11.11 respectively; a single model for both
sexes is thus sufficient (Akaike weight, p = 0.07).

Exploration of metal concentration

A visual inspection of histograms and Shapiro tests do not
show a strong deviation from the Gaussian distribution for
the concentration of the nine measured elements. Two ele-
ments (Ni and Hg) show a slightly significant deviation from
the Gaussian distribution (p values between 0.02 and 0.05),
but further analyses are fairly robust against such a difference
(Atkinson 1984).

PERMANOVA was used to test for sex, sites, length,
and CI effects on the standardized distribution of the nine
elements in a single analysis. A very significant effect of
sex (p = 0.002) and sites (p = 0.008) was observed.
However, a Mantel test on the Euclidean distances matrix
according to geographic distances between sites does not
reveal any spatial structuration by distance when all ele-
ments are tested simultaneously (p = 0.10) or separately
(all p > 0.14).

Analysis of metal concentration

Each element was tested against sex, sites, length, and CI,
including all first-order interactions. The model and graphical
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representation of the significant effects and interactions is
shown in Figs. 2, 3, and 4.

Figure 2 shows the element concentrations by site for
Zn, Cu, Ni, and As. Partial correlations for the concentra-
tions of these four elements at the eight sites show only a
significant relationship for Zn and Ni (p = 0.001) with a
negative correlation (r = − 0.84). Figure 3 shows the two
significant effects found for Ni and Cd with the turtle’s
length and describes sex effect observed for Cd (M > F)
and Se (M < F).

An interaction between sex and length was observed for As
(Fig. 4), with the concentration being higher for larger males
and lower for larger females. Pb and Hg showed an effect for
sex, length, and CI but in the opposite direction: Pb concen-
tration was higher for smaller males with a high CI and for

larger females with a low CI (Fig. 4), whereas Hg concentra-
tion was higher for smaller males with a low CI and for larger
females with a high CI (Fig. 4). Only Mn showed no signifi-
cant effect for any of the tested factors.

Discussion

There is an important lack of information about the concen-
tration of trace elements in freshwater turtles and even less on
their effects. A very high concentration of inorganic elements
was reported in two previous studies in M. caspica from Iran
(Adel et al. 2015; Yadollahvand et al. 2014). However, these
results were difficult to interpret because of the lack of com-
parison with other sites. We therefore sampled the same

Fig. 2 Significant effects of Zn, Cu, Ni, and As concentrations (y-axis) in the different sampling sites
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species in eight locations around the sampled site used in
those previous studies. For ethical reasons, we sampled trace
elements just in the blood, which is a physiologic medium of
exchange and transport of substances among the tissues of
organisms; its flux in the different organs and tissues varies
significantly (Chang 1996). When trace metals are ingested in
organisms, they are rapidly distributed from the gastrointesti-
nal tract by the sanguineous torrent, and the final concentra-
tion in organs and tissues depends on the relative velocities of
the distribution processes and elimination (Chang 1996). Day
et al. (2005) proposed the use of blood for monitoring trace
metal exposure in turtles because it is possible to predict the
load in internal tissues; moreover, sanguineous material is
considered a good parameter for diagnostic indexes of recent
exposure in organisms.

Elements concentrations

We were able to detect the nine trace elements in all samples
(Table 1), in males and females. Element concentrations (μg/g
wm) in decrease order were as follows: Zn (53.01 ± 2.66) > Se
(8.66 ± 0.80) > As (2.95 ± 0.38) > Mn (2.06 ± 0.24) > Cu
(1.39 ± 0.16) > Ni (1.10 ± 0.21) > Pb (0.55 ± 0.08) > Cd
(0.52 ± 0.11) > Hg (0.011 ± 0.003). This elements order is

relatively normal since the first five elements are considered as
essential elements in trace concentration; all these elements
are essential and involved in growth, proper functioning of
the immune system, and reproduction of all vertebrates and
have been described as elements that are relatively easily
absorbed and physiologically important in tissues of reptiles
(Grillitsch and Schiesari 2010). In the other hand, Ni, Pb, Cd,
and Hg are considered as non-essential and potential toxic
elements in very low concentrations in different species
(ATSDR 2003, 2007a, b, 2012, 2015; Cortés-Gómez et al.
2014; da Silva et al. 2016).

The comparison of trace elements is complicated. Firstly,
there are very few works about these pollutants in freshwater
turtles. Secondly, when different species are used, their ecol-
ogy and physiology could have an effect, because trophic
levels or ingested food differ or the excretion pattern varies
(Meyers-Schöne 1989). Even within a species, the situation
can be complicated, because CI, age, and sex can differ de-
pending on the location. Furthermore, the number of eggs or
nesting events per female could vary for different populations,
thus changing the excretion concentration in eggs (Guirlet
et al. 2010). Even if we found more than 30 studies about
these elements in turtles (Table 2), it was very difficult to
compare our results with all of them because the different

Table 1 Concentration of trace elements in the blood of Caspian pond turtles in wet and dry mass

Metal Zn Cu Cd Ni Mn Pb As Se Hg

Wet mass

Sex

Female Mean ± SD 53.01 ± 2.60 1.39 ± 0.16 0.52 ± 0.11 1.10 ± 0.21 2.06 ± 0.24 0.55 ± 0.08 2.95 ± 0.38 8.66 ± 0.80 0.011 ± 0.003

Median 52.60 1.38 0.49 1.10 2.04 0.56 2.90 8.80 0.012

2.5–97.5% 49.28–57.31 1.14–1.63 0.37–0.72 0.84–1.40 1.77–2.36 0.45–0.68 2.19–3.50 7.77–9.80 0.006–0.016

Min–max 48.90–57.30 1.14–1.80 0.35–0.78 0.79–1.42 1.60–2.42 0.40–0.69 2.10–3.50 6.90–9.80 0.006–0.018

Male Mean ± SD 59.27 ± 2.72 1.44 ± 0.20 0.63 ± 0.13 1.11 ± 0.22 1.99 ± 0.21 0.49 ± 0.07 2.65 ± 0.36 8.22 ± 0.73 0.009 ± 0.002

Median 53.40 1.42 0.62 1.02 1.96 0.49 2.68 8.40 0.008

2.5–97.5% 48.58–56.20 1.13–1.78 0.47–0.81 0.84–1.43 1.67–2.31 0.39–0.62 2.18–3.40 6.89–9.21 0.005–0.014

Min–max 48.20–56.20 1.07–1.78 0.42–0.90 0.89–1.63 1.62–2.35 0.38–0.62 1.90–3.40 6.80–9.40 0.004–0.014

Dry mass

Female Mean ± SD 15.9 ± 0.78 0.42 ± 0.04 0.15 ± 0.03 0.33 ± 0.06 0.61 ± 0.07 0.16 ± 0.02 0.88 ± 0.11 2.59 ± 0.24 0.0033 ± 0.0009

Median 15.78 0.414 0.14 0.33 0.61 0.16 0.87 2.64 0.0036

2.5–97.5% 14.78–17.19 0.34–0.49 0.11–0.21 0.25–0.42 0.53–0.70 0.13–0.20 0.65–1.05 2.33–2.94 0.0018–0.0048

Min–max 14.67–17.19 0.34–0.54 0.10–0.23 0.23–0.42 0.48–0.72 0.12–0.20 0.63–1.05 2.07–2.94 0.0018–0.0054

Male Mean ± SD 17.78 ± 0.81 0.43 ± 0.06 0.18 ± 0.03 0.33 ± 0.06 0.59 ± 0.06 0.14 ± 0.02 0.79 ± 0.10 2.46 ± 0.21 0.0027 ± 0.0006

Median 16.02 0.426 0.18 0.30 0.58 0.14 0.80 2.52 0.0024

2.5–97.5% 14.57–16.86 0.33 ± 0.53 0.14–0.24 0.25–0.42 0.50–0.69 0.11–0.18 0.65–1.02 2.06–2.76 0.0015–0.0042

Min–max 14.46–16.86 0.32 ± 0.53 0.120.27 0.260.48 0.48–0.70 0.11–0.18 0.57–1.02 2.04–2.82 0.0012–0.0042

Values are expressed in μg/g. Concentrations on dry mass were estimated taking into account the humidity in this study of 70%. The 2.5 and 97.5%
quantiles are based on the Hyndman and Fan (1996) method. N = 20 for both males and females
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tissues analyzed (most of them in organs than in the blood).
Moreover, no two studies use the same tissues, species, trace
elements, and protocols. Meta-analysis is impossible in such a
situation, or very strong hypotheses must be done to convert
one value (species, tissue, and dry or wet weight) to another
metric. Even more, the values below the detection limit are
sometimes not included in the final estimates, thus creating a
bias in the reported metal concentration. Often, the standard
error is reported without indicating the sample size, and thus
the standard deviation cannot be estimated.

In Table 3, all the works found regarding inorganic ele-
ments in the blood of freshwater turtles and selected works
in marine turtles to be compared with the present study in wet
and dry mass are shown. Regarding just freshwater turtles and
tortoises, we found six representative works: two from Rio
Negro in Brazil (Cd, Pb, As, Se, and Hg (Burger et al. 2010)
and Hg (Schneider et al. 2011)), three from the USA (Hg
(Bergeron et al. 2007); Zn, Cu, As, Se, and Pb (Allender
et al. 2015), both in four different species; and Pb (Bishop
et al. 2010)), and one work from Spain in freshwater turtles
(Zn, Cu, Cd, Pb, and Hg (Martínez-López et al. 2017)).

Concentrations of Cd, Pb, As, and Se reported by Burger
et al. (2010); Zn, Cu, Cd, Pb, and Hg concentrations reported
by Martínez-López et al. (2017); and Zn, Cu, Se, As, and Pb
concentrations reported by Allender et al. (2015) were low
and even very low compared with those found in this study
(Table 3). The locations selected for this study also present a
high agriculture activity. Moreover, Martínez-López et al.
(2017) studied mostly adults Mauremys leprosa turtles (more
than 140 mm), species closely related to M. caspica, and tur-
tles in this study were mostly juveniles (108–117 mm (Tok
1999)). Then, these higher concentrations in our turtles cannot
be explained only for bioaccumulation, but for a higher expo-
sition to most of these elements. Pesticides and fertilizer are
commonly and widely used in the areas where turtles were
collected; this could be an important source of metal pollution
in aquatic environments in these locations. Additionally,
Mazandaran wood, paper industry, antibiotic companies, cat-
tle and poultry industries, MDF factories, and fisheries farms,
among others, are developed in these locations. All these fac-
tors combined may be the reason of these high concentrations
found in the blood of these turtles compared with other studies
(pers. comm.).

Regarding potentially toxic elements, Pb is considered one
of the most toxic heavy metals, causing alterations in vascular,
nervous, renal, immune, reproductive, and hematological sys-
tems, as well as behavioral abnormalities (Bishop et al. 2010;
Martínez-López et al. 2017). Martínez-López et al. (2010)
suggested blood Pb levels above 15 μg/dL (0.15 μg/g ww)
as inductors of sublethal effects on tortoises (Testudo graeca).
Turtles from this study had 0.54μg/g ww, high comparedwith
those concentrations and compared with other freshwater tur-
tles but similar to those found in some sea turtles (Table 3).

Similar results were found for Cd, and concentrations on this
study were high (0.58 μg/g ww) compared with other fresh-
water species, but similar or lower compared with sea turtles.
This could mean that marine turtles are highly exposed to
those metals, but Caspian turtles from the north of Iran are
highly exposed than other freshwater species. Since turtles are
from different areas, the concentration of these elements
seems to be quite widespread in the north of Iran.

On the other hand, Hg in this study presented low concen-
trations compared with other species (Table 3). This element
was especially high for the four species studied for Bergeron
et al. (2007), presenting one of the highest concentrations
found in turtles (ranking from 0.080 to 0.960 against
0.01 μg/g wm found in the present work). Bergeron et al.
(2007) mention that these high concentrations are due to the
very high persistence of this metal in the environment (more
than 50 years since the use of mercuric sulfate was banned in
the river where the turtles were found). He also found that Hg
concentrations vary among the sites (more or less contaminat-
ed) and among the species (due to their feeding ecology). We
can then suppose that the environment of the turtles from this
study is not very highly contaminated with Hg.

We also compared our results with studies in marine turtles
(Table 3); even if their environment is very different, they oc-
cupy a similar ecological niche depending on their feeding
habits than freshwater turtles. Zn was the element with the
higher concentration, and one of the highest compared with
other species, but it was also highly variable among species
and populations. Cu, Ni, Mn, and As tend to be in low concen-
trations in most turtle species, and concentrations of these ele-
ments found in this study are medium compared with other
populations (Table 3). Although, Se was among the highest
concentrations among other species (8.44 μg/g wm). Se is a
necessary detoxifying element that can become toxic in high
concentrations; in some species, Se (along with Hg) has been
related with reduced reproductive success (Perrault et al. 2013).
Higher Se concentrations have been reported in carnivorous
than in herbivorous turtles (Aguirre et al. 1994). Caspian pond
turtle are carnivorous as juveniles becoming more omnivorous
as adults (Fritz and Havaš 2007); this could explain, at least in
part, these high Se concentrations found in this study.

On the other hand, we have a previous work (Adel et al.
2015) in the same species but in different locations. This work
showed a very high Pb concentration in the three tissues they
analyzed (liver, muscle, and shell) with higher concentration
in the liver (35.46 μg/g dm) but also high in the other organs
(muscle, 23.06; shell, 29.5 μg/g dm). This means that this
population is exposed to Pb in a chronic but also a constant
form (in the liver, Pb accumulates in short–medium term and
calcified tissue in a chronic exposure where it can accumulate
for many years; ATSDR 2007a). Thus, and the concentration
we found in the blood in this study, we hypothesized that the
season could be another important variable to consider when
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youmake a biomonitoring program. Especially for blood sam-
pling as the rain or temperatures could influence on the bio-
availability of the metals for the turtles (for the reason that
food could be more or less contaminated).

Site differences

The places where turtles were collected (Fig. 1) are character-
ized by the dominance of platform-type sediments, with

Table 2 Synthesis of the turtle species analyzed for trace elements, the tissues analyzed, and the reported units formetal concentrations. (dm) and (wm)
are dry and wet mass, respectively

Trace elements Tissues Units Reference Notes

Chelydra serpentina
Cd, Cr, Cu, Hg, Ni, Pb, Zn Liver, kidney ppm wm Albers et al. (1986b) 1
Hg Muscle μg/g wm Meyers-Schöne (1989) 1
Clemmys marmorata
Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Zn Eggs μg/g dm Henny et al. (2003) 1
Trachemys scripta
Hg Muscle μg/g wm Meyers-Schöne (1989) 1
Al, Cd, Cr, Cu, Mn, Ni, Pb, Sn, V, Zn Egg content, egg shell μg/g Tryfonas et al. (2006) 1, 2
Cd, Cr, Cu, Hg, Pb Liver, muscle, kidney mg/kg dm Yu et al. (2011) 3
Aspideretes gangeticus
Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn Liver, heart, kidney, carapace μg/g Malik et al. (2013) 1, 2
Mauremys caspica
Cd, Cu, Pb, Zn Liver, heart, shell (?), muscle μg/g dm Yadollahvand et al. (2014) 1, 4
As, Cd, Cu, Hg, Mn, Ni, Pb, Se, Zn Blood μg/g dm This study 8
Eretmochelys imbricata
As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg,
K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn

Liver, kidney, bone μg/g dm de Macêdo et al. (2015) 1

Cd, Cu, Fe, Mn, Ni, Pb, Zn Liver, kidney, adipose, muscle μg/g dm Gardner et al. (2006) 1, 5
Natator depressus
As, Bi, Cd, Cr, Cu, Ge, Hg, In, Li, Ni, Pb,
Sb, Sc, Se, Sn, Tb, Tl, Y, Zn

Blood μg/L Ikonomopoulou et al. (2011) 1

B Eggs mg/kg wm B 1
Chelonia mydas
As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg,
Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn

Liver, kidney, bone μg/g dm de Macêdo et al. (2015) 1

Ag, Al, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, Hg,
Mo, Mn, Ni, Pb, Rb, Sb, Se, Sr, Tl, V, Zn

Egg yolk, albumen, shell ng/g wm Lam et al. (2006) 6

As, Cd, Co, Cu, Hg, Pb, Se, Zn Blood, liver, muscle, kidney μg/g wm van de Merwe et al. (2010) 1
Cd, Cu, Mn, Ni, Se, Zn Blood μg/g wm Ley-Quinonez et al. (2013) 1
Cd, Cu, Fe, Mn, Ni, Pb, Zn Liver, kidney, adipose, muscle μg/g dm Gardner et al. (2006) 1, 5
Caretta caretta
Cd, Cu, Hg, Mn, Ni, Pb, Se, Zn Blood μg/g wm Ley-Quinonez et al. (2011) 6
Cd, Cr, Hg, Pb Liver, lung, kidney, muscle μg/g wm and dm Storelli et al. (1998) 1
Cd, Cu, Pb, Zn Liver, kidney, muscle, brain μg/g dm Garcia-Fernandez et al. (2009) 7
Cd, Cu, Fe, Mn, Ni, Pb, Zn Liver, kidney, adipose, muscle μg/g dm Gardner et al. (2006) 1, 5
Lepidochelys kempii
Cd, Cu, Se, Zn Plasma, liver, kidney, fat, keratin, brain ng/g wm Innis et al. (2008) 1
Ag, Cd, Cr, Cu, Hg, Pb, Zn Blood, carapace (keratin?) ppb dm Wang (2005) 1
Lepidochelys olivacea
Pb Blood, shell, albumen, egg yolk μg/g dm Paez-Osuna et al. (2010a) 1
Cd, Cu, Ni, Zn Blood, shell, albumen, egg yolk μg/g dm Paez-Osuna et al. (2010b) 1
Hg Blood, shell, albumen, egg yolk μg/g dm Paez-Osuna et al. (2011) 1
Zn, Se, Mn, Ni, As, Cd, Cu Blood μg/g wm Zavala-Norzagaray et al. (2014) 1
Cd, Cu, Fe, Mn, Ni, Pb, Zn Liver, kidney, adipose, muscle μg/g dm Gardner et al. (2006) 1, 5
Dermochelys coriacea
Cd, Cu, Hg, Pb, Se, Zn Blood, eggs μg/g dm Guirlet et al. (2008) 8
Hg, Cd, Cu, Ni, Pb, Se, As, Zn Liver, muscle, blubber mg/kg dm Davenport et al. (1990) 9
Cd, Hg, Pb Whole blood ppm Harris et al. (2011) 2, 10

1 = no indication of how the values were included below the detection limit. 2 = no indication if the concentration was indicated for dry or wet mass. 3 =
values below the detection limit were replaced with values derived from an unpublished model. 4 = The publication indicated shell, but it was probably
carapace. Shell is used for calcareous egg membrane. 5 = only the geometric mean was reported. 6 = values below the detection limits were excluded to
estimate the mean. 7 = samples with non-detected values were assigned half the detection limit. 8 = no values below the detection limits. 9 = the
measurement error was shown as ±without any indication of what it represents. 10 =median valuewas reported for n = 3without any indication of how it
was estimated
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volcanic rocks rich in trace elements and particularly poten-
tially toxic metals (Maanijou et al. 2013; Moazzen and
Oberhänsli 2008; Movahedi et al. 2005). Agriculture is also
observed at all sampling sites with the use of pesticides like
organophosphates. In addition, the Sari, Noor, and Gorgan
regions have high industrial activities. Fossil fuel diffusion
from the Shahid Salimi (Neka) power plant, oil storage reser-
voirs, merchant vessels in Amir Abad port, and agricultural
activities could increase the presence of inorganic elements in
Sari region.

For Zn, Cu, Ni, and As, we found significant differences
among the sampling sites (Fig. 2). Two major sources of
metals are natural (e.g., volcanoes, erosion, and natural cy-
cling of elements) and anthropogenic (e.g., mining, industry,
agriculture, wastes, nuclear plants or smelters, and fossil
fuels). When these significant effects for sites were observed,
individuals from the Gorgan and Gonbad-e Qabus sites were
always among the most contaminated (especially with Cu and
As). Gorgan is an industrial site close to the Gharehsu River
sampled by Yadollahvand et al. (2014) and Gonbad-e Qabus
City located at 70 km on the same river basin. Here, Aliabad,
at 3 km from Gorgan City, showed high concentrations of Ni
and Cu. This observation highlights the heterogeneity of the
environment for trace elements. This heterogeneity could de-
rive not only from the geology of drainage basin but also from
human activities.

Size, sex, and CI effects

Factors influencing the concentration of trace elements differ
according to the element, thus reflecting the complexity of the
metabolism for these elements. Ni had a significant positive
relationship with the length of individuals (Fig. 3). Ni is an
essential micronutrient with increased bone strength in birds
as one proposed positive effect (Wilson et al. 2001). Some
authors have showed that both low and high concentrations
of Ni can affect bone development; it has been also noticed
that the absorption of Ni increases during reproductive pro-
cesses (Berglund et al. 2011; Wilson et al. 2001). We also
observed a concentration of Ni in the blood within the rates
compared with other turtle species (Table 3); thus, we can
suggest that elder turtles absorb more Ni due to reproduction
stages and/or bone physiological needs.

On the contrary, Cd had a negative significant relationship
with the turtle’s length (Fig. 3), meaning that older turtles have
less Cd concentration in the blood. Since Cd intake in turtles is
mainly through the food (Andreani et al. 2008; Gardner et al.
2006; Maffucci et al. 2005), this decrease could be due to the
change of diet during these turtles life spam, passing from
carnivorous to omnivorous (Fritz and Havaš 2007).
Compared with the other four freshwater species (Table 3),
Cd concentration in this work is higher, but compared with
marine turtles (Table 3), these concentrations can be

considered medium/low; this difference must be due to the
difference in their ecosystem and Cd bioavailability. Cd is a
very toxic element that can cause many physiological alter-
ations; many authors also suggest that it has a very low met-
abolic regulation in turtles (Barbieri 2009; Camacho et al.
2013; Cortés-Gómez et al. 2014). Cd also showed a signifi-
cant relationship between males and females (Fig. 2), males
being more contaminated with Cd than females. This could be
explained with the fact that turtles tend to transfer metals to
eggs during the reproduction processes (Aguirre et al. 2006;
Ehsanpour et al. 2014; Guirlet et al. 2008).

Selenium had a significant effect between males and fe-
males (Fig. 3); females showed significantly higher concen-
trations of this element than males. Se concentration in the
blood of these turtles was relatively high compared with other
species (Table 3). However, it has been reported that turtles
seems to be more tolerant against high Se concentrations com-
pared with other animal species (Hopkins et al. 2005). The full
role of Se in reproduction has yet to be established; though, it
also appears to be important in reproduction and oxidative
stress protection (Perrault et al. 2013). With this in mind, this
higher Se concentration in females could be whether females
have more demand and then more absorption of this element
for reproductive processes or their intake is higher than their
excretion capacities than males.

Finally, we found three significant differences between
sexes after the GLM-AIC selection in As, Pb, and Hg
(Fig. 4). Arsenic showed significant relationships among the
size and sex against this element concentration in the blood
(Fig. 4). These relationships showed that smaller (younger)
female turtles had higher As concentration; on the contrary
in males, bigger (older) turtles had higher As concentration.
This decrease in bigger females could be explained due to
maternal transfer during egg formation (Martínez-López
et al. 2017). On the other hand, Pb and Hg concentrations
had significant relationships with sex, index condition (IC),
and size. Males with higher Pb concentrations were smaller
and with higher IC, and larger females with lower IC had
higher Pb concentration in the blood (Fig. 4). Regarding Hg,
shorter males with lower IC had higher concentration in the
blood, and larger females with higher IC had higher Hg con-
centration (Fig. 4). Different from As, in Pb and Hg, it seems
that maternal transfer to eggs is not an important detoxifica-
tion pathway in these turtles. Moreover, the accumulation of
these two metals seems to be related to the size in females but
not in males.

All these above-observed differences among male and fe-
males can reflect the divergence in element intake, taking into
account the difference in the amount of food ingested between
males and females, as it has been previously observed by
Lovich (1996). In this case, the relationship with CI would
be also expected (Fig. 4). These relationships with CI can also
reflect the effect of hematocrit (ratio between red cells and
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plasma). Hematocrit can indicate a number of factors that may
influence chemical concentrations in the blood, such as dehy-
dration, malnutrition, and chronic disease (Frye 1991).
Hematocrit can affect blood metal concentrations as red cells
preferentially bind metals, compared to plasma (Chang 1996).
The difference could also arise from the elimination of some
elements in the eggs of nesting females (Guirlet et al. 2008;
Paez-Osuna et al. 2010b). In this case, we should observe
lower concentrations in females with a greater length (this
effect was observed with As and Cd; Figs. 3 and 4). Of course,
all of these factors could influence the concentration of ele-
ments and produce complex patterns (e.g., Hg and Pb).

The conclusion ofWitkowski andFrazier (1982) about met-
al concentration in turtles was thus: Bit is difficult to interpret
the significance of these findings because so little is known
about baseline concentrations and physiological effects of po-
tentially toxic metals in these animals.^ Indeed, this is still true
after more than 30 years! These authors called for more Bbasic
descriptive studies.^ Yet we now have more than 30 descrip-
tive studies (Table 2) fromwhich we can conclude that we still
know very little. Thus, more experimental studies with precise
protocol, as being done for the impact of cadmium on repro-
duction (Kitana and Callard 2008), or more ecosystem studies
are needed. It is also very important to standardize work pro-
tocols to be able to compare the results with others. Hence, the
importance to always publish the humidity percentage found
in samples, either if the results are published in wet or dry
weight, could be even better if publications includes both re-
sults (e.g., Table 3).

We also observed that many researchers still consider that
high dispersion in their data indicates that they have done poor
laboratory work, which they try to hide using SE rather than
SD. A contrario, high standard deviations indicate more inter-
esting patterns that reveal complex individual life history. For
instance, comparing two different studies often involve choos-
ing, from among all of the combinations available, those that
allow the initial hypotheses to be confirmed. Furthermore, the
shape of the distribution of concentrations cannot be inferred
from the mean and SD when the distribution is not symmetri-
cal. In such a situation, the best is to report median and 2.5–
97.5% centiles (see Table 1). The range of minimum and
maximum values is also not informative, because these are
not robust statistics for dispersion since they are very sensitive
to aberrant values.

Conclusions

This is the first work on assessing inorganic elements in
Caspian pond turtles’ blood. This work can be used as base-
line dataset for future works in this species that has been
scarcely studied. We can see that these turtles are useful as
bioindicators of the environmental pollution. Most of the

studied elements were found in high concentrations compared
with other locations and spices. The importance of sex in the
accumulation of inorganic elements in this species was also
observed. For Cd, males showed higher concentrations than
females; on the contrary, for Se, females showed significantly
higher concentrations thanmales; this may be for reproductive
processes. Regarding As, smaller females had higher As con-
centrations; on the contrary, bigger males had higher As con-
centrations. Males with higher Pb concentrations were smaller
and with higher IC, and larger females with lower IC had
higher Pb concentration in the blood. Regarding Hg, shorter
males with lower IC had higher concentration in the blood,
and larger females with higher IC had higher Hg concentra-
tion. All these above-observed differences among male and
females can reflect the divergence in their reproductive behav-
ior and elements intake, taking into account the difference in
the amount of food ingested. Additionally, the importance of
standardizing sampling and statistical protocols for biomoni-
toring studies is also highlighted in this study. In the future,
capture-mark-recapture to estimate the survivorship of indi-
viduals and follow their load in different trace elements could
allow us to decipher the impact of inorganic elements and
particularly those possible toxic metals for turtles in natural
conditions.
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