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Abstract Recently, nano zero-valent iron (nZVI) has
emerged as an effective adsorbent for the removal of arsenic
from aqueous solutions. However, its use in various applica-
tions has suffered from reactivity loss resulting in a decreased
efficiency. Thus, the aim of this study was to develop an ef-
fective arsenic adsorbent as a core/shell structural nZVI/
manganese oxide (or nZVI/Mn oxide) to minimize the reac-
tivity loss of the nZVI. As the major result, the arsenic adsorp-
tion capacities of the nZVI/Mn oxide for As(V) and As(III)
were approximately two and three times higher than that of the
nZVI, respectively. In addition, the As(V) removal efficiency
of the nZVI/Mn oxide was maintained through 4 cycles of
regeneration whereas that of the nZVI was decreased signifi-
cantly. The enhanced reactivity and reusability of the nZVI/
Mn oxide can be successfully explained by the synergistic
interaction of the nZVI core and manganese oxide shell, in
which the manganese oxides participate in oxidation reactions
with corroded Fe2+ and subsequently retard the release of
aqueous iron providing additional surface sites for arsenic
adsorption. In summary, this study reports the successful

fabrication of a core/shell nZVI/Mn oxide as an effective ad-
sorbent for the removal of arsenic from aqueous solutions.
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Introduction

Arsenic (As) is a well-known dangerous and carcinogenic
chemical with adverse effects on humans, animals, and other
living organisms (Bang et al. 2005b; Choong et al. 2007;
Mohan and Pittman 2007). Many efforts have focused on
reducing the arsenic level in drinking water for safe consump-
tion. Most of the arsenic removal technologies are classified
into four processes: membrane filtration (including RO), co-
agulation–filtration precipitation (including lime softening),
ion exchange, and adsorption. Among them, adsorption tech-
nologies have been commonly used due to their simplicity,
effectiveness, and low cost (Singh et al. 2015; Xu et al.
2002). Various kinds of adsorbents have been used including
metal oxides (Chang et al. 2009; Hristovski et al. 2007; Mayo
et al. 2007), polymeric resins (Korngold et al. 2001; Rivas
et al. 2007; Zhang et al. 2008), activated carbon (Asadullah
et al. 2014; Yang et al. 2007), and hybrid materials (Gupta
et al. 2009; Ramesh et al. 2007; Sarkar et al. 2007).

Recently, nano zero-valent iron (nZVI) was reported as one
of the effective adsorbents for the removal of arsenic (As(III)
and As(V)). The outstanding arsenic adsorption property of
nZVI is explained by the role of its reactive corroded products
(Fe species) in both the adsorption and co-precipitation pro-
cesses (Fu et al. 2014; Kanel et al. 2005; Tanboonchuy et al.
2011). Despite its effectiveness in arsenic removal, a decrease
in the adsorption efficiency of nZVI is explained by the for-
mation of iron (hydr)oxides on the nZVI surface, which has
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commonly been reported as reactivity loss or efficiency loss
(Btatkeu-K et al. 2014a; Noubactep 2010; Noubactep et al.
2011; Sato 1989). Consequently, fixed-bed applications of
nZVI systems have suffered from accumulation and rapid
clogging of its by-products as well as from difficulties in re-
generation (Tang and Lo 2013).

Several approaches have been tried to sustain the reactivity
of zero-valent iron including bimetallic Fe0/Me0 systems
(Bokare et al. 2008; Ghauch et al. 2010a) and admixing Fe0

with other materials (Noubactep et al. 2012). The bimetallic
composite of Fe0 with a more noble metal (such as Ni, Cu, and
Pd) was done to promote the Fe0 corrosion rate, which showed
some extent of success for the degradation of organic sub-
stances (Bokare et al. 2008; Ghauch et al. 2010a). However,
the expansive nature of the corrosion products (iron (hydr)ox-
ides) from these systems was still a problem causing rapid
clogging in a column filtration system (Noubactep et al.
2012). Unlike inert materials, MnO2 particles with a porous
structure were recently introduced as a reactive mineral for
sustaining the reactivity of Fe0, which were used in the remov-
al of contaminated methylene blue (Btatkeu-K et al. 2014a)
and clofibric acid (Ghauch et al. 2010b). The extended reac-
tivity of Fe0 in the admixing systemwithMnO2 was explained
by the fact that the Fe2+ (corroded from Fe0) could be
transported to and reacted with the MnO2 particles (Btatkeu-
K et al. 2014a). These oxidation reactions occurring near po-
rous MnO2 particles contribute to avoiding or delaying the
precipitation of the oxide film on the Fe0 surface and thus
maintaining the efficiency of the Fe0 system. However, the
volume fraction of the Fe0 in the filtration column was only
about 25% (Btatkeu-K et al. 2014b), which was in addition to
the low mechanical strength of the MnO2. Therefore, a new
extensive design is required for a system to achieve the desir-
able performance. Moreover, the application of these ap-
proaches for arsenic removal remains an unexplored area.

This study reports the development of a core/shell structur-
al nano zero-valent iron/manganese oxide (called nZVI/Mn
oxide) adsorbent for better performance in arsenic removal
compared with that of nZVI.

Experiments

Materials and chemicals

All chemicals including the nZVI (35 ~ 45 nm) used in this
study were of analytical and synthetic grades purchased from
Sigma-Aldrich. The As(III) and As(V) stock solutions
(1000 mg L−1) were prepared in deionized (DI) water using
NaAsO2 and NaHAsO4·7H2O salts, respectively. The arsenic
working solution was freshly diluted from these stock solu-
tions by DI water prior to its use.

Preparation of the nZVI/Mn oxide

The nZVI/Mn oxide was synthesized with a simple procedure
using a sonochemical synthesis (Dharmarathna et al. 2012;
Kawaoka et al. 2005) as follows. A suspended solution, in
which the nZVI was added to a 0.2 M KMnO4 solution and
adjusted to pH 1 with HCl, was sonicated at room temperature
for 30 min (a Sonics Vibra-Cell VCX-500 Ultrasonic
Processor). The dark ground precipitate was aged for 2 h.
Finally, a solid powder collected from centrifuging was
washed many times with DI water and acetone and dried in
a vacuum at 70 °C.

Analytical methods

The arsenic concentration was analyzed with an inductively
coupled plasma–atomic emission spectrometer (ICP-AES,
ICPS-7500, Shimadzu, Japan). Other concentrations of metals
were measured with an ICP-AES and UV/Vis spectrometer
(8453E UV/Vis, Agilent, USA). The morphology and surface
characterization of the nZVI/Mn oxide and the nZVI were
analyzed with a scanning electron microscope (SEM, JSM-
6700F, Jeol, Japan), high-resolution transmission electron mi-
croscope (HR-TEM, JEM 3010, Jeol, Japan), high-resolution
X-ray diffractometer (XRD, D8 Discover, Bruker, Germany),
and X-ray photoelectron spectroscope (XPS, Sigma Probe,
ThermoVG, UK). The specific surface area and pore volume
of the materials were measured with a BET analyzer (ASAP
2000, Micromeritics, USA), while their zeta potentials were
evaluated with an electrophoretic light-scattering spectropho-
tometer (ELS-8000, Otsuka, Japan).

Batch adsorption experiments

Batch adsorption experiments for the removal of both As(III)
and As(V) with either the nZVI/Mn oxide (0.3 g L−1) or the
nZVI for comparison were typically done at a pH of 4.8 and
25 °C for 120 min in glass shaking bottles (100 mL bottles
shook at 200 rpm), and an arsenic concentration (As(III) or
As(V)) of 5 mg L−1 was used. An equilibration time of
120 min was selected after a kinetic study (see in Supporting
information). The solutions sampled at the predetermined time
were centrifuged for 10 min (4000 rpm), and the supernatant
solutions were used for the arsenic analysis.

For the kinetic study, 5 mL of the adsorption solution was
withdrawn at predetermined times up to 150min from 200mL
of the arsenic solution (5 mg L−1) containing 0.3 g L−1 nZVI/
Mn oxide adsorbent (refer to Fig. S1 in the SI for the details).
An adsorption isotherm was done by varying the initial con-
centration of arsenic from 1 to 20 mg L−1, while the adsorbent
dose of 0.3 g L−1 was maintained. Note that the equilibrium
test was conducted for 120 min for both adsorptions of As(III)
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and As(V) due to their fast kinetic adsorption (see Fig. S1 in
the SI).

The effect of pH on the adsorption of arsenic by the
nZVI/Mn oxide compared with the nZVI was examined at
a pH range from 3 to 11. The pH during the adsorption
process was maintained at the initial pH value by adding
HCl or NaOH solution every 15 min. H2SO4 was not
chosen because sulfate oxyanion could be competitive
for adsorption with As(V) or As(III), especially at low
pH (Su and Puls 2001b; Zhu et al. 2009), causing the
unnecessary complexity.

The regeneration test of the nZVI/Mn oxide adsorbent was
done with four successive cycles of adsorption–desorption
and compared with the nZVI to evaluate their loss of reactiv-
ity. The regeneration experiment was done by shaking the
arsenic-laden adsorbents in 0.1 M NaOH (15 mL) for 2 h at
200 rpm. All the supernatants obtained during the four suc-
cessive cycles of the adsorption–desorption were analyzed for
iron and arsenic concentrations to examine the reusability of
the nZVI/Mn oxide including the amount of iron released
compared with the nZVI.

Results

Characterization of the nZVI/Mn oxide

Table 1 shows the characteristics of the core/shell nZVI/Mn
oxide compared with the nZVI. As shown in Table 1, both the
surface area (BET) and pore volume of the nZVI/Mn oxide are
36 and 87% larger than that of the nZVI, respectively. For
example, the surface area and pore volume of the nZVI/Mn
oxide increased from 11.8 to 16.0 m2 g−1 and from 0.053 to
0.100 cm3 g−1 relative to nZVI, respectively, while the Mn
weight percent in the case of the nZVI/Mn oxide was around
4.5%.

Figure 1 shows the surface characteristics of the
nZVI/Mn oxide compared with the nZVI examined by

HR-TEM images (Fig. 1a), SEM images (Fig. 1b), XRD
patterns (Fig. 1c), and XPS patterns (Mn 2p and Fe 2p)
(Fig. 1d). As seen in Fig. 1a, b, the nZVI/Mn oxide and
nZVI particles appear to be spherical with a size of
~ 40 nm. In particular, the TEM image of the nZVI/Mn
oxide clearly shows the core/shell structure with an addi-
tional manganese oxide layer (~ 5 nm) covering the iron
oxide layer on the nZVI, whereas the image of the nZVI
shows only the iron oxide layer on the Fe0 core. The XRD
pattern of the nZVI/Mn oxide (Fig. 1c) appears to be very
similar with that of the nZVI with two sharp peaks for the
predominant Fe0 (2θ = 44.7° and 65.0°) suggesting that
the Fe0 structure was placed inside of the nZVI/Mn oxide
adsorbent (Kanel et al . 2005; Sun et al. 2006).
Additionally, iron oxides and manganese oxides were pre-
sumed to be amorphous because no obvious relevant crys-
talline peaks were detected (Wen et al. 2014; Xi et al.
2010; Zhao et al. 2012). Figure 1d clearly shows the spe-
cific XPS peaks for Fe3+ and Fe2+ for both the nZVI/Mn
oxide and nZVI. It is interesting to observe that Fe0 (Fe
2p), which was located at 706.5 eV in the spectrum for
nZVI, disappeared in the spectrum for the nZVI/Mn oxide
possibly due to the shielding effect of the outer layers of
the iron oxide and manganese oxide which was shown in
Fig. 1a (Grosvenor et al. 2004; Wang et al. 2014;
Yamashita and Hayes 2008). On the other hand, specific
XPS peaks (Mn 2p) of the nZVI/Mn oxide were observed
showing several manganese oxidation states (+ 2, + 3, or
+ 4) (Ahn et al. 2014; Nesbitt and Banerjee 1998; Shan
and Tong 2013). All the results in Fig. 1 show the suc-
cessful fabrication of the core/shell structure of the nZVI/
Mn oxide.

Enhanced arsenic removal of the nZVI/Mn oxide

Figure 2a shows the pH effect on the arsenic adsorption ca-
pacity of the nZVI/Mn oxide compared with that of the nZVI
as the pH was varied from 3 to 11. As shown in Fig. 2a, the
general tendency of the As (III) and As (V) adsorptions for the
nZVI/Mn oxide was quite similar to that for the nZVI but
exhibited a better removal in an acidic solution. For example,
at pH 4, the adsorption capacities were 16.4 and 10.5 mg g−1

for As(V) adsorption on the nZVI/Mn oxide and the nZVI,
respectively, while those significantly dropped at high pH
conditions (> pH 5) for both cases. The pH dependence was
well consistent with previous studies on nZVI (Bang et al.
2005b; Su and Puls 2001a). One explanation for the strong
pH dependence in the low-pH region is that the oxidation
(corrosion) of Fe0 promoted in acidic conditions (pH < 5) pro-
vides fresh adsorption sites as iron (hydr)oxide products
(Fe(OH)2, Fe(OH)3 and Fe3O4) for the adsorption and co-
precipitation of arsenic (Tanboonchuy et al. 2011). In the case
of the high-pH conditions, the weak interaction between the

Table 1 Characteristics of the core/shell nZVI/Mn oxide compared
with the nZVI

Contents nZVI/Mn oxide nZVI

BET surface area (m2 g−1) 16.0 11.8

Pore volume (cm3 g−1) 0.100 0.053

Zeta potential (ζ mV)a − 27.6 − 12.6

Particle size (nm) 35–45 35–45

Thickness of Mn oxide
shell (nm)

~ 5 nm
(amorphous structure)

–

Manganese oxidation states + 2, + 3, or + 4 –

Mn wt% 4.5% –

a Zeta potential was measured at pH 7
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As(V) species and the adsorbent due to the low corrosion rate
of Fe0 (nZVI) as well as their negative columbic repulsion (Su
and Puls 2001a; Tanboonchuy et al. 2011) contributed to the
low adsorption capacity of the nZVI/Mn oxide and the nZVI.
On the other hand, both adsorbents exhibited less pH depen-
dence for As(III) adsorption due to its neutral form (pH < 9)
than that of the As(V) adsorption.

Figure 2b shows the As(III) and As(V) adsorption iso-
therms of the nZVI/Mn oxide with the fitting of the
Langmuir isotherm model (pH 4.8) compared with the
nZVI. As shown in Fig. 2, the adsorption isotherms for both
the nZVI/Mn oxide and nZVI were well-fitted with the
Langmuir isotherm model (R2 ≥ 0.99 for all) (Bhowmick
et al. 2014; Wang et al. 2014; Zhu et al. 2009) indicating the
monolayer adsorption of As(III) or As(V) on the nZVI/Mn
oxide and nZVI. The maximum arsenic adsorption capacities
(qm) calculated for the nZVI/Mn oxide (29.4 mg g−1 for
As(III) and 35.7 mg g−1 for As(V)) were significantly larger
than the values obtained for the nZVI (9.5 mg g−1 for As(III)
and 21.7 mg g−1 for As(V)).

Enhanced reusability of the nZVI/Mn oxide

Figure 3a, b shows the results of the arsenic removal (As(III)
and As(V)) and the released concentration of iron up to 4 cy-
cles of regeneration. As shown in Fig. 3a, the arsenic removal
of the nZVI/Mn oxide up to the 4th cycle of adsorption/
desorption was much better than that of the nZVI. Especially
for As(V) adsorption, the nZVI/Mn oxide exhibited approxi-
mately 100% removal for each adsorption experiment in the
regeneration test, whereas the removal performance for the
nZVI gradually decreased to below 70% at the 4th cycle. In
the case of As(III), although the performance of the nZVI/Mn
oxide was not as good as that of As(V), the As(III) removal of
the nZVI/Mn oxide was still better than that of the nZVI in the
first 2 cycles of the adsorption.

Figure 3b shows that a much lower iron concentration was
released from the nZVI/Mn oxide than from the nZVI for both
As(III) and As(V). For example, the iron concentration released
from the nZVI ranged from 4 to 9 mg L−1 for the As(III)
adsorption and from 5 to 31 mg L−1 for the As(V) adsorption,

Fig. 1 Surface characteristics of the nZVI/Mn oxide compared with the nZVI examined by HR-TEM images (a), SEM images (b), XRD patterns (c),
and XPS patterns (Fe 2p and Mn 2p) (d)
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while the iron concentration released from the nZVI/Mn oxide
was insignificant for the As(III) and As(V) adsorptions. Note
that the lower release of iron from the nZVI for the As(III)
adsorption compared with that for the As(V) adsorption in
Fig.3b was consistent with the literature (Bang et al. 2005a).

Discussion

The reaction activity of the nZVI adsorbent can be explained
by a series of chemical reactions on the surface of the nZVI
(Eqs. (1)–(7)) reported in the literature (Fu et al. 2014; Kanel
et al. 2005; Tanboonchuy et al. 2011). As shown in Eqs.
(1)–(3), the corrosion process of nZVI is stimulated in acidic
condition subsequently producing Fe2+ which can be further
oxidized to the Fe3+ form. These corrosion products (Fe2+ and
Fe3+) can further provide fresh adsorption or precipitation
sites as iron (hydr)oxide products (Fe(OH)2, Fe(OH)3 and
Fe3O4) on nZVI surface (Eqs. (5)–(7)). In addition, the

oxidation species ·OH (Eq. (3)) can oxidize As(III) to As(V)
to enhance the As(III) adsorption (Eq. (4)). However, the dif-
ficulty of corrosion occurring in the nZVI at the high-pH re-
gion leads to a reduced adsorption performance of the nZVI,
which is consistent with the results in Fig. 2a.

Fes
0 nZVIð Þ þ O2 þ 2Hþ→Fe2þ þ H2O2 ð1Þ

Fes
0 nZVIð Þ þ H2O2 þ 2Hþ→Fe2þ þ 2H2O ð2Þ

Fe2þ þ H2O2→Fe3þ þ �OHþ OH− ð3Þ
As IIIð Þ þ �OHþ Hþ→As Vð Þ þ H2O ð4Þ
Fe2þ þ 2OH−→Fe OHð Þ2 ð5Þ
Fe3þ þ 3OH−→Fe OHð Þ3 ð6Þ

6Fe OHð Þ2 þ O2→2Fe3O4 þ 6H2O ð7Þ

Figure 4 shows the Mn 2p XPS spectra of the nZVI/Mn
oxide before and after arsenic adsorption. As shown in Fig. 4,

Fig. 2 Comparison of a adsorption capacity between the nZVI/Mn oxide
and the nZVI for As(III) and As(V) with respect to pH and b adsorption
isotherms between the nZVI/Mn oxide and the nZVI for As(III) and
As(V) (adsorbent dose = 0.3 g L−1, pH = 4.8 ~ 4.9, 25 °C)

Fig. 1 continued.
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the Mn 2p peak of the pristine nZVI/Mn oxide was negatively
shifted to the low-binding-energy side not only after the
As(III) sorption but also after the As(V) sorption (Btatkeu-K
et al. 2014a; Noubactep et al. 2011) indicating that a fraction
of Mn species in the manganese oxide layer was reduced to
lower oxidation states (Wu et al. 2012).

Considering the common structure of the nZVI/Mn oxide
adsorbent with nZVI which is the core nZVI covered with Fe
oxide (Fig. 1a, b) and the similar pH-dependent behavior (Fig.
2a), the reaction activity of the nZVI/Mn oxide adsorbent can
be similarly explained with the chemistry of nZVI as shown in
Eqs. (1)–(7). Then, recognizing Eqs. (1)–(7) in the behavior of
the nZVI/Mn oxide adsorbent, the reduction of Mn species in
the shell is explained by the reactions of manganese oxide
with the corroded Fe2+ from the nZVI (Eqs. (8) and (9)).

Fe2þ þMnO2 þ Hþ→MnOOH þ Fe3þ ð8Þ
2Fe2þ þMnO2 þ 2H2O→Mn2þ þ 2FeOOH þ 2Hþ ð9Þ

Together with the reduction of theMn species, the corroded
Fe2+ (from the nZVI) was presumed to form oxyhydroxide
products (MnOOH or FeOOH) contributing to the significant
decrease in the iron released for the case of the nZVI/Mn
oxide compared with that of the nZVI (Fig. 3b). On the other
hand, the corroded Fe2+ in bare nZVI was primarily released
into aqueous solution (Fu et al. 2014). These oxyhydroxide
formations were able to provide active adsorption sites to sub-
sequently adsorb/precipitate the dissolved iron species (Fe2+/
Fe3+) (Btatkeu-K et al. 2014a; Noubactep 2010).

Moreover, this chemistry of the nZVI/Mn oxide was fur-
ther supported by the HR-TEM image of the nZVI/Mn oxide
after arsenic adsorption, which showed a single amorphous
layer of mixed iron and manganese (hydr)oxides (refer to
Fig. S2 in SI) from two separated layers of the shell in the
fresh nZVI/Mn oxide (Fig. 1a). This means that the precipi-
tates of the iron and manganese (hydr)oxides can be
rearranged to form a single porous layer shell providing en-
larged active adsorption sites which contribute to the

Fig. 3 Comparison of the arsenic
removal between the nZVI/Mn
oxide and the nZVI (a) and iron
concentrations released (b) after
As(III) and As(V) adsorptions for
each cycle of regeneration, re-
spectively
([As(III)]0 = [As(V)]0 = 2 mg L−1,
pH = 4.8 ~ 4.9, adsorbent
dose = 0.6 g L−1, regenerant so-
lution: 0.25 mL of 0.1 M NaOH
for 1 mg of adsorbent, 2 h for de-
sorption and adsorption)
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improvement of the adsorption performance of both As(III)
and As(V) compared with that of the nZVI (Zhang et al. 2009)
(Table 1). This explanation is consistent with the higher ad-
sorption capacity of the nZVI/Mn oxide compared to that of
the nZVI in Fig. 2b. In addition, the increase in the surface
area and pore volume (Table 1) supported that the Mn oxide
can provide additional surfaces and pores that could partially
enhance the arsenic adsorption capacity of the nZVI/Mn ox-
ide. Furthermore, the Fe2+ capturing by the MnO2 shell pro-
vided a favorable condition for the corrosion reaction of the
Fe0 core (Eq. (1)) by preventing iron (hydr)oxides from direct-
ly depositing onto the surface of the Fe0 core. As a result, the
reactivity of the nZVI/Mn oxide was sustained, and similar
results have been reported in previous studies (Btatkeu-K et al.
2014a; Noubactep et al. 2011).

Conclusion

This study reports the development of an effective core/shell
structural arsenic adsorbent comprised of nano zero-valent
iron/manganese oxide (called the nZVI/Mn oxide). For arse-
nic removal, the nZVI/Mn oxide exhibited a great enhance-
ment in its arsenic adsorption capacity (two and three times
higher for As(III) and As(V), respectively) and long-term re-
usability for multiple cycles of regeneration compared with
that of the nZVI. The chemistry behind the enhanced perfor-
mance of the nZVI/Mn oxide for arsenic adsorption is ex-
plained by the synergistic activity between the nZVI core
and the manganese oxide shell. Despite the better performance
of the nZVI/Mn oxide for arsenic removal compared with that
of the nZVI, further study is required to improve its suitability
for application at near-to-neutral pH values.
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