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Abstract Copper mining has polluted soils and water, caus-
ing a reduction of the microbial diversity and a change in the
structure of the resident bacterial communities. In this work,
selective isolation combined with MALDI-TOF MS and the
16S rDNA method were used for characterizing cultivable
bacterial communities from copper mining samples. The re-
sults revealed that MALDI-TOF MS analysis can be consid-
ered a reliable and fast tool for identifying copper-resistant
bacteria from environmental samples at the genera level.
Even though some results were ambiguous, accuracy can be
improved by enhancing reference databases. Therefore, mass
spectra analysis provides a reliable method to facilitate mon-
itoring of the microbiota from copper-polluted sites. The un-
derstanding of the microbial community diversity in copper-
contaminated sites can be helpful to understand the impact of

the metal on the microbiome and to design bioremediation
processes.

Keywords Environmental microbiology . Species
identification .Mass spectrometry . Biotyper . Heavymetals .

Metal tolerance

Introduction

Copper is a trace element essential for many biological process-
es (Altimira et al. 2012). However, high concentrations of cop-
per in the environment could cause great damage to living
organisms (Gabbianelli et al. 2003). This occurs because cop-
per, as other metals, cannot be degraded and accumulates in all
the trophic levels (Baby et al. 2011). Mining is the most impor-
tant industrial activity in many countries. Especially in Brazil, it
represents an important parcel of the economy (Rodrigues da
Silva Enríquez 2009). However, mining processes are nature-
devastating and have increased the copper levels in water and
soils. This bioaccumulation could induce adverse effects on
bacterial communities compromising biological processes and
the environment quality (Altimira et al. 2012).

Culture and uncultured methods have been studied to char-
acterize copper-resistant bacteria present in environmental
samples. Many genera of cultivable bacteria have been de-
scribed as copper-resistant, and the knowledge of cultivable
bacteria is important for designing bioremediation processes
(Pereira et al. 2015).

To access this microbiota, many classic molecular methods
to identify microorganisms are available. Among these, am-
plified 16S rDNA gene restriction analysis, amplified frag-
ment length polymorphism, and 16S rDNA and RNA poly-
merase b-subunit (rpoB) gene sequence analyses are most
frequently used (Avanzi et al. 2014).
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Environmental microorganisms are commonly identified
based on the primary structures of gene (Cardenas and
Tiedje 2008). Although this classic molecular identification
(16S rDNA method) is widely and effectively used, it is still
laborious once it involves many steps up to the final identifi-
cation, which involves high costs and qualified personnel
(Uhlik et al. 2011).

In this context, other methods are being investigated for iden-
tifying microorganisms. Biotyper MALDI-TOF MS is a meth-
odology which has been used to identify microbial species in
routine laboratories for the last decade, including Gram-positive
and Gram-negative bacteria, yeasts, and even filamentous fungi
(Singhal et al. 2015).MALDI-TOFMS is suitable for identifying
bacteria from extreme environments, such as acid drainage
(Kopcakova et al. 2014). The identification process is based on
fingerprinting analyses of ribosomal proteins and other abundant
basic proteins (Giebel et al. 2010). About 20 % of the protein
mass is represented by ribosomal proteins, which represent 3 %
of the total cellular mass and, as they are specific to individual
species, they are suitable to be used as biomarkers (Uhlik et al.
2011). Hence, MALDI-TOF MS can be a fast method for iden-
tifying a wide variety of isolates, independently of the culture
growth medium (Clark et al. 2013). Despite being developed for
identifying microorganisms of clinical importance, it allows the
insertion of new data in its database.

The other advantages offered by MALDI-TOFMS include
soft ionization (nondestructive sampling), cost-effectiveness
(US$2/sample), and short time required (5–6 min) for sample
processing and analysis (Ruelle et al. 2004; Liu et al. 2007;
Allen et al. 2015).

Also, according to many authors, MALDI-TOF MS has an
overall greater accuracy (90–100 %) as compared to the other
methods (Nagy et al. 2009; Seng et al. 2009; Theel et al. 2012).

Recently, a review presented the potential of MALDI-TOF
MS in environmental microbiology, and, according to the au-
thors, this methodology has yet much to be explored (Santos
et al. 2016). It could thus be an interesting method to also
identify environmental isolates, but it still requires validation
from other methodologies. Due to the complexity of environ-
mental samples and the diversity of environmental microbes,
our work uses 16S rDNAmethod. The key to successful iden-
tification is the database of commercialMALDI platforms, but
in this case, manufacturers are continuously increasing and
updating it. The major manufacturers, Bruker and Shimadzu,
have a large collection of representative organisms in their
databases and yielded comparable results with very low false
positive rates (Carbonnelle et al. 2011).

The ability of MALDI-TOF MS analysis is evaluated
herein in order to identify copper-resistant bacteria iso-
lated from mining wastes and compared with 16S rDNA
method. The Biotyper MALDI-TOF MS technique could
be helpful as a tool for environmental microbiology and
bioremediation research.

Material and methods

Ethics statement

This work does not involve manipulation of protected or endan-
gered species by any government agency. The owner of Sossego
Mine, in the Brazilian Amazon region (company Vale S.A.,
Canaã do Carajás-PA), represented by director Luiz Eugenio
Mello (Vale Technology Institute), authorized the establishment
and dissemination of the information featured in this study,
allowing the collection of material (wastewater and sediment)
supervised by VALE S.A. employees. This material led to the
isolation of the bacteria under study.

Copper mining samples

Samples of soil and water from the copper mining area were
collected from the Sossego Mine (Canãa dos Carajás, Pará).
The area sampled belongs to the Brazilian Amazonia located
at −6.433194, −50.071806 (Fig. 1).

The mining area comprises 9.3 km2 with a wastewater lake,
solid waste pile, mineral extracted pile, and the mining pit.
Samples were taken from 20 spots around the area. For each
point, at least three samples of 200 g of soil (containing
709.68 mg kg−1 of copper) and 150 mL of water (containing
678.99 mg L−1 of copper) were taken, the latter when available.
The samples were placed in 50-mL sterile centrifuge tubes at
room temperature until processing for colony isolation.

Bacterial strains

The isolates were obtained by incubating 1 g of a mixture of
each sampling from the same spot or 1 mL of sediment/
wastewater at 30 °C under constant stirring (180 rpm) for
48 h with 10 mL of Minimal low-phosphate (MJS) growth
medium containing 1 to 10 mM of CuCl2. The MJS medium
consists of 12.5 mM HEPES (pH 7.1) with 50 mM NaCl,
20 mM NH4Cl, 1 mM KCl, 1 mM MgCl2, 0.05 mM MnCl2,
0.8 % (wt/vol) casamino acids, 4 % (vol/vol) glycerol, and
0.005 % (wt/vol) thiamine. After this pre-incubation, 50 μL
of culture was transferred to a solid fresh medium and incu-
bated again in the same conditions of temperature and time in
order to isolate colonies (Gracioso et al. 2014). This procedure
was repeated until pure colonies of bacteria were achieved.
Isolated bacteria were stocked at −80 °C with 30 % sterile
glycerol.

Determining minimal inhibitory concentration

Minimum inhibitory concentration (MIC) is defined as the
lowest concentration that inhibits the visible growth of a mi-
croorganism after incubation (Ahmad et al. 2006). Analytical
grade salt of CuCl2 (Merck) was used to prepare stock
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solution. The metal solution was sterilized by using 0.22-μm
pore size sterile filters. Cells were grown in tubes with MJS
liquid medium containing 2.5 mM of CuCl2 at 28 °C,
180 rpm. MJS agar plates were supplemented with different
concentrations of CuCl2 (2.5 to 10 mM) and then inoculated.
Growth was recorded along 120 h of incubation at 28 °C. The
lowest concentration of metal that completely prevented
growth was termed the MIC (Salvadori et al. 2014).

Classic molecular tools for bacterial identification (16S
rDNA method)

For genomic DNA extract, bacteria were cultivated in MJS
liquid medium overnight and harvested at a high biomass
concentration. The fragment of 16S rDNA genewas amplified
by using PCR, as previously described (Sambrook and
Russell 2001) using universal primer pairs 341F (5′
CCTACGGGNGGCNGCA 3′) and 826R (5′ GACTACCA
GGGTATCTAATCC 3′) (Soergel et al. 2012) and Taq poly-
merase (Invitrogen). PCR mixtures (50 μL final volume)
contained 10 × 5 μL PCR buffer, 4 μL of 25 mM MgCl2,
5 mM of 2 μL dNTP, 1 μL of each primer, 100 ng of DNA
template, 0.5 μL of Taq polymerase (5000 U/mL), and
35.5 μL of sterile water. The following amplification param-
eters were used: initial denaturation at 94 °C for 2 min, then
94 °C for 1 min, 55 °C for 1 min, and 72 °C for 2 min (30
cycles), a final extension at 72 °C for 10 min, and storage at
4 °C. The amplified fragments were verified in 0.8 % agarose
gel with TAE buffer (Sambrook and Russell 2001) stained
with SYBR Safe (Invitrogen) according to manufacturer’s in-
structions and visualized in Imager 600 (GE, Sweden).

Amplicon sequences were acquired in an ABI 3730 DNA
Analyzer (Applied Biosystems) using BigDye Terminator

V3.1 (Applied Biosystems) according to the manufacturer’s
instructions.

The sequence data obtained by this method was compared
to the public sequence databases using BLASTn algorithm
using nucleotide database (NT). The programwas run through
the server hosted by the National Center for Biotechnology
Information (NCBI; http://blast.ncbi.nlm.nih.gov/Blast.cgi).
Sequences with ≥90 % identity to a database sequence were
considered to be of the same genus excluding uncultured
microorganism or metagenomic sequences. In this case, the
first identified known microorganism was used. Sequences
acquired in this study are deposited in the NCBI database
under identifications KX170938 to KX170993.

The dendrograms representing the relationships between
the isolated bacteria were constructed supported by each tech-
nique utilized. For 16S rDNA, the relationships were based on
sequence and were constructed withMEGA 7 version number
7.0.14 (Kumar et al. 2016). Sequences were aligned with
MUSCLE program inside MEGA 7, and phylogenetic rela-
tionships were constructed using maximum likelihood with
Jukes-Cantor correction and bootstrap of 1000. For relation-
ships between bacteria based on protein, the MALDI Biotyper
OC 3.1 program (Bruker) was used. Relationships calculated
were compared considering group members and positioning
in tree branches.

MALDI-TOF calibration, sample preparation, and MS
analysis

External calibration was performed with the Bruker bacterial
test standard (Bruker Daltonics, Bremen, Germany) and other
bacteria from culture collections. For each triplicate measure-
ment, the spectra were manually inspected. The strains chosen

Points Species found
A Enterobacter sp.(Cu 53)
B Enterobacter sp.(Cu 54)
C Pseudomonas sp.(Cu 56)
D Pseudomonas sp.(Cu 58)
E Pseudomonas sp. (Cu 60)
F Pseudomonas sp.(Cu 61)
G Pseudomonas sp.(Cu 62)
H Citrobacter sp. (Cu 66)

Cupriavidus sp. (Cu 84)
Bacillus sp. (Cu 85)

Pseudomonas sp. (Cu 93)
Stenotrophomonas sp. (Cu 86)

Bacillus sp. (Cu 87)
Burkholderia sp. (Cu 88)
Acinetobacter sp. (Cu 95)
Pseudomonas sp. (Cu 89) 
Acinetobacter sp. (Cu 96)
Pseudomonas sp. (Cu 97)
Pseudomonas sp. (Cu 98)

Ralstonia sp. (Cu 100)
Pseudomonas sp. (Cu 90)
Enterobacter sp.(Cu 91)
Citrobacter sp. (Cu 92)

N Burkholderia sp. (Cu 101)
O Cupriavidus sp. (Cu 102)

M

I

J

K

L

Fig. 1 Location of sampling sites and bacteria species found in each point of copper Mining area in Sossego Mine, Canaã dos Carajás, PA, Brazil
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are as follows: Burkholderia cepacia DDS7H-2, Escherichia
coli ATCC8739, Methylobacterium extorquens ATCC23326,
Pseudomonas libanensis BS2975, and Ralstonia pickettii
ATCC2711. All the strains had the same identification with
scores above 2.00. Equipment calibration and spectra acquisi-
tion had the same method established following Bruker
Daltonics standards. Each spectrum had 240 reads from 50
laser shots from different positions (automated mode) in pos-
itive linear mode.

Single colonies were used for mass spectra analysis in a
MALDI Biotyper Microflex LT (Bruker Daltonics, Bremen,
Germany). They were picked fresh from agar plates and trans-
ferred to the MALDI Biotyper polished steel target plates
f o l l owed by add i t i o n o f 1 μL o f α - c y ano - 4 -
hydroxycinnamic acid in saturated solution with 50 % aceto-
nitrile and 2.5 % trifluoroacetic acid.

Colonies were analyzed in triplicate in each identification
event. A total of three different identification events were pre-
pared using different colonies from the same isolate. The
Biotyper 3.0 software compared the obtained spectra with a
reference database spectra from Bacteria, Archaea, and
Eukarya domains (total of 5625 species) and expressed the
resulting similarity value as a log score (Anderson et al.
2014). A score higher than 2.0 indicated identification of spe-
cies, a score higher than 1.7 indicated genus identification,
whereas any score under 1.7 meant no significant similarity
of the spectrum with any database entry. For the isolates
strains, the higher score acquired from the three identification
events was used for identification purposes.

In some cases, a previous step of protein extraction was
necessary in order to increase the spectra quality. This protein
extraction was performed by adding 1 μL of formic acid di-
rectly in the bacterium colony before the addition of 1 μL
matrix (α-cyano-4-hydroxycinnamic acid, Bruker Daltonics).

Results

Identification of copper-resistant isolates byMALDI-TOF
MS

The isolates were inoculated into MJS medium containing
different concentrations of CuCl2 (1, 2.5, 5, 7.5, and
10 mM) and incubated in Petri dishes for 72 h at 30 °C.
Altogether, 88 isolates of copper-resistant bacteria were ob-
tained from the MJS solid mediumwhich was inoculated with
aliquots from the bacteria cultivation containing the higher
concentration of CuCl2. The isolates were identified using
two different identification methods, and results are summa-
rized in Fig. 2.

Secure identification at the genus level was achieved for 72
isolates. The isolated bacteria were predominantly members
of the genus Pseudomonas (37 isolates) followed by

Enterobacter (24 isolates). Less frequently detected were
members of the genus Stenotrophomonas (two), Cupriavidus
(two), and Ralstonia (one). Sixteen isolates were differently
identified by the two techniques (Table 1). Majority misiden-
tification species belonged to genera Enterobacter and
Bacillus. Only four isolated strains could not be identified
by MALDI Biotyper because of their low score. They
belonged to Pseudomonas,Cupriavidus, andCitrobacter gen-
era identified only by the 16S rDNA method.

Minimal inhibitory concentration

Isolated bacteria were tested for copper resistance with mini-
mal inhibitory concentration. All isolates were tested in a min-
imum of 2.5 and 10.0 mMmaximum concentration of copper
in 2.5 mM variation. All the isolates were able to grow in the
presence of 2.5 mM of copper, and none of the isolates were
able to grow in the presence of 10 mM (data not shown). Most
resistant isolated bacteria could grow in 5.0 to 7.5 mM of
copper (Table 2). In total, 25 bacteria could resist these copper
concentrations. Some of them could grow only after 120 h of
culture (Cu 53, Cu 54, Cu 60, and Cu 62), and three strains
could grow in 7.5 mM in only 48 h (Cu 88, Cu 101, and Cu
102).

The most resistant group had nine different genera in total
with genus Pseudomonas as the most representative with 10
strains followed by genus Enterobacter with 3 strains.
Although Pseudomonas was the most representative between
the two highly resistant strains, genus Burkholderia accounted
for the two strains most resistant to copper together with genus
Cupriavidus (Table 2, bold numbers).

MALDI Biotyper and 16S rDNA relationships for high
resistance copper bacteria

In an attempt to validate the MALDI Biotyper identification
and to compare if the technique was suitable to identify envi-
ronmental high resistance copper bacteria, we performed the
dendrogram based on MALDI Biotyper and 16S rDNA iden-
tification relationships for all the bacteria with high resistance
to copper (Fig. 3). The two techniques used to construct rela-
tionships between the isolated bacteria were compared to ver-
ify the groups formed and if the relationships constructed were
concordant.

Discussion

Bacteria isolation

In this study, we isolated copper-resistant bacteria, which
could therefore be useful for bioremediation purposes and
for better understanding the copper microbial metabolism. A
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total of 88 bacteria were isolated from environmental samples,
obtained from a mining area. Despite the toxicity of copper,
some microbial species are known to resist and to survive in
contaminated areas. Many of these strains have been isolated
and studied in various laboratories in order to develop
biosorption processes, a cheap and effective technology for
environmental remediation, and to recover copper from low
concentration materials expanding the cost–benefit of copper
mining.

Sampling points in this work were selected in order to
achieve the higher possible diversity using the isolation meth-
odology already described. Throughout the mining area, cop-
per concentration varies due to different mining activities
(e.g., waste lake and mining pit). Many bacterial groups of
the microbiota of the Sossego Mine have been poorly charac-
terized or have only recently been discovered (Pereira et al.
2015); little is thus known about their ecology and
applicability.

The media used optimized microbial growth meeting met-
abolic needs with carbon sources, minerals, and copper as a
selective pressure as found in themining area, pushing isolates
to the limits of copper resistance. Only microorganisms capa-
ble of growing in the presence of high concentrations of cop-
per could grow.

We showed that genus Pseudomonas had a higher number of
representatives compared to the other genera. These genera have
already been shown to inhabit drainage samples, which is often
found in soil and mine environments (Anyanwu and Moneke
2011). Certain strains of Pseudomonas genus are already known
to be resistant to copper and have already been isolated from
contaminated areas (Raja et al. 2006; Chen et al. 2006). Interest

Fig. 2 Comparison of identification results between MALDI Biotyper
and 16S rDNA method. The figure shows the identification of
environment isolated strains acquired by each technique used (bar

chart) and the concordance between the MALDI Biotyper and 16S
rDNA (circle chart)

Table 1 Misidentification species identified by MALDI Biotyper and
16S rDNA sequencing

MALDI Biotyper 16S rDNA Number of strains

Bacillus Enterobacter 4

Burkholderia Citrobacter 1

Pseudomonas 1

Enterobacter Pseudomonas 3

Pantoea 2

Klebsiella Enterobacter 1

No identificationa Pseudomonas 2

Citrobacter 1

Cupriavidus 1

aOnly four isolated strains could not be identified by MALDI Biotyper
because of low score (<1.55)

Environ Sci Pollut Res (2017) 24:3717–3726 3721



in this genus is its resistance to high metal concentrations and
biosorption aiming metal recovery processes.

Likewise, genus Enterobacter has already been found in
mining areas; some species showed high resistance to metals
(Gandhi et al. 2015). Published works identified this genus as
one of the most abundant in metal-contaminated soils
(Turpeinen et al. 2004), and isolation of this genus presenting
high metal resistance and adsorption capacity has been report-
ed (Lu et al. 2006; Lu et al. 2008).

Identifying bacteria by two different methods

The main goal here was to evaluate the usability of MALDI-
TOFMS analysis and the MALDI Biotyper database for iden-
tifying environmental isolates potentially exploitable in biore-
mediation processes.

The MALDI Biotyper technology acquires mass charge
(m/z) rate of peptides from ribosomal proteins and constructs
a spectral signal, which represents a single bacterium strain
(Christner et al. 2014). Although the MALDI Biotyper has a
limited database as compared to the 16S rDNA database, it
could achieve 97 % identification rate for environmental bac-
teria resistant to copper.

Currently, the 16S rDNA method is still the best way for
bacterial identification, mainly when the bacteria were isolated
from the environment (Gandhi et al. 2015). The 16S rDNA

technique has several databases (RDP, SILVA, Greengenes,
NCBI 16S) and is highly reproducible. Taking this into account,
we compared the results of MALDI Biotyper identification with
16S rDNA identification. The MALDI Biotyper technique
agreed with the 16S rDNA method in 82 % of the bacteria
identified. Themisidentification ofMALDI Biotyper was related
to genera Bacillus, Burkholderia, Enterobacter, and Klebsiella
(Table 1). Although these strains are well represented in the
MALDI Biotyper database, the diversity of these genera is very
wide, making the identification extremely difficult. Even the 16S
rDNA identification with all the available databases is often not
precise to identify these genera, and other specific genomic re-
gions must be used for more accurate bacterial identification
(Holmes et al. 2004). Besides low scores, MALDI Biotyper
identification was different between the two techniques. Some
bacteria with high scores had one identification in MALDI
Biotyper and another in the 16S rDNA method. As the
MALDI Biotyper database is small and the comparison of ac-
quired spectra is exclusively with its internal database, the mis-
identification of bacteria can occur, particularly when environ-
mental bacteria are analyzed due to their genetic diversity and
database comparison.

In our point of view, theMALDI Biotyper could achieve high
rates of concordance with the most widely used technique to
identify environmental microorganisms even with limited data-
base. Discordances were observed when compared to the 16S

Table 2 Determination of
minimal inhibitory concentration Cellular growth

Isolate
(no.)

Identity according to 16S
rDNA analysis

5 mM of copper 7.5 mM of copper

24 h 48 h 72 h 120 h 24 h 48 h 72 h 120 h

Cu 53 Enterobacter sp. − − + + − − − +
Cu 54 Enterobacter sp. − − − − − − − +
Cu 56 Pseudomonas sp. − − + + − − − −
Cu 58 Pseudomonas sp. − − − + − − − −
Cu 60 Pseudomonas sp. − − + + − − − +
Cu 61 Pseudomonas sp. − + + + − − − −
Cu 62 Pseudomonas sp. − − + + − − − +
Cu 66 Citrobacter sp. − + + + − − + +
Cu 84 Cupriavidus sp. − + + + − − − −
Cu 85 Bacillus sp. − + + + − − − −
Cu 86 Stenotrophomonas sp. − + + + − − − −
Cu 87 Bacillus sp. − + + + − − − −
Cu 88 Burkholderia sp. − + + + − + + +
Cu 89 Pseudomonas sp. − − + + − − − −
Cu 90 Pseudomonas sp. − − + + − − − −
Cu 91 Enterobacter sp. − + + + − − − −
Cu 92 Citrobacter sp. − − + + − − − −
Cu 93 Pseudomonas sp. − + + + − − − −
Cu 95 Acinetobacter sp. − − + + − − − −
Cu 96 Acinetobacter sp. − + + + − − − −
Cu 97 Pseudomonas sp. − − + + − − − −
Cu 98 Pseudomonas sp. − + + + − − − −
Cu 100 Ralstonia sp. − − + + − − − −
Cu 101 Burkholderia sp. − + + + − + + +
Cu 102 Cupriavidus sp. − + + + − + + +

Cellular growth in a presence of different concentrations of copper
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rDNA identification, but the 82% accuracy achieved byMALDI
Biotypermakes the equipment reliable to identify highly resistant
copper bacteria from the environment.

Minimal inhibitory concentration

Theminimal inhibitory concentration experiment was performed
to verify the copper resistance of isolated bacteria from the
Sossego Mine, State of Pará, Brazil. As it is an already known
high-concentration copper region, we tried to measure the diver-
sity and copper resistance of isolated strains from that region. All
the most resistant strains were isolated from sediment, which
presents higher concentration of copper than liquid samples.
Numerous studies have shown that the addition of heavy metals,
such as copper, to soil causes a reduction of the microbial diver-
sity and a change in the structure of the resident bacterial com-
munities, with some genera becoming dominant over others
(Kozdrój and van Elsas 2001). In our case, genus
Pseudomonas sp. was dominant among the most resistant isolat-
ed strains with 10 representatives. This genus is known to inhabit
many habitats containing high concentrations of heavy metals

and presents mechanisms to regulate copper by metal channels
and Cop genes which regulate the entrance and exit of metals
(Raja et al. 2006; Zhang and Rainey 2008; Ladomersky and
Petris 2015). The capacity of metal homeostasis and a high plas-
tic metabolism and resistance to several environmental pressures,
including the metal pressure from the sampling area, justify the
high number of Pseudomonas found in our study. Likewise,
genus Enterobacter, the second in number of representatives
among the most copper-resistant bacteria, has mechanisms of
metal homeostasis to control and to detoxify the inner part of
the cell (Staehlin et al. 2016) and can survive in high concentra-
tions of copper. Although these bacteria were already known to
have metal homeostasis mechanisms, they were not the most
resistant bacteria found in this study. The genera Burkholderia
and Cupriavidus resisted to 7.5 mM of copper and could grow
48 h after inoculum. Genus Burkholderia is already reported to
inhabit high copper concentration habitats (Guo et al. 2015). Guo
et al. described a Burkholderia strain resistant to 2.3 mM of
copper, and the Burkholderia strain isolated in this study could
resist three times more copper than the already described in the
former work. Burkholderia metal resistance is related to

Fig. 3 Maximum likelihood tree
based on 16S rDNA gene
sequences and MALDI-TOF
spectra showing relationships be-
tween two different identification
methods of resistant isolated
bacteria
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siderophores, proteins that have chelating capacities and are pro-
duced and exported to the outer part of the cell (Mathew et al.
2016). This type of metal homeostasis may account for the high
copper resistance of the Burkholderia strains isolated from the
Sossego Mine and, apparently, the strains can resist to higher
copper concentrations than found in previous works.

Cupriavidus is a genus well known to resist high concen-
trations of copper. In our work, we isolated two Cupriavidus
strains and one of them presented high tolerance to elevated
copper concentrations. This genus is found in strongly affect-
ed sites with high industrial wastes (Diels et al. 2009), the
perfect description of our sample points. As extremophile mi-
croorganisms and well used to treat copper minerals for metal
recovery, the isolation of microorganism of this genus shows
the microbial potential of the sampled region to bioremedia-
tion and bioprospecting of valuable metal. The microbial po-
tential for metal bioprospection becomes more important once
nine genera were found between 25 copper highly resistant
isolated strains and all of them could grow in the presence of at
least 5 mM of copper.

MALDI Biotyper and 16S rDNA relationships for highly
resistant copper bacteria

As already described, the MALDI Biotyper achieved high rates
of identification for environmental bacteria with high resistance
to copper. Compared to the 16S rDNA method, MALDI
Biotyper achieved the same identification for 72 strains. To

confirm the capacity and accuracy of MALDI Biotyper to iden-
tify the environmental isolates, we constructed and compared the
maximum likelihood relationship for the 16S rDNA information
with the MALDI Biotyper based on conserved proteins (Fig. 3).
Overall, the relationships constructed for the isolated bacteria by
MALDI Biotyper corroborate the 16S rDNA phylogenetic tree.
Although the bacteria were isolated from the environment and
are resistant to copper, MALDI could group the strains in the
same way as 16S rDNA; in other words, even with the genetic
variations that can be present in these bacteria, responsible for the
resistance to high concentrations of copper, MALDI Biotyper
could be as accurate as the 16S rDNA method to form groups
of similar bacteria. Inside the nodes of each group, the relation-
ship of the strains varies between the 16S rDNA method and
MALDIBiotyper. This variation could be seen in other works for
genera and species when comparing 16S rDNA with MALDI
Biotyper dendrograms (Sauer et al. 2008; Uhlik et al. 2011). The
greater difference found between the two relationships is in
Pseudomonas group. MALDI Biotyper grouped Cu 66, Cu 53,
and Cu 54 inside Pseudomonas group. Strains Cu 53 and Cu 54
had scores above 1.8, the minimum necessary for a reliable iden-
tification. This could be the cause for the group position deter-
mined by MALDI Biotyper and separation of these two strains
with the 16S rDNA method. For strain Cu 66, the 16S rDNA
identification was below 90 % with Citrobacter genus, a weak
identification according to the thresholds used and this can con-
tribute to a wrong positioning in the maximum likelihood rela-
tionship (supplementary material).

Fig. 4 Four spectra from MALDI-TOF for two different strains of
Pseudomonas aeruginosa. Although all these isolates have the same
identification and had scores above 2.0, spectral differences can be

observed showing the capacity and sensitivity of MALDI Biotyper to
differentiate strains from the same species
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As the two techniques use different bases for identification
and construct relationships between strains, differences are
expected, but these differences observed occur mainly inside
groups in very close related strains and do not invalidate the
identification. The MALDI Biotyper has proven to be able to
go deeper in the microorganism identification gathering data
from proteins. It could differentiate strains with the same iden-
tification by spectral analysis (Fig. Fig. 4). Spectral differ-
ences among three strains fromPseudomonas aeruginosa spe-
cies could be observed. The resolution and capacity of acquir-
ing proteins with high-resolution mass/charge showed differ-
ences that can aid and improve the identification accuracy
even for isolates from the same species.

Conclusions

We showed that MALDI Biotyper is an efficient methodology
for microorganism identification, and it has largely been able
to identify specific microorganism resistant to copper.
Furthermore, a combined data analysis set was shown for
integrating this identification methodology with classic mo-
lecular techniques. The MALDI Biotyper methodology was
efficient and fast to identify microorganisms that were well
recognized and mentioned in the literature as metal-resistant,
especially for taxonomic purposes. In environmental samples,
a fast, low-cost, and effective identification ofmicroorganisms
has relevant significance once generally many bacteria from
several species are involved in community analysis. Evenwith
a limited database, the MALDI Biotyper achieved high rates
of identification and corroborated the 16S rDNA maximum
likelihood relationships for highly resistant copper bacteria
isolated from environmental samples, the most used technique
for identifying environmental microorganisms. Our results
suggested that MALDI Biotyper has the potential to be a fast,
reliable, and low-cost technique to identify and to characterize
microbial communities, in our case, specialized microorgan-
isms from a high-concentration copper area. The increase of
the database can expand its capacity to identify species and
even different strains once the protein spectra are very sensi-
tive, accurate, and have enough information to group similar
strains and to construct relationships.
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