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Deep learning architecture for air quality predictions
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Abstract With the rapid development of urbanization and in-
dustrialization, many developing countries are suffering from
heavy air pollution. Governments and citizens have expressed
increasing concern regarding air pollution because it affects
human health and sustainable development worldwide.
Current air quality prediction methods mainly use shallow
models; however, these methods produce unsatisfactory results,
which inspired us to investigate methods of predicting air qual-
ity based on deep architecture models. In this paper, a novel
spatiotemporal deep learning (STDL)-based air quality predic-
tion method that inherently considers spatial and temporal cor-
relations is proposed. A stacked autoencoder (SAE) model is
used to extract inherent air quality features, and it is trained in a
greedy layer-wise manner. Compared with traditional time se-
ries prediction models, our model can predict the air quality of
all stations simultaneously and shows the temporal stability in
all seasons. Moreover, a comparison with the spatiotemporal
artificial neural network (STANN), auto regression moving av-
erage (ARMA), and support vector regression (SVR) models
demonstrates that the proposed method of performing air qual-
ity predictions has a superior performance.

Keywords Air quality prediction . Deep learning . Stacked
autoencoder (SAE) . Spatiotemporal features . Layer-wise
pre-training . BP algorithm

Introduction

Air pollution is a serious environmental issue that is attracting
increasing attention globally (Kurt and Oktay 2010). Many de-
veloping countries suffer from heavy air pollution. For example,
extreme air pollution events have frequently occurred in China in
recent years, especially in the Beijing, Tianjin, and Hubei dis-
tricts. According to Reports on the State of the Environment in
China (2015), among 338 monitored cities, 265 (78.4 %) were
below the national healthy air quality standard, and the percent-
age of days below the standard reached 23.3 % on average.

Particulate matter with an aerodynamic diameter of or less
than 2.5 μm (PM2.5) represents an air pollutant that can be
inhaled via nasal passages to the throat and even the lungs.
Long-term exposure to PM2.5 increases the incidence of associ-
ated diseases (e.g., respiratory and cardiovascular diseases, re-
duced lung function, and heart attacks) in humans (Künzli et al.
2000; Bravo and Bell 2011). Obtaining real-time air quality in-
formation is of great importance for air pollution control and for
protecting humans from adverse health impacts due to air pollu-
tion (Zheng et al. 2013). Hence, it is necessary to conduct air
quality prediction to better reflect the changing trend of air pol-
lution and to provide prompt and complete environmental quality
information for environmental management decisions, as well as
to avoid serious air pollution accidents (Chen et al. 2013).

Many studies have focused on air quality predictions, and
the following two types of methods are generally used: deter-
ministic and statistical. A deterministic method employs the-
oretical meteorological emissions and chemical models
(Bruckman 1993; Coats 1996; Guocai 2004; Jeong et al.
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2011) to simulate pollutant discharge, its transfer and diffusion
processes, and removal processes using dynamic data of a
limited number of monitoring stations in a model-driven
way (Kim et al. 2010; Baklanov et al. 2008). Representative
methods, such as CMAQ (Chen et al. 2014) and WRF-Chem
(Saide et al. 2011), are widely used for urban air quality fore-
casting. However, due to unreliable pollutant emission data,
complicated underlying surface conditions, and an incomplete
theoretical foundation, the simulation results suffer from low
prediction accuracy (Vautard et al. 2007; Stern et al. 2008).

However, compared with these complicated theoretical
models, statisticalmethods simply use a statisticalmodeling tech-
nique to predict the air quality in a data-driven manner.
Straightforward methods such as the multiple linear regression
(MLR) (Li et al. 2011) model and the auto regression moving
average (ARMA) (Box and Jenkins 1970) model are commonly
used for air quality prediction. However, these methods usually
yield limited accuracy due to their inability to model nonlinear
patterns; thus, they cannot predict extreme air pollutant concen-
trations (Goyal et al. 2006). A promising alternative to these
linear models are artificial neural networks (ANNs) (Gardner
and Dorling 1998; Hooyberghs et al. 2005; Lal and Tripathy
2012; Sánchez et al. 2013) and support vector regression
(SVR) models (Nieto et al. 2013; Suárez Sánchez et al. 2013;
Hájek and Olej 2012). A previous study showed that an ANN
model wasmore accurate than the linear models (such asARMA
or MLR) because the air quality data presented clearer nonlinear
patterns than linear patterns (Prybutok et al. 2000). Studies have
also used a combination of these models for air quality predic-
tions, and the results have shown that hybrid methods have a
better predictive performance than single models (Díaz-Robles
et al. 2008; Chen et al. 2013; Sánchez et al. 2013).

However, all these methods usually predict air quality at
each station separately and neglect the high spatial correla-
tions between stations. Spatial correlations generally occur
between environmental variables (Legendre 1993). Air quali-
ty for all monitoring stations was highly correlated, thereby
reflecting air pollutant dispersion patterns to some extent
(Jerrett et al. 2005; Kracht et al. 2015). Therefore, it is impor-
tant to fully model spatiotemporal correlations for air quality
predictions.

Spatiotemporal prediction models that include air quality
as a spatiotemporal process have been introduced, such as the
spatiotemporal auto regression moving average (STARMA)
(Martin and Oeppen 1975), the spatiotemporal artificial neural
network (STANN) (Nguyen et al. 2012), and the spatiotem-
poral support vector regression (STSVR) models (Cheng et al.
2007). These methods can deal with nonlinear spatiotemporal
features to a certain degree; however, the shallow models
commonly use hand engineering to extract low level features.
Thus, the performance of these models is greatly affected by
artificial features, which inspired us to examine the air quality
prediction problem in terms of deep architecture models

capable of capturing these spatiotemporal features for accurate
predictions.

Recently, deep learning, a new potential machine learning
methodology, has attracted considerable academic and indus-
trial attention (Bengio 2009) and has been successfully ap-
plied to image classification, natural language processing, pre-
diction task, object detection, artificial intelligence, motion
modeling, etc. (Silver et al. 2016; Hinton et al. 2006; Zhang
et al. 2015; Collobert andWeston 2008; Mohamed et al. 2011;
Bengio 2009; Chan et al. 2015). Deep learning algorithms use
multiple-layer architectures to extract the inherent features of
data layer-by-layer from the lowest to the highest level, and
they can identify representative structure in data. Because air
quality process is inherently complicated, its temporal
trends and spatial distribution are affected by various fac-
tors, such as air pollutant emissions and deposition,
weather conditions, traffic flow, human activities, and so
on. This situation has increased the difficulty of using
traditional shallow models, especially for providing a
good representation of air quality features. Deep learning
algorithms can extract representative air quality features
without prior knowledge and may lead to a good perfor-
mance for air quality predictions.

In this paper, we introduced a deep learning-based method
for air quality predictions. A stacked autoencoder model is
used to extract representative spatiotemporal air quality fea-
tures, and it is trained in a greedy layer-wise manner. Thus,
spatial and temporal correlations are inherently considered in
the model. Furthermore, experimental results have demon-
strated that the proposed method for air quality predictions
has superior performance.

The main novelty and contributions of this paper are sum-
marized as follows:

1. We introduced the deep learning approach for research on
air quality prediction. The latent air quality features can be
automatically learned using a stacked autoencoder model,
and the learned representations are used to construct a
regression model for air quality prediction.

2. We treated the regional air quality as a spatiotemporal
process and used the deep learning algorithm to build a
spatiotemporal prediction framework, which considers
the spatial and temporal correlations of air quality data
in the modeling process. The experimental results demon-
strated the advantages of this approach over time series
models.

3. Our model can predict the air quality of all monitoring
stations simultaneously and shows a satisfactory seasonal
stability.

The remainder of this paper is structured as follows: the
BMethodology^ section presents the deep learning-based ap-
proach for air quality predictions; the BExperiment and
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results^ section discusses the experiments and results; and the
BConclusion^ section presents the concluding remarks.

Methodology

First, a stacked autoencoder model is introduced. The stacked
autoencoder model is a widely used deep learning architecture
that incorporates autoencoders as building blocks to construct
a deep network (Bengio et al. 2007).

Autoencoder

An autoencoder is a neural network that attempts to recon-
struct its inputs (Lv et al. 2015). To accomplish this recon-
struction and obtain a good representation, the autoencoder
must capture the most important features of the input using
methods that include principle component analysis (PCA).
Figure 1 illustrates a basic schema of an autoencoder. Given
a set of training samples {x(1), x(2), x(3), . . ., x(N)} in which x(i) ∈
Rd, an autoencoder first encodes the input vector x to a higher-
level hidden representation y based on equation (1), and then it
decodes the representation y back to a reconstruction z, calcu-
lated as in equation (2):

y ¼ f W1xþ bð Þ ð1Þ
z ¼ g W2yþ cð Þ ð2Þ
where W1 and W2 are weight matrixes and b and c are bias
vectors. We employed the logistic sigmoid function
1/(1 + exp.(−x)) for f(x) and g(x) in this study. The parameters
of this neural network are optimized to minimize the average
reconstruction error,

J θð Þ ¼ 1

N

XN
i¼1

L x ið Þ; z ið Þ
� �

: ð3Þ

Here, L is a loss function. We used the traditional squared
error in our model.

However, the reconstruction criterion alone cannot
guarantee the extraction of representative features because

it can lead to the straightforward solution of Bsimply copy
the input^ or similarly undesirable solutions that maxi-
mize mutual information (Vincent et al. 2010). To force
the autoencoder to extract more robust features and pre-
vent it from simply learning the identity, Ranzato intro-
duced the sparse over-complete (i.e., higher dimension
than the input) representation method (Poultney et al.
2006; Boureau and Cun 2008). A sparse over-complete
representation can be perceived as a compressed represen-
tation because it has implicit compressibility due to the
large amounts of deactivated hidden units rather than an
explicit lower dimensionality (Vincent et al. 2008, 2010).
To achieve the sparse representation, a sparsity restraint is
embedded into the reconstruction error:

J θð Þ ¼ 1

N

XN

i¼1

x ið Þ; z ið Þ�� ��
2

þ λ W1k k2 þ W2k k2
� �

þμ
X
j¼1

HD

KL ρ ρ j

��� �
:

ð4Þ

where ‖W1‖
2 and ‖W2‖

2 are the regulation terms, KL(ρ‖ρj)
is the sparsity term, λ and μ are the weights for the reg-
ulation term and sparsity term, respectively, HD is the
number of hidden units, ρ is a sparsity parameter (typical-

ly a small value close to zero), ρ j ¼ 1=Nð Þ∑N
i¼1y j x ið Þ

� �
is

the average activation of hidden unit j over the training
set, and KL(ρ‖ρj) is the Kullback–Leibler (KL) diver-
gence, which is defined as follows:

KL ρ ρ j

��� �
¼ ρlog

ρ
ρ j

þ 1−ρð Þlog 1−ρ
1−ρ j

: ð5Þ

The KL divergence fastens the sparsity restraint on the
coding procedure. Gradient-based procedures, such as sto-
chastic gradient descent algorithms, can be used to solve this
optimization problem.

Stacked autoencoder

A SAE is actually a concatenation of autoencoders which the
outputs of the autoencoder stacked on the layer below are wired
to the inputs of the successive layer (Bengio et al. 2007). More
specifically, for a SAE with L layers, the first layer is trained
using the training set as the input. After obtaining the first
hidden layer, the output of the kth (k < L) hidden layer is utilized
as the input for the (k + 1) hidden layer. Using this method,
sequential autoencoders can be stacked hierarchically. Each
hidden layer is a higher-level abstraction of the previous layer,
and the last hidden layer contains high-level structure and rep-
resentative information of the input, which are more effective
for the successive prediction (Wang et al. 2016).

LH(x,z)

x

y

z

f
g

Fig. 1 Autoencoder architecture. The autoencoder transforms input
vector x to y via the encoder f and attempts to reconstruct x via the
decoder g to produce reconstruction z. The reconstruction error is
measured by the loss LH(x,z)
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To employ the SAE model for air quality predictions, a
real-value predictor must be added on the top layer. In this
paper, a logistic regression (LR) layer was embedded into
the network for real-value air quality predictions. The lo-
gistic regression model could also be replaced with other
regression models, such as the SVR. The SAE model
combined with the LR predictor constitutes the entire
deep architecture model for air quality predictions, as il-
lustrated in Fig. 2.

Training algorithm

The BP algorithm with the gradient-based optimization
technique is widely used for training neural networks
(Barnard 1992). Unfortunately, deep networks trained in
this manner are known to have poor performance (Hanson
and Giles 1993; Kambhatla and Leen 1997; Tenenbaum
et al. 2000). Deep networks with large initial weights
usually lead to poor local minima, whereas deep networks
with small initial weights produce tiny gradients in the
bottom layers, which decrease the applicability of training
networks with numerous hidden layers (Hinton and
Salakhutdinov 2006). To solve this difficulty, Hinton
(2006) proposed a greedy layer-wise unsupervised learn-
ing technique that can train deep networks effectively.
The key idea to use this technique is to pre-train the deep
network layer-by-layer in a bottom–up manner. After the
pre-training stage, the BP algorithm can be used to fine-
tune the entire network’s parameters in a top–down fash-
ion. Our training procedure is based on the studies by
Hinton et al. (2006) and Bengio et al. (2007), which are
provided below.

Algorithm 1. Training SAE

For a training sample X and the preset number of hidden layers L and the
number of nodes in each hidden layer, initialize the network parameters
(i.e., the pre-training epochs, the pre-training learning rate, the fine-
tuning epochs, the fine-tuning learning rate, and the mini-batch size).

Step 1 Pre-training the SAE

— Set the weight parameters λ and μ. Randomly initialize the weight
matrices and bias vectors.

— Train the first hidden layer using the training set as the input.

—Train the successive hidden layers in a greedy layer-wisemanner while
using the output of the kth hidden layer as the input for the (k + 1)th
hidden layer.

Step 2 Fine-tuning the whole network

— Use the output of the last hidden layer as the input for the logistic
regression layer.

— Randomly initialize {WL+1, bL+1}.

— Use the BP algorithm with the gradient-based optimization technique
to update the whole network’s parameters in a top–down fashion.

Experiment and results

Data description

The hourly PM2.5 concentration data for Beijing City from
2014/1/1 to 2016/5/28 at 12 air quality monitoring stations
were downloaded from the Ministry of Environmental
Protection of China (http://datacenter.mep.gov.cn/). The
PM2.5 concentration of all these stations was measured
using a Thermo Fisher 1405F detector based on the tapered
element oscillating microbalance (TEOM) method. Figure 3
shows the distribution of these air quality monitoring stations.

...

...

...

...

SAE

LR ...

...

sta�on-1 sta�on-n

... ...

sta�on1 sta�on-n

Fig. 2 Deep architecture model for air quality predictions: Stacked
autoencoders are at the bottom for feature extraction, and a logistic
regression layer is at the top for real-value predictions Fig. 3 Distribution of the air quality monitoring stations in Beijing City
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This dataset contains 20,196 records for each station. Seasonal
statistical data are shown in Table 1. In our experiment, we
randomly selected 60% of the data as the training set, 20 % as
the validation set, and the remaining 20 % as the test set.

Index of performance

To evaluate the performance of the proposed model, we adopted
three performance indexes: the root-mean-square error (RMSE),
the mean absolute error (MAE), and the mean absolute percent-
age error (MAPE). These indexes are calculated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

Oi−Pið Þ2;

vuut ð6Þ

MAE ¼ 1

N

XN

i¼1

Oi−Pij j; ð7Þ

MAPE ¼ 1

N

XN
i¼1

jOi−Pij
Oi

: ð8Þ

whereOi denotes the observed air quality, Pi denotes the predict-
ed air quality, and N denotes the number of evaluation samples.
The RMSE and MAE were used to evaluate the absolute error,
while the MAPE was used to measure the relative error. The

Table 1 Average PM2.5 concentration (μg/m3) for each station in
different seasons

Station name Spring Summer Autumn Winter Average

Dongsi 81.30 68.62 87.84 100.21 84.95

Tiantan 74.67 65.61 85.90 99.06 81.41

Guanyuan 77.51 66.31 89.99 96.33 82.59

Wanshouxigong 77.74 62.63 90.23 106.33 84.63

Aotizhongxin 81.28 66.23 91.87 92.79 83.24

Nongzhanguan 80.42 60.86 94.74 104.35 85.42

Wanliu 77.05 64.78 86.06 98.71 82.09

Beibuxinqu 83.15 58.67 80.49 106.33 83.51

Zhiwuyuan 70.42 59.93 76.15 81.55 72.37

Fengtaihuayuan 85.98 63.27 99.18 119.09 92.47

Yungang 79.55 57.77 88.83 107.27 84.22

Gucheng 81.03 64.09 91.25 100.24 84.52

Table 2 Parameters for our air quality prediction architecture

Parameters Value set

Time intervals 4, 6, 8,10, 12

Number of layers 1, 2, 3, 4

Number of nodes 100, 200, 300, 400, 500

Fig. 4 Performance with various network sizes: (a) MAPE, (b) RMSE, and (c) MAE
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former reflects the extremum effect and error range of the pre-
dicted values, and the latter reflects the specificity of the average
predicted value (Chen et al. 2013). The optimal structure of our
model was determined when the MAPE was minimized.

Deep architecture structure

Our spatiotemporal deep learning (STDL) model contains
several parameters that must be determined to build the archi-
tecture, including the size of the input layer, the number of
hidden layers, and the number of hidden units in each hidden
layer. For the input layer, we used the data collected from all
stations as the input; thus, the model could be built upon a
monitoring network that considers spatial correlations.
Furthermore, with respect to the temporal relationship of the
air quality, we used the air quality data at previous time inter-
vals as the inputs (i.e., t − 1, t − 2, ..., t − r) to predict the air
quality at time interval t. Thus, the proposed model inherently
accounts for the spatial and temporal correlations of the air
quality data. The dimensions of the input space and output are
mr and m, respectively, where m is the number of stations.

We chose the time intervals r from the set {4, 6, 8, 10, 12};
thus, the input dimensions vary from 48 to 144. The numbers
of layers were selected from the set {1, 2, 3, 4}. For simplicity,
the number of nodes in each hidden layer was set equivalent
and selected from the set {100, 200, 300, 400, 500}. All pa-
rameters for our prediction model are listed in Table 2.
Moreover, the number of training epochs and the learning rate

are also important during the learning phase because the re-
construction error usually increases dramatically with a large
learning rate and the model would overfit the training data
when the number of epochs is too large. In our experiment,
we set the initial pre-training and fine-tuning learning rate to 2
and the scaling learning rate to 0.9995.

As we tested the effect of each parameter, the other param-
eters were kept fixed. In this step, the validation set was used
to evaluate the performance. Better parameter configurations
could be identified using a grid search or other heuristic
searching methods; however, due to the large search spaces,
these methods would be tedious and computationally prohib-
itive (Huang et al. 2014). Thus, a random search of a fixed set
was the preferred method in our experiments.

First, we inspected the effect of various network sizes,
which represents one of the most typical problems in neural
network design. The training time and the generalization ca-
pability of neural network models are highly affected by the
network size parameters. In this experiment, the MAPE was
the main evaluation index. Figure 4a–c shows the MAPE,
RMSE, and MAE values for the various network sizes (i.e.,

Table 3 Effect of the time intervals (layer = 3, nodes = 300)

Time intervals RMSE MAE MAPE (%)

4 15.39 8.60 26.52

6 15.60 8.77 26.54

8 14.96 9.00 21.75

10 17.32 9.50 25.50

12 17.71 9.28 26.62

Fig. 5 Effects of the fine-tuned
epochs

Table 4 Prediction performance for each station

Station name RMSE MAE MAPE (%)

Dongsi 14.67 9.21 23.97

Tiantan 14.08 8.82 20.65

Guanyuan 14.00 8.44 18.60

Wanshouxigong 15.99 9.24 24.58

Aotizhongxin 14.41 8.85 18.75

Nongzhanguan 16.22 9.93 22.10

Wanliu 13.83 8.54 19.77

Beibuxinqu 16.31 9.88 24.86

Zhiwuyuan 16.00 8.87 27.32

Fengtaihuayuan 16.26 9.76 23.31

Yungang 15.64 9.76 23.42

Gucheng 16.29 9.89 22.21
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the number of layers and the number of nodes in each layer).
Figure 4a–c shows that the performance could be improved by
increasing the number of hidden layers from one to four.
High-level air quality features are inherently learned in this
manner. However, deeper structures do not have an advantage
over a four-layer structure, and models with a structure that is
too complex present the issue of overfitting.

Figure 4a–c also shows that increasing the number of nodes
in each layer can slightly improve the performance. When the
number reached 300, our model presented the best perfor-
mance. More nodes in each layer would unnecessarily in-
crease the training time and result in overfitting. These phe-
nomena can be easily demonstrated using a four-layer struc-
ture with 400 or 500 nodes in each layer because the valida-
tion error increases rapidly. To maintain efficiency and accu-
racy, a structure with three hidden layers and 300 nodes in
each layer were used in subsequent experiments.

Next, we tested the effect of different time intervals, as
shown in Table 3. A large r would increase the size of the
input layer and provide a sufficient number of temporally
correlated features, although it increases the training time.
The prediction performance obviously increased initially but
failed to show improved performance after r = 8. If k is greater
than 8, then additional latent unrelated inputs make it more

difficult for the complicated architecture to learn a good
representation.

Finally, we investigated the effect of fine-tuning epochs.
Figure 5 shows the accuracy curve (measured by the
MAPE) on the training set and the validation set as a function
of the number of epochs. When the epochs were less than
3000, an increase in the number of epochs obviously de-
creased the training and validation errors. When the epochs
were greater than 3000, the model appeared to be overfit, and
the generalization capability did not improve but weakly fluc-
tuated. Because a large number of epochs lead to a large tem-
poral cost, we found that the optimal number of fine-tuned
epochs at which the training and validation errors converged
was 3000 in our experiment.

Results and discussion

First, we evaluated the spatial stability of our STDL model.
The predictive performance for each station is shown in
Table 4, which indicates that our STDL model showed differ-
ent predictive performances for these stations. In detail, the
RMSE varied from 13.83 to 16.31 μg/m3, the MAE varied from

Fig. 6 Predicted and recorded
values of the test set at the
Guanyuan station

Table 5 Prediction performance for each season

Season RMSE MAE MAPE (%)

Spring 15.15 9.11 22.95

Summer 15.28 9.28 22.29

Autumn 15.33 9.18 22.42

Winter 15.64 9.53 22.04

Table 6 PM2.5 air quality levels

Rank Range (μg/m3) Description

L1 <35 Good

L2 (35, 75) Moderate

L3 (75, 115) Unhealthy for sensitive groups

L4 (115, 150) Unhealthy

L5 (150, 250) Very unhealthy

L6 >250 Hazardous

22414 Environ Sci Pollut Res (2016) 23:22408–22417



8.44 to 9.33 μg/m3, and the MAPE varied from 18.60 to
27.32%. TheGuanyuan station (No. 3) had the best performance
with the lowest MAPE value of 18.60 %, the lowest MAE value
of 8.44 μg/m3, and a low RMSE value of 14 μg/m3. The predic-
tion results are shown in Fig. 6, which indicates that the predicted
data are generally consistent with the recorded data. TheR2 value
between the recorded and predicted hourly PM2.5 concentrations
in this testing phase indicated that 98.24 % of the explained
variance was captured by the model. The Zhiwuyuan station
(No. 9) had the highest relative error and a MAPE value higher
than 25%,whichwasmainly because this station is located at the
border of an urban area and presents only limited air pollutants,
such as traffic pollutants. Therefore, this station has relatively
good air quality and lower average PM2.5 concentrations
(Table 1). Considering that our model produced similar absolute
errors (RMAE andMAE) for each station, the MAPE value was
higher at the Zhiwuyuan station.

Next, we tested the temporal stability of our model. We
calculated the performance index for the four seasons, and
the results are shown in Table 5, revealing that our model
presented a consistent performance in each season. This fea-
ture is beneficial because it indicates that a separate model is
not required for each season.

Next, we evaluated the rank prediction performance of our
model. According to the National Technical Regulation on the
Ambient Air Quality Index (see Table 6), we calculated the
recorded and predicted rank rate, which is shown in Table 7.
Each row shows the predicted air quality rank ratio, and each
column contains the recorded air quality rank ratio. Table 7

shows that the prediction rank rate of our model was high for
each air quality rank, and the overall prediction rank accuracy
rate was 82.66 %.

Finally, we compared the performance of the proposed
STDL model with that of the STANNmodel, the SVRmodel,
and the ARMA model. These models were trained and tested
using the same training and testing sets applied for the STDL
model; however, the input data might have been slightly dif-
ferent. The STANN model uses the same inputs as our STDL
model, which predicts the air quality of all stations simulta-
neously based on the spatiotemporal correlations of the input
data. The main difference between the STANNmodel and our
STDL model is that the STANN model does not use the
greedy layer-wise unsupervised learning algorithm to pre-
train the deep network. We conducted the prediction tasks
for each station separately for the SVR and ARMA methods,
which are merely time series prediction models, using data
from a single station as the input. The results are shown in
Table 8.

Table 8 reveals that the STDL model presented more accu-
rate air quality predictions than the STANN, SVR, and
ARMA models and had lower RMSE, MAE, and MAPE
values. Table 8 indicates that the two spatiotemporal models
(STDL and STANN) had higher accuracy than the time series
models (ARMA and SVR), which shows that spatial correla-
tions are important for air quality predictions. Moreover, a
comparison of the performance of the two spatiotemporal
models showed that the MAPE of the STDL decreased by
5.12 % compared with that of the STANN, indicating that
the deep architecture method with unsupervised pre-training
can automatically learn better features than shallow models,
thus improving the prediction performance.

Conclusion

In this paper, a spatiotemporal deep learning-based model was
developed for air quality prediction. This model consists of a
stacked autoencoder model at the bottom for unsupervised
feature extraction and a logistic regression model at the top
for real-value regression. Compared with existing methods
that generally model the shallow structure of air quality data,
the proposed method can effectively extract latent air quality
feature representations from air quality data, especially non-
linear spatial and temporal correlations. Compared with tradi-
tional time series air quality prediction models, our model was
able to predict the air quality of all monitoring stations simul-
taneously, and it showed a satisfactory seasonal stability. We
evaluated the performance of the proposed method and com-
pared it with the performance of the STANN, ARMA, and
SVRmodels, and the results showed that the proposedmethod
was effective and outperformed the competitors.

Table 7 Predicted and recorded air quality levels (in percent)

Predicted Recorded

L1 L2 L3 L4 L5 L6 Count

L1 30.64 2.61 0.05 0.01 0 0 33.3

L2 2.41 20.26 2.76 0.06 0.03 0 25.52

L3 0.08 1.98 12.14 2.03 0.14 0 16.36

L4 0.01 0.11 1.47 6.81 1.63 0 10.04

L5 0 0.02 0.09 0.87 8.63 0.56 10.17

L6 0.01 0 0 0.01 0.42 4.18 4.61

Count 33.15 24.96 16.51 9.79 10.84 4.75 100

Table 8 Prediction performance for the STDL, STANN, SVR, and
ARMA models

Methods RMSE MAE MAPE (%)

STDL 14.96 9.00 21.75

STANN 16.19 10.04 26.87

ARMA 24.40 13.05 27.54

SVR 22.04 11.14 28.45
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