
RESEARCH ARTICLE

Development of a protocol to optimize electric power consumption
and life cycle environmental impacts for operation of wastewater
treatment plant

Wenhua Piao1 & Changwon Kim2,3
& Sunja Cho4 & Hyosoo Kim3

& Minsoo Kim5
&

Yejin Kim6

Received: 16 March 2016 /Accepted: 22 September 2016 /Published online: 4 October 2016
# Springer-Verlag Berlin Heidelberg 2016

Abstract In wastewater treatment plants (WWTPs), the por-
tion of operating costs related to electric power consumption
is increasing. If the electric power consumption decreased,
however, it would be difficult to comply with the effluent
water quality requirements. A protocol was proposed to min-
imize the environmental impacts as well as to optimize the
electric power consumption under the conditions needed to
meet the effluent water quality standards in this study. This
protocol was comprised of six phases of procedure and was
tested using operating data from S-WWTP to prove its appli-
cability. The 11 major operating variables were categorized
into three groups using principal component analysis and K-
mean cluster analysis. Life cycle assessment (LCA) was con-
ducted for each group to deduce the optimal operating

conditions for each operating state. Then, employing mathe-
matical modeling, six improvement plans to reduce electric
power consumption were deduced. The electric power con-
sumptions for suggested plans were estimated using an artifi-
cial neural network. This was followed by a second round of
LCA conducted on the plans. As a result, a set of optimized
improvement plans were derived for each group that were able
to optimize the electric power consumption and life cycle
environmental impact, at the same time. Based on these test
results, the WWTP operating management protocol presented
in this study is deemed able to suggest optimal operating con-
ditions under which power consumption can be optimized
with minimal life cycle environmental impact, while allowing
the plant to meet water quality requirements.

Keywords Wastewater treatment plant . Electric power
consumption .Multivariate statistical analysis .Mathematical
modeling . Life cycle assessment

Nomenclature
A2/O Anaerobic/anoxic/oxic process
PAC Poly-aluminum chloride (kg/day)
SRT Solids retention time (day)
HRT Hydraulic retention time (day)
F/M
ratio

Food to microorganism ratio

MLSS Mixed liquor suspended solids (mg/l)
BOD Biochemical oxygen demand (mg/l)
TN Total nitrogen (mg/l)
TP Total phosphorus (mg/l)
PCA Principal component analysis
KMCA k-mean clustering analysis
ANN Artificial neural network
Air Air flow rate (m3/day)
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Qin Influent flow rate (m3/day)
Qras Return sludge flow rate (m3/day)
Qrasin Inner return sludge flow rate (m3/day)
Qfir Waste sludge flow rate in primary settling tank (m3/

day)
Qsec Waste sludge flow rate in secondary settling tank

(m3/day)
Cake Dewatered sludge cake production (t/day)
Qdi Influent flow rate of digester (m3/day)
Qdw Influent flow rate of dewatering facility (m3/day)
Qthic Influent flow rate of centrifugal thickener (m3/day)
Elec Electric power (kWh/day)

Introduction

The electric power consumption of the wastewater treatment
plants (WWTPs) in Korea account for approximately 20 % of
total annual operating expenses of the plants, representing the
second largest portion following the labor cost (about 24 %)
(KoreaMinistry of Environment 2013). The amount of waste-
water treated in a year increased 1.08 times from 2006 to
2012, while the cost of the electric power consumed grew
1.84 times over the same period (Korea Statistics 2006–
2012). Such a rise in electricity cost was mainly attributable
to increases in the volume of wastewater treated due to popu-
lation growth and improved living standards and to enhanced
treatment capabilities to comply with more stringent effluent
quality standards. In addition, because many wastewater treat-
ment plants have placed top priority on stable wastewater
treatment, they have often tended to neglect energy efficiency
in their operation and management. The electric power con-
sumption could be reduced substantially by analyzing the dai-
ly status of operation and by providing efficient and continu-
ous operation and management skills.

The power consumption of a WWTP could be measured or
estimated by summing up those of devices such as motors and
pumps based on their specifications and operating times.
However, the operating time of individual devices vary much
depending on operating conditions such as influent flow rate,
air supply rate, and many others. It is difficult to obtain the
daily operating times of individual devices every day; instead,
the power consumption could be calculated based on average
operating times in a certain period, or on design values assum-
ing continuous use. In addition, the power consumption of
blower and pumps in the WWTP could be calculated by the-
oretical mathematical formulas (Yoon 2015), used for design-
ing and evaluating the WWTPs. However, for calculating
more accurate power consumption value, they should be tuned
using on-site values such as air flow, inlet and outlet pressure,
pump and motor efficiency, liquid flow rate, density, viscosity,
and so on. It might be a time-consuming work to obtain these
data in the target real-site WWTPs. In order to overcome these

problems, prediction techniques involving artificial neural
networks (ANN) can be used to estimate daily power con-
sumption based on current operating data. ANN has been used
for predicting electrical energy consumption in various indus-
tries, such as building with air conditioning systems (Neto and
Fiorelli 2008; Escrivá-Escrivá et al. 2011), the solar steam
generating plant, and other renewable energy systems
(Kalogirou 2000).

In previous studies, water quality analysis for a WWTP
was performed using averaged data by dividing them into
groups based on month or season (Shrestha and Kazama
2007). However, results for power consumption from such
analysis would show very limited results (e.g. highest power
consumption in summer and the lowest in winter) due to the
strong influence of the influent flow rate. By analyzing in this
way, the impact on power consumption by many other oper-
ating conditions cannot be assessed. Therefore, to retain the
characteristics of the effects of the many original variables, but
using the minimum possible number of variables, a statistical
method like principal component analysis (PCA) is recom-
mended (Olsson 2012). PCA has been used to obtain essential
information from the wastewater treatment process by reduc-
ing the dimensionality of the data (Lennox and Rosen 2002).
In this way, a relatively small number of principal components
can be used to classify all the operating data into groups, and
to determine which groups have similar characteristics. This
analysis can be done using a statistical method such as the K-
mean cluster analysis (KMCA). These techniques have al-
ready been used for monitoring and diagnosing wastewater
treatment processes (Kim et al. 2013) and providing the infor-
mation on the operating state ofWWTP (Moon et al. 2009). In
addition, many studies have been applied these statistical tech-
niques for extracting the meaningful and hidden information
of natural water system (Singh et al. 2004; Saim et al. 2009;
Bayo and Lopez-Castellanos 2016). These existing studies,
however, did not attempt to evaluate the alternatives as com-
bined with predictive models. Although the suggested ap-
proach in this research seems to be somewhat complicated,
it can be applied as an appropriate solution for the complex
problems such as to satisfy multiple objectives in the opera-
tion of wastewater treatment plants.

Recently, in response to heightened interest in energy and
cost of electricity, research and development for optimization
of energy efficiency have increased substantially. Kim et al.
(2013) proposed control strategies for optimizing the dis-
solved oxygen (DO) concentrations and external carbon dose
according to diagnosis of the process state in the A2/O pro-
cess. Compared to the non-controlled case, not only the qual-
ity of wastewater effluent became more stable but also the
electrical device load was reduced by minimizing the frequen-
cy of change of the process operating state. However, there
was no assessment of how much the electric power was actu-
ally reduced or of how much the effluent quality was
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improved in relation to the reduction of electric power con-
sumption. Panepinto et al. (2016) calculated the total electric
power demand, made an energy balance for the whole plant,
and proposed a solution to optimize the energy effectively.
These control strategies suggested the possibility of reduced
electric power consumption under stable operating conditions,
mainly in the biological reactors. However, these strategies
have failed to mention the life cycle environmental impacts,
which might be increased as a result of the reduced electric
power consumption. Eventually, one must be able to assess
whether an alternative is energy efficient, and at the same
time, if it could bring about positive outcomes for the
environment over its entire life cycle. Therefore, the decision
makers would be able to select more convincing alternatives
when the results of analysis for the life cycle environmental
impact was provided together with plans for reduction of
electric power consumption. Meneses et al. (2015) proposed
a process performance indicator that reflects both the quality
of effluent and the operating cost, in addition to the outcomes
of environmental impact evaluation based on life cycle assess-
ment (LCA). However, these workers did not mention any
alternative that considered the quality of the wastewater
discharged in relation to the amount of electricity consumed.

Considering such research and the trends in development,
this study was intended to propose a protocol that could iden-
tify appropriate operation and management conditions to op-
timize the electric power consumption, minimize the life cycle
environmental impacts, and comply with regulations on the
effluent quality for a wastewater treatment plant. This protocol
would include such procedures as analysis of electric power
consumption with multivariate statistical analysis, suggestion
of improvement plans for optimizing electric power consump-
tion through mathematical modeling and artificial neural net-
work, and suggestion of an improvement plan determined
using LCA, to minimize environmental impacts.

Materials and methods

Testing wastewater treatment plant

In order to achieve the purposes of this study, a protocol was
developed and tested at the Sincheon wastewater treatment
plant (S-WWTP), Daegu city, South Korea. The S-WWTP
was designed to use the anaerobic/anoxic/oxic process (A2/
O) process, with treatment capacity of 680,000 m3/day and an
additional chemical treatment process for phosphorus remov-
al. For this study, about 550 daily data sets were collected at
the S-WWTP from June 2013 to December 2014. The average
influent flow rate was 476,300 m3/day in this period. Total
phosphorus was removed by adding poly-aluminum chloride
(PAC) after the secondary settling tank. The primary and sec-
ondary sludge (along with food waste sludge) were

transported to a landfill site after anaerobic digestion and
dewatering. The solids retention time (SRT) and hydraulic
retention time (HRT) of the aeration tanks were 22 days and
7 h, respectively, and the food to microorganism ratio (F/M)
was 0.08 kg biochemical oxygen demand (BOD)/kg mixed
liquor suspended solids (MLSS)/day. The ratios of return
sludge and internal recycling sludge flows to the influent were
40 and 113 %, respectively. The digestion process (with 14-
day SRT) produced about 16,000 m3/day of biogas and the
CH4 portion was 66.7 %. The biogas was used to generate
electricity and heat boilers to reduce the consumption of ex-
ternal power. About 80 % of the biogas was used for on-site
generation of electricity and boiler heating, and 20 % was
burned without energy recovery. The S-WWTP reactor vol-
umes, which were used for mathematical modeling, are sum-
marized in supplementary data 1. The schematic flow diagram
of S-WWTP is shown in Fig. 1.

Methodologies for diagnosis of electric power
consumption

Selection of major operating variables

The operating information about equipment specifications and
their operating periods at the S-WWTP were collected. Next,
the primary operating variables were selected, after
complementing the direct investigation by consultation with
the operators. Then, by analysis of the correlation of these
variables with the electric power consumption, the variables
with low (<0.4) correlation were excluded and the major op-
erating variables were obtained. In overall, certain number of
major operating variables were selected which influenced the
electric power consumption and also could be useful for pro-
cess control.

Principal component analysis

PCA is a method that is useful for compressing a large number
of variables by analyzing the correlations among the original
variables (Aguado and Rosen 2008). PCA is used for remov-
ing unnecessary dispersion as well as explaining the most
important characteristics of the original variables. In our case,
the derived principal components could explain the most im-
portant characteristics of electric power consumption. These
compressed principal components were used as input data for
the KMCA as follows.

K-mean cluster analysis

KMCA is able to classify a large number of data sets having
various characteristics into a small number of groups based on
the similarity among their principal components (Grieu et al.
2005). The differences in value between the principal
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components were converted into distances, and the shortest
distances apart were considered a single group. Based on the
KMCA results, it was possible to propose alternatives to op-
timize the operating conditions. In this study, based on the
principal components and according to the characteristics of
the major operating variables, the operations data were classi-
fied into three clusters of groups. Both the PCA and KMCA
were run on IBM SPSS Statistics software (ver. 21).

The first LCA on operation of the S-WWTP using field
data

The LCA is a method to evaluate the environmental impacts
from energy and materials. To apply the LCA in phase III,
first, the energy and materials were quantified that were pro-
duced and consumed within the system boundary, during their
whole life cycle. LCAwas conducted through four processes
according to the evaluation standards guided by the ISO
14040 series. The processes include goal and scope definition,
life cycle inventory (LCI), life cycle impact assessment
(LCIA), and life cycle interpretation (ISO 2006a, b).

Goal and scope definitions

The LCAwas carried out in the three cluster groups that were
obtained by PCA and KMCA analysis, in order to add the
environmental perspectives to the power consumption analy-
sis results. The system boundary for the LCA included the
influent, A2/O process, anaerobic sludge digestion, production
of sludge and biogas, and sludge landfill, as shown in Fig. 2.
The inputs were influent, electricity, chemicals, and diesel and
the outputs were effluent, gas emissions in wastewater treat-
ment process, gas emission from biogas incineration, biogas
energy generation, disposed sludge, and gas emission from
landfill process. In sludge treatment process, the biogas from
anaerobic digestion was used for boiler heating, electric power
generation, and incineration (not energy reuse) with distribu-
tion ratios of 20, 40, and 40 %, respectively. The biogas for
boiler heating was not considered as part of the treatment
process so this portion of biogas was not included in the
LCA result. The sludge produced by this WWPTwas consid-
ered up to final disposal in a landfill. For the landfill process,
methane gas emission via surface penetration (Kim et al.
2012) at the landfill site was considered; however, burning

Fig. 1 Schematic flow diagram
of A2O process and chemical
phosphorous removal in S-
WWTP
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and recovery of methane gas was not considered. The func-
tional unit (FU) for the LCA was unified based on 1 m3 of
influent wastewater.

Inventory analysis

The inventory data of the three cluster groups derived from phase
II, were collected from the qualities of influent and effluent,
electric power consumption, chemical usage, biogas production,
and sludge production. The detailed LCI data are summarized in
Table 1. These inventories were collected and calculated based
on real operating data from the S-WWTP. The detailed procedure
was introduced by Piao et al. (2016). The on-site electric power
generation from biogas was considered 750 kWh, using an av-
erage of 380 m3 biogas produced from sludge per hour, based on
the Korean standards of 2012 (Korea Energy Corporation 2014).
It was estimated based on 24 h of operation per day and 333
running days per year. The emissions of CH4 and N2O from
biological reactors were cited from the report of the Korea
Environment Corporation (2008). The emission of CO2 from

biogas incineration was 3.2 kg CO2 eq/Nm3 (Korea
Environment Corporation 2012). In addition, the back ground
inventory data on the PAC and other polymer production pro-
cesses were obtained from the LCI database of Korean Ministry
of Environment (Korea National Cleaner Production Center
2015). The electricity grid mix, truck (22 t payload capacity),
diesel mix at refinery, and landfill of municipal solid waste were
derived from the GaBi 6 database (PE International 2015).

Impact assessment

Gabi Education software (ver. 6) and the Centre of
Environmental Science (CML) method (Guinée 2002) were
used to evaluate the environmental impact of operation and
electric power consumption at the S-WWTP. The CML is one
of the most common LCIA methods and has already been
applied in the majority of WWTP LCA studies (Hospido
et al. 2008; Pasqualino et al. 2009; Piao et al. 2016). In this
study, four environmental impact categories were considered.
The categories of eutrophication potential (EP) and global

Fig. 2 System boundary for LCA
of classified cluster groups to
optimize operation of S-WWTP

Table 1 Life cycle inventory (LCI) data for operating conditions of classified three cluster groups in the S-WWTP (FU = 1 m3)

Process Variables contents Units Group 1 Group 2 Group 3

Wastewater treatment Electricity kWh/m3 1.71E-01 1.90E-01 1.76E-01

Influent BOD mg/l 112.4 117.0 153.7

TN mg/l 26.7 28.3 32.2

T-P mg/l 2.9 3.2 3.5

Effluent BOD mg/l 0.64 0.67 0.61

TN mg/l 10.1 10.64 11.14

T-P mg/l 0.13 0.12 0.11

Gas emission CH4 kg/ m3 3.55E-03 3.70E-03 4.87E-03

N2O kg/ m3 5.13E-04 5.45E-04 6.50E-04

Chemicals PAC kg/m3 5.47E-03 6.86E-03 4.63E-03

Sludge treatment Electricity kWh/m3 3.35E-02 3.72E-02 3.44E-02

Chemicals Polymer coagulation kg/m3 4.30E-03 4.64E-03 4.74E-03

Gas emission CH4 kg/m3 1.01E-04 1.05E-04 1.38E-04

N2O kg/m3 1.37E-05 1.46E-05 1.74E-05

Sludge digestion Biogas production kg/m3 1.88E-02 2.65E-02 3.32E-02

Electricity by biogas kWh/m3 3.25E-02 4.15E-02 5.99E-02

CO2 kg/ m3 1.48E-02 2.88E-02 1.39E-02

Sludge disposal Sludge for landfill Dewatered sludge kg/m3 3.77E-01 3.95E-01 3.68E-01

Dewatered sludge (dry) kg/m3 7.92E-02 8.29E-02 7.72E-02
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warming potential (GWP) were considered to assess the ef-
fects on rivers by the effluent and greenhouse gas emissions,
which varied according to effluent quality and electric power
consumption. Then, the categories of acidification potential
(AP) and human toxicity potential (HTP) were considered
due to the large amounts of heavy metal, NOx, and SOx
discharged from the energy and chemical production process-
es, landfill, and transport processes.

Uncertainty analysis and sensitivity analysis

Uncertainty analysis is very important for assessing the final
LCA results according to the variability of the inventory data
(Corominas et al. 2013). In this study, which was based on the
standard deviations of all inventory data, a 1000-run Monte
Carlo analysis (Maurice et al. 2000) was conducted. These
inventory data were assumed to have a normal distribution
and the standard deviations obtained from the uncertainty
analysis were presented. Sensitivity analysis is a systematic
procedure for estimating the effects of the chosen data on the
outcome of a study (ISO 2006b). In this case, it was conducted
to determine the impact of significant inventory components
in the LCA results. According to the highest uncertainty stan-
dard deviation (18 %), a 20 % increment was defined by this
sensitivity analysis. The rates of change in the LCA results
were calculated and the ratios of changes were defined as
sensitivity. Both uncertainty and sensitivity analysis were con-
ducted in Gabi software (PE International 2015).

Mathematical modeling and prediction of electric power
consumption

Mathematical modeling

The improvement plans for inefficient groups according to the
diagnosis and LCA results were deduced by using the math-
ematical models. The simulations were carried out by chang-
ing the variables that affected the electric power consumption
significantly, such as airflow in the aeration tank, waste sludge
flow in the secondary settling tank, and internal recycling
sludge flow as a certain percentage. Then, several kinds of
improvement plans were derived that could reduce the electric
power consumption, as well as maintain stable effluent qual-
ity. To carry out these simulations, a commercial simulation
tool known asMassflow™ (v. 2.8) was used.Massflow™was
developed based on an activated sludge model (ASM) no. 1
(Henze 2000) from the International Water Association (IWA)
(UnU soft co., Ltd. 2016a). It can provide static and dynamic
simulation of various activated sludge systems and physical
and chemical treatment processes. This software has been
used for modeling the wastewater treatment processes in
South Korea (Yoo et al. 2014).

Artificial neural network

The ANN has ability to learn complicated relationships from
imprecise data. It can be used to extract patterns and detect
trends that are too complex to be noticed by either human
beings or other computing techniques (Du et al. 1999;
Simsir and Ertugrul 2009). In this study, no daily information
was available from the S-WWTP about the operating times of
each device. Moreover, when new alternatives were proposed
about modeling technique, the water quality data for the efflu-
ent could be provided but information about the operating
time of devices and their operating status, was not available.
Therefore, the ANN was used to estimate the electric power
consumption based on the current operating data.

To develop the ANN model, 550 datasets were collected
and among them, 70 % were used for training and 30 % for
validation after random selection. The electric power con-
sumption for the improvement plans were estimated using
these data and based on the major operating variables used
for energy analysis. Through a process of trial and error, the
optimal ANN model was derived by selecting one hidden
layer and five nodes. The ANN results proved reliable as the
R2 was more than 90 % in the training and validation process-
es. In addition, the RMSE obtained during train and validation
was 5366 and 5550, respectively. These were relatively small
compared with the power consumption in the range of
80,000–100,316 kWh/day. The Dataflow™ was used for the
ANN analysis (UnU soft co., Ltd. 2016b).

The second LCA for the proposed improvement plans

In phase VI, the second LCAwas carried out based on the im-
provement plans developed in phase IV. The final improvement
plans were derived, which could optimize the electric power
consumption and life cycle environmental impacts at the same
time. The LCA system boundary and functional units were ex-
actly the same as those in the section BThe first LCAon operation
of the S-WWTP using field data.^ For the proposed improve-
ment plans, the effluent BOD, total nitrogen (TN), and total
phosphorus (TP were obtained by mathematical modeling of
the S-WWTP (as explained for phase IV) and the values of
electric power consumption were estimated using the ANN, as
described for phase V. The LCI data of six improvement plans
are shown in Table 2. The effluent concentrations of TP (cases 1–
4) and BOD (cases 5–6), were higher than previously measured
values (see Table 1). However, those values were much lower
than the effluent quality standards in Korea (TP and BOD <0.2
and <10 mg/L, respectively) (Korea Ministry of Environment
2014). The environmental impacts on AP, EP, GWP, and HTP
were evaluated using LCIA as described in the BImpact
assessment^ section. The uncertainty analysis was performed
by the procedure in the BUncertainty analysis and sensitivity
analysis^ section.
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Development of a protocol to optimize WWTP operations

Using the above methodologies, we proposed a Bprotocol to
optimize electric power consumption and life cycle environ-
mental impacts^ that consisted of the six phases shown in
Fig. 3.

In phase I, following above procedure explained in the
BSelection of major operating variables^ section, the major
operating variables that most affected the power consumption
were derived. In phase II, PCA was carried out on the major
operating variables to reduce unnecessary dispersion. Then,
KMCAwas conducted on the principal component results to
classify them based on electric power consumption and oper-
ating characteristics. All 550 operating data were classified
into three cluster groups according to the consumption of
electric power. Moreover, the impacts of the major operating
variables within each clustered group were determined at three
levels. By analyzing these results, it was possible to evaluate
the electric power consumption of each cluster group and to
provide some advice for improvements. In phase III, the first
LCAwas carried out based on the operational data of the three
cluster groups obtained in phase II. To analyze the result, each
of the environmental impact indicators obtained in this step
were considered in relation to the electric power consumption
derived from phase II. Based on the results of the LCA and
energy consumption analysis, the most efficient group was
identified. For the less efficient groups, corresponding opera-
tional alternatives were suggested. Then, uncertainty and sen-
sitivity analysis were carried out to determine the degree of
effect of the inventory item on each of the environmental
impact indicator. In phase IV, mathematical modeling was
applied to derive improvement plans that would ensure stable
effluent qualities while reducing electric power consumption.
For the high-power consumption group, improvement plans
were derived that could reduce the electric power consump-
tion by adjusting the Air and Qsec by increments of 10 %. In
the low-power consumption group, improvement plans were
derived to improve the environmental impacts by adjusting
the Qrasin and Qsec, as before. Then, these improvement
plans were evaluated by considering their impact on the efflu-
ent quality. In phase V, the electric power consumption was

estimated using ANN when applying the improvement plans
derived from phase IV. Then, the results were compared to the
electric power consumption of groups 2 and 3, which repre-
sented the previous operation status. Finally, in phase VI, the
second LCA was carried out for the proposed improvement

Table 2 Life cycle inventory (LCI) data for proposed improvement plans of operating conditions in S-WWTP (FU: 1m3)

Variables contents Units Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Electricity Wastewater line kWh/m3 1.81E-01 1.80E-01 1.81E-01 1.83E-01 1.74E-01 1.82E-01

Sludge line kWh/m3 3.52E-02 3.50E-02 3.51E-02 3.57E-02 3.39E-02 3.57E-02

Effluent BOD mg/l 0.64 0.65 0.66 0.67 1.03 1.04

T-N mg/l 10.51 10.55 10.61 10.7 10.8 10.73

T-P mg/l 0.132 0.137 0.159 0.182 0.1 0.14

Gas emission CH4 kg/m3 3.70E-03 3.70E-03 3.70E-03 3.70E-03 4.87E-03 4.85E-03

N2O kg/m3 5.49E-04 5.48E-04 5.46E-04 5.44E-04 6.50E-04 6.61E-04

Fig. 3 Structure of the protocol proposed to optimize electric power
consumption and life cycle environmental impacts at a wastewater
treatment plant
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plans using the data obtained by mathematical modeling in
phase IV and the electric power consumption of phase V. By
comparing these LCA results, sustainable improvement plans
were selected that could simultaneously optimize electric
power consumption and life cycle environmental impacts.

Results and discussions

Deduction of major operating variables affecting electric
power consumption (phase I)

The major operating variables were obtained and summarized
in Supplementary data 2. Overall, the variables of influent
flow (Qin), air flow (Air), return sludge flow (Qras), inner
return sludge flow (Qrasin), waste sludge flow in primary
settling tank (Qfir), waste sludge flow in secondary settling
tank (Qsec), waste sludge flow in thickener (Qthic), sludge
flow in digestion tank (Qdi), waste sludge flow in dewatering
equipment (Qdw), dewatered sludge (Cake), and Electric
power consumption (Elec) were obtained. The Air and Qin
showed high correlations with the electric power
consumption.

Deduction of principal components and K-mean cluster
analysis (phase II)

Deduction of principal components highly affecting electric
power consumption

The 11 major operating variables were reduced to four princi-
pal components and their component score coefficients are
shown in Table 3. The coefficients could be used to specify
howmuch each principal component was affected by a certain

operating variable (Moon et al. 2009). Principal component 1
(PC1) was affected very much by the electric power related
operating variables such as the Air and Qrasin; while PC2 was
highly affected by the sludge treatment line variables such as
the Qdi, Qdw, and the Cake. PC3 was affected by the Qin and
the Qras variables, and PC4 was affected by Qfir and Qsec.

Classification of operation status by K-mean cluster analysis
based on electric power consumption

The K-mean cluster analysis identified three cluster groups
from depending on the level of electric power consumption
and the results are summarized in Table 4. Also, it was found
how much each major operating variable could contribute to
electric power consumption comparing among three groups.
Group 1 included about 51 % of data sets which was medium
level in terms of the electric power consumption. Group 2
contained 15 % of the data sets as high level of the electric
power consumption and group 3 was low level in electric
power consumption occupying 34 % of datasets. The high
electric power consumption (Group 2) occurred during
April, May, and July. The low power consumption (group 3)
occurred during November, December, January, February, and
March. The medium-level cases (group 1) occurred in most
months, except for February, July, and November. These re-
sults showed that the electric power consumption was some-
what related to seasons, but not directly dependent.

The influence of each major operating variable (among
the three cluster groups) was classified as high (H), me-
dium (M), or low (L). The operating conditions of the
data sets belonging to group 1 showed the highest Qin,
and the values of Qras, Qfir, and Cake were also high.
Therefore, it could be expected that the related pumps
were run at a high rate of energy consumption.
However, Air and Qsec were maintained at medium level
and the overall electric power consumption was at medi-
um level. Therefore, group 1 would be considered a rela-
tively efficient operation status. Group 2 had medium lev-
el Qin but the values of Air and Qsec showed highest
among the three cluster groups. Thus, it could be estimat-
ed that the oxygen supply would be higher than expected
and therefore, the electric power consumption was high.
From this, it might be possible to reduce the electric pow-
er consumption by reducing the oxygen supply. Group 3
had low Qin but very high BOD concentration, as shown
in Table 1. Even though it had highest BOD load, it
showed the lowest Air and Qsec, corresponding to the
lowest Qin. Therefore, the electric power consumption
was lowest among three groups. Therefore, group 3 could
be considered to present the most efficient power con-
sumption conditions. In addition to this analysis, a life
cycle impact analysis should follow to provide appropri-
ate information for proper operation of WWTPs.

Table 3 Component score coefficients matrix for principal components
derived by PCA and related major operating variables

Major operating variables Component score coefficients

PC 1 PC 2 PC 3 PC 4

Qin −.060 .003 .579 −.195
Qras −.123 −.102 .412 .187

Air .289 −.076 −.166 .119

Qrasin −.374 .007 .000 .290

Qfir −.175 −.113 .010 .627

Qsec .131 .083 −.236 .364

Qthic .147 .104 .066 −.003
Qdi .180 .291 −.252 .139

Qdw −.065 .476 −.080 −.060
Cake −.027 .397 .130 −.108
Elec .238 −.140 .215 −.140

25458 Environ Sci Pollut Res (2016) 23:25451–25466



Environmental impact assessments by LCA on cluster
groups under field operating conditions (phase III)

Comparison of environmental impact assessments

The results of environmental impact assessments of the three
cluster groups are shown in Fig. 4. The impacts on AP, EP,
GWP, and HTP were analyzed in the wastewater and sludge
treatment processes, energy and chemical production process-
es, and the transport and landfill processes. More detailed
LCA results were presented in Supplementary data 3. As
shown in Fig. 4a, d, for the effects on AP and HTP Group 2
had relatively large impacts among the three groups.
Therefore, detailed analysis on group 2 is followed. High

effects on AP and HTP were due to high electric power and
chemical consumption. Most of the effects on AP were related
to electric power and chemical consumption, whichwere up to
38 and 50 %, respectively. The main substances that contrib-
uted to the APwere nitrogen oxides and sulfur dioxide (12 and
24 %, respectively) from the electric power production pro-
cess, and ammonia and SOx (20 and 24 %, respectively) from
the chemical production process. More than 80 % of the ef-
fects on the HTP occurred in relation to the electric power
production process. This was because heavy metals, inor-
ganics such as hydrogen fluoride, and organics such as poly-
cyclic aromatic hydrocarbons were released into the air (33,
15, and 15 %, respectively). The main contributors of the
effects on the EP were TN, TP, nitrate, and phosphorus in

Table 4 Identification of cluster groups and classification of effects of major operating variables according to electric power consumption

Cluster Qin Qras Air Qrasin Qfir Qsec Qthic Qdi Qdw Cake Elec
Group m3/day m3/day m3/day m3/day m3/day m3/day m3/day m3/day m3/day t/day kWh/day

Group 1 H H M M H M H L M H M

Mean 510,329 205,153 1,126,498 547,160 3692 2808 1587 1186 1443 142 93,602

SD 33,724 14,157 119,853 6111 534 732 311 227 244 20 8276

Group 2 M M H L L H M H H M H

Mean 496,821 194,968 1,378,738 521,141 2653 3159 1535 1347 1612 138 100,279

SD 16,430 10,368 58,270 10,761 756 319 361 253 190 23 5287

Group 3 L L L H L L L M L L L

Mean 423,691 184,388 1,089,209 553,313 3315 2621 1306 1188 1365 118 80,329

SD 22,478 4888 57,432 3183 302 943 255 138 221 22 6704

SD standard deviation, H high, M middle, L low

Fig. 4 Results of environmental impact assessments on cluster groups at field operating conditions in S-WWTP. Error bars represent the 10 and 90% of
the uncertainty range

Environ Sci Pollut Res (2016) 23:25451–25466 25459



the effluent and ammonia and phosphorus which were
discharged into the soil during the landfill process. The main
contributors of the effects on the GWP were methane and
nitrous oxide which were emitted from the primary settling
tank and the anaerobic tank with 18 and 28 %, respectively.
The methane gas from the landfill process also contributed
about 24 % of the effects.

Group 1 showed the lowest impacts on EP and GWP, and
low impacts on AP and GWP, similar to those in group 3. The
group 2 conditions resulted in the highest impacts on AP and
HTP; and slightly lower impact on GWP. Group 3 showed the
lowest impacts on AP and HTP but highest impacts on EP and
GWP. Overall, group 1 would be considered the most appro-
priate operating condition because it showed the least impacts
in terms of LCA. However, group 3 was selected beforehand
as the most energy efficient based on its electric power con-
sumption. The reasons for the highest impacts on the EP and
GWP in Group 3 were probably due to the highest BOD and
TN loading, as shown in Table 1. These conditions might
indicate that the oxygen supply was insufficient, resulting in
poorer effluent quality than for conditions of the other groups.
Therefore, group 1 was considered the most efficient when the
comparison was made by integrating electric power consump-
tion analysis and LCA as results. For more efficient operation,
group 2 required an alternative to reduce the electric power
consumption and group 3 required an alternative to improve
effluent quality.

Uncertainty analysis for cluster groups

As shown in Fig. 4, the uncertainty analysis provided the
distribution and confidence intervals of the results of each
impact category in the three groups. The error bars represent
that 10–90% of the LCA results were within the range and the
standard deviations (SD) were 8–16% in all four environmen-
tal categories, in all groups. Table 5 showed that the EP and
GWP had low uncertainty; whereas AP and HTP showed the

highest SD.More detailed sensitivity results were presented in
Supplementary data 4. The main contribution to the AP and
HTP were nitrogen oxides and sulfur dioxide emissions from
electric power production processes, and ammonia and SOx
emissions from chemical production processes. These uncer-
tainty results were directly related to the statistical distribution
of the electric power and chemical consumption. Overall, the
uncertainty was not significantly different among the three
groups; it was considered that such uncertainty would not
affect the final LCA results.

Sensitivity analysis for inventory data

Among all input inventory data used for the LCA, the ones of
relatively high sensitivity were summarized in Table 6 and
more detailed sensitivity results were presented in
Supplementary data 6. For example, in group 1, the most
sensitive variable of the GWP was the N2O emissions from
the bioreactor, and that of the EP was the TN in the effluent.
The most sensitive variable of the AP and HTP was the elec-
tric power consumption. Therefore, these variables should get
the most attention when improvement alternatives were pro-
posed. Groups 2 and 3 showed similar sensitivity results on
these variables.

Derivation of improvements plans for reducing electric
power consumption by mathematical modeling (phase IV)

Application of mathematical modeling for S-WWTP

To apply mathematical modeling on the S-WWTP, a schemat-
ic diagram (process flow sheet) was developed and is shown
in Fig. 5. The mathematical model was calibrated using the
average data of group 1, which was the medium level operat-
ing status in terms of electric power consumption. For carry-
ing out the calibration, the calculated effluent qualities were
matched with the measured data by adjusting the removal
rates of the primary and secondary settling tanks and the phos-
phorus concentrations of the bioreactor. The average data of
groups 2 and 3 were used to verify the calibratedmathematical
model. As shown in Fig. 6, the verification results of the
calculated BOD, TN, andMLSSwere in good agreement with
the measured values. However the T-P was not well matched
because the T-P removal by chemical treatment was not in-
cluded in this mathematical model.

Procedures for derivation of improvement plans based
on mathematical modeling

In the results of phase III, group 2 showed the highest impacts
on AP and HTP in the LCA because of the high electric power
consumption of this group. Optimized operating conditions
were derived to reduce the electric power consumption. A

Table 5 Standard deviations of uncertainty analysis in groups 1–3 and
cases 1–6

AP (%) EP (%) GWP (%) HTP (%)

Group 1 ±14.30 ±9.24 ±8.67 ±12.80

Group 2 ±14.30 ±9.37 ±8.58 ±13.50

Group 3 ±16.20 ±9.62 ±8.23 ±16.10

Case 1 ±15.90 ±9.82 ±9.95 ±13.90

Case 2 ±16.00 ±9.76 ±8.84 ±14.40

Case 3 ±16.30 ±9.75 ±8.82 ±14.10

Case 4 ±15.50 ±9.34 ±8.86 ±13.50

Case 5 ±11.50 ±9.52 ±8.25 ±16.60

Case 6 ±17.20 ±9.65 ±8.77 ±17.30
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simulation was carried out within the range of the effluent
quality standard of WWTPs, by increasing or decreasing the
dissolved oxygen concentration in the aeration tank (DO) and
waste sludge flow in the secondary settling tank (Qsec) by
10 % increments. Manipulation of DO meant adjusting aera-
tion rate and therefore, the aeration cost would be directly
affected. When the waste sludge flow was manipulated, the

SRT and therefore the sludge production rate would be affect-
ed. This also would affect the operating cost as well as the
performance.

Eventually, the following four improvement plans were
derived. Here, the DO was an adjustable variable and the
airflow was derived from the result of simulation. The
MLSS in the bioreactor was increased according to reduction

Table 6 Results of sensitivity
analysis of the major inventory
components

Acidification
potential (AP)
(%)

Eutrophication
potential (EP) (%)

Global warming
potential (GWP) (%)

Human toxicity
potential (HTP) (%)

Group
1

Disposal
sludge

±2.6 ±4.0 ±4.3 ±2.4

Polymer ±5.8 ±0.4 ±0.2 ±0.5

ele_w ±7.8 ±0.3 ±4.2 ±16.1

N2O_w ±0.0 ±1.8 ±7.8 ±0.0

PAC ±3.9 ±0.0 ±0.3 ±0.9

TN ±0.0 ±11.7 ±0.0 ±0.0

Group
2

Disposal
sludge

±2.4 ±3.9 ±4.4 ±2.3

Polymer ±5.6 ±0.4 ±0.3 ±0.5

ele_w ±7.8 ±0.3 ±4.5 ±16.4

N2O_w ±0.0 ±1.6 ±7.4 ±0.0

PAC ±4.3 ±0.0 ±0.3 ±1.1

TN ±0.0 ±12.3 ±0.0 ±0.0

Group
3

Disposal
sludge

±2.6 ±3.5 ±5.7 ±2.6

Polymer ±6.7 ±0.4 ±0.2 ±0.6

ele_w ±8.4 ±0.3 ±4.0 ±18.1

N2O_w ±0.0 ±2.0 ±6.5 ±0.0

PAC ±3 ±0 ±0 ±1

TN ±0.0 ±12.4 ±0.0 ±0.0

Fig. 5 Schematic diagram of process flow sheet for S-WWTP
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of Qsec by 10 to 30 %. Therefore, the air flows obtained were
decreased by 6–8 % when both DO and Qsec were reduced.

Case 1. DO falls to 20 %;
Case 2. DO falls to 20% at the same timeQsec falls to 10%;
Case 3. DO falls to 20% at the same timeQsec falls to 20%;
Case 4. DO falls to 20% at the same time Qsec falls to 30%.

In group 3, the electric power consumption was low, but
the impacts on EP and GWP were relatively high. According
to the sensitivity analysis, the effluent TN and N2O emissions
of the bioreactor had their strongest effects on EP and GWP.
Therefore, to improve the effluent TN the Qrasin should be
increased to induce more denitrification. Based on this analy-
sis, it was attempted also to reduce Qsec to promote additional
savings of electric power. As a result, the following two im-
provement plans were derived.

Case 5. Increase Qrasin 10 %
Case 6. Increase Qrasin 10 %, at the same time Qsec falls to

20 %

The simulation results in these improvement plans (cases
1–6) were compared with the results obtained under the pre-
vious field operating conditions expressed as groups 2 and 3
(shown in Table 7). Even though the effluent quality was
slightly higher in the improvement plans than produced under

the previous field conditions, this should be no problem be-
cause they were within the legally mandated effluent stan-
dards. In addition, during the simulation process, a safety fac-
tor was considered. It was defined as a ratio of 120%, between
the highest effluent values derived by modeling, and the ef-
fluent legal standard. Therefore, these improvement plans
would not make the effluent water quality worse.

Evaluation of electric power consumption based
on the improvement plans (phase V)

The electric power consumption of cases 1–6 of the im-
provement plans were predicted using the ANN program
optimized in this study, and the results are shown in
Table 8. In group 2, cases 1–3 improvement plans could
reduce electric power consumption by 5.4, 5.5, and 5.8 %,
respectively, under the condition that effluent quality was
not changed, except for TP. Usually, in A2O WWTPs,
about 30 % of the electric power used, is consumed by
the air blower in the biological reactor. When an air flow
reduction was in a range from 5 to 9 % was done in cases
1–4, the electric power reduction would be 1.5–3 %.
However, group 2 used excessive air so it was possible
to reduce it by 5.4–5.8 % by controlling the airflow and
Qsec. In case 4, there was a rising trend in effluent quality
and electric power consumption, compared to case 3; al-
though the electric power consumption was reduced more

Fig. 6 Results of verification for mathematical modeling at S-WWTP
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than that of group 2. Therefore, in case 4, decreasing the
DO or Qsec did not seem appropriate. For group 3, the
case 5 improvement plan could reduce electric power con-
sumption by 1.2 % and decrease effluent TN and TP by 3
and 8 %, respectively. In case 6, when reducing the Qsec
by 10 % below that of case 5, the effluent quality was not
improved but electric power consumption was increased
about 4 % over than that of the standard condition of
group 3. This was attributed to increase in the MLSS
and SRT of the bioreactor due to excessive Qsec. For this
reason, case 6 was not a recommendable alternative.

The ANN results were derived from a black-box model;
therefore, it might be difficult to determine the superiority of
certain cases using only simple predictions of electric power
consumption. Moreover, the environmental impacts of these
improvement plans need to be considered further because the
effluent quality has a great influence on EP even though they
were below the effluent water quality standards. Therefore, the
environmental impacts of the proposed improvement plans
were analyzed further using LCA.

LCA evaluation of environmental impacts from proposed
plans for reduction of electric power consumption (phase
VI)

Environmental impact assessment for high electric power
consumption conditions

When the improvement plans of cases 1–4 were implemented
to reduce the electric power consumption of the group 2 stan-
dard condition, the environmental impacts on AP, GWP, and
HTP were reduced by 1–5 %, as shown in Fig. 7. However,
the impact on EP was increased in cases 3 and 4, as shown in
Fig. 7b. This occurred because the effluent quality, particular-
ly the TP concentration, increased while the electric power
consumption decreased. Considering the electric power con-
sumption and environmental impacts together, the best choice
for improvement among the group 2 plans would be case 2. In
this plan, 20 % reduction of air flow, and 10 % reduction of
waste sludge flow in the secondary settling tank, was
recommended.

Table 7 MLSS and effluent
quality by the proposed
improvement plans obtained from
mathematical modeling

Operating condition MLSS and effluent quality

Air flow rate DO Qwas Inter-cycle MLSS BOD SS TN T-P
m3/min mg/l m3/day % mg/l mg/l mg/l mg/l mg/l

Group 2 2290 2.1 3169 105 1636 0.67 0.93 10.64 0.12

Case 1 9 %↓ 20 %↓ – – 1640 0.64 0.93 10.51 0.132

Case 2 8 %↓ 20 %↓ 10 %↓ – 1773 0.65 0.95 10.55 0.137

Case 3 7 %↓ 20 %↓ 20 %↓ – 1935 0.66 0.96 10.61 0.159

Case 4 5 %↓ 20 %↓ 30 %↓ – 2132 0.67 0.98 10.7 0.182

Group 3 2221 2.3 2635 131 2523 1.02 0.96 11.14 0.12

Case 5 – – – 10 %↑ 2613 1.03 0.96 10.79 0.11

Case 6 – – 20 %↓ 10 %↑ 2955 1.04 0.99 10.73 0.14

Table 8 Electric power
consumptions predicted by ANN
for improvement plans

Operation condition Predicted electric power consumption

Air flow rate DO Qwas Inter-cycle Electric power
m3/min mg/l m3/day % kWh/day

Group 2 2290 2.1 3169 105 100,316

Case 1 9 %↓ 20 %↓ – – 94,894

Case 2 8 %↓ 20 %↓ 10 %↓ – 94,514

Case 3 7 %↓ 20 %↓ 20 %↓ – 94,771

Case 4 5 %↓ 20 %↓ 30 %↓ – 96,325

Group 3 2221 2.3 2635 131 80,070

Case 5 – – – 10 %↑ 79,095

Case 6 – – 20 %↓ 10 %↑ 83,116
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Environment impact assessment for low electric power
consumption conditions

Cases 5–6 improvement plans were implemented for improv-
ing effluent quality based on the group 3 standard condition.
As shown in Fig. 8, the environmental impacts on AP, EP, and
HTP were reduced to 1, 2, and 1 %, respectively, in case 5.
The impact on GWP was not changed much. In case 6, how-
ever, all environmental impact indicators became slightly
higher than that of the group 3 standard. Therefore, case 5
would increase Qrasin by 10 %, could improve effluent qual-
ity, and also has no significant influence on the electric power
consumption. Finally, case 5 was considered the most efficient
operating condition for group 3.

Uncertainty analysis for alternatives to optimize electric
power consumption

As shown in Figs. 7 and 8, the error bars showed theminimal and
maximal values (within the range of 10 to 90 %) from the uncer-
tainty analysis. Previous Table 5 showed that the standard devi-
ations (SDs) were 8–18% in all four environmental categories in
those cases, and case 6 showed the highest uncertainty in the AP
and HTP among them. However, the uncertainty was also not
significantly different from that in cases 1–6 and it was consid-
ered that such uncertainty would not affect the final LCA results.

Conclusion

In this study, we proposed a protocol designed to identify the
operation and management conditions that comply with regu-
lations on effluent water quality for a WWTP and to optimize
electric power consumption while also minimizing the life
cycle environmental impacts. It comprised six phases of pro-
cedures, and the major function of each phase is as follows.
The major functions include drawing the major operating var-
iables influencing electric power consumption (I), classifying
three cluster groups using PCA and KMCA (II), carrying out
LCA for three cluster groups and deriving the optimal operat-
ing conditions (III), deriving the electric power-saving im-
provement plans capable of securing the proper level of efflu-
ent water quality by mathematical modeling (IV), estimating
the power consumption of the improvement plans by ANN
(V), and deriving the optimized improvement plans as opera-
tion alternatives enabling simultaneous optimization of power
consumption and life cycle environmental impacts (VI).

This protocol was tested and applied using actual operation
management data from the S-WWTP in order to prove its
applicability. In the S-WWTP, 11 major operating variables
were selected including influent flow and others. They were
classified into three cluster groups according to the results of
the electric power consumption analysis. The LCA, with four
environmental impact indicators, was conducted on these

Fig. 7 Results of environmental impact assessment for high electric power consumption conditions (cases 1–4) within group 2. Error bars represent the
10 and 90 % of the uncertainty range

Fig. 8 Results of environmental impact assessment for low electric power consumption conditions (case 5–6) within group 3. Error bars represent the
10 and 90 % of the uncertainty range
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groups. It was found that improvement plans were needed in
two groups from the results of the LCA, considering the elec-
tric power consumption condition. Six improvement plans
were derived by mathematical modeling; and for them, the
electric power consumption was calculated using ANN. A
second round of LCAs was conducted on these six improve-
ment plans. Comprehensively considering the results of the
LCA and electric power consumption, while meeting the ef-
fluent quality standard, the case 2 improvement plan for group
2 (Air flow decreased by 8 %, Qwas decreased by 10 %) and
the case 5 plan for group 3 (Qrasin increased by 10 %) were
determined to be the most efficient operating conditions. The
sensitivity and uncertainty analyses of LCA confirmed the
stability of the application.

The proposed protocol may look complicated but it is con-
figured logically with several proven scientific methods. And
for practical application, the operator requires only regular
operating data for input and then he or she can obtain recom-
mendations for appropriate operating conditions without any
detail knowledge about the protocol. The protocol could sug-
gest the optimal operating conditions under optimized power
consumption with more desirable environmental impact,
while allowing the plant to meet effluent quality standards.
This approach showed meaningful scientific value that could
satisfy several objective functions with a set of algorithm,
which was limited beforehand. Also, for wastewater treatment
field, the application of technique combining appropriate sta-
tistical methods, artificial intelligence, and modeling together
would contribute for advancing its operation and management
technologies.
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