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Abstract A range of pesticides are available in Australia for
use in agricultural and domestic settings to control pests, in-
cluding organophosphate and pyrethroid insecticides, herbi-
cides, and insect repellents, such as N,N-diethyl-meta-
toluamide (DEET). The aim of this study was to provide a
cost-effective preliminary assessment of background exposure
to a range of pesticides among a convenience sample of

Australian residents. De-identified urine specimens stratified
by age and sex were obtained from a community-based pa-
thology laboratory and pooled (n = 24 pools of 100 speci-
mens). Concentrations of urinary pesticide biomarkers were
quantified using solid-phase extraction coupled with isotope
dilution high-performance liquid chromatography–tandem
mass spec t romet ry. Geomet r i c mean biomarker
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concentrations ranged from <0.1 to 36.8 ng/mL for organo-
phosphate insecticides, <0.1 to 5.5 ng/mL for pyrethroid in-
secticides, and <0.1 to 8.51 ng/mL for all other biomarkers
wi th the excep t ion of the DEET metabo l i t e 3 -
diethylcarbamoyl benzoic acid (4.23 to 850 ng/mL). We ob-
served no association between age and concentration for most
biomarkers measured but noted a BU-shaped^ trend for five
organophosphate metabolites, with the highest concentrations
observed in the youngest and oldest age strata, perhaps related
to age-specific differences in behavior or physiology. The fact
that concentrations of specific and non-specific metabolites of
the organophosphate insecticide chlorpyrifos were higher than
reported in USA and Canada may relate to differences in reg-
istered applications among countries. Additional biomonitor-
ing programs of the general population and focusing on vul-
nerable populations would improve the exposure assessment
and the monitoring of temporal exposure trends as usage pat-
terns of pesticide products in Australia change over time.

Keywords Biomonitoring . Urine . Pesticides .

Organophosphate . Pyrethroid . Children

Introduction

Pesticides are used in agricultural and domestic settings to
control pests. Pesticides include but are not limited to insecti-
cides, such as pyrethroids and organophosphates, herbicides,
and insect repellents. In Australia, limited information exits
about use and availability of insect repellents, but a range of
pyrethroid and organophosphate pesticides are commonly
available (Table 1). Pyrethroids, the most prevalent insecticide
class on the Australian market, are found in an array of do-
mestic (e.g., aerosols, medical treatments, veterinary products)
and agricultural pest control products (APVMA 2015).
Diazinon, maldison/malathion, and chlorpyrifos, the most
commonly available organophosphates for domestic applica-
tions, are found in spray products, veterinary products, head-
lice treatments, and garden treatments (APVMA 2015).
Chlorpyrifos and dimethoate are the most commonly found
organophosphate residues in foods sold in Australia (FSANZ
2011).

Pyrethroids and organophosphates are neurotoxins, and
chronic early life exposure has been associated with a range
of adverse health effects in humans, including cognitive def-
icits (Bouchard et al. 2011; Rauh et al. 2012; Koureas et al.
2012; Shelton et al. 2014) and increased incidence of child-
hood cancers (Roberts and Karr 2012; Turner et al. 2010).
Routes of pesticide exposure include dermal, inhalation, and
dietary/non-dietary ingestion, with food residues being an im-
portant source that varies markedly by region (Becker et al.
2006; Riederer et al. 2008; Morgan 2012; Trunnelle et al.
2014). Additional exposure pathways and sources specific to

young children, such as mouthing and lower breathing zone
compared to adults (Tulve et al. 2002;WHO 2011), may place
young children at greater risk of both acute and chronic pes-
ticide exposures; in one survey of insecticide-related calls to
an Australian poison control center, children under the age of
4 years accounted for half of all calls (English et al. 2015).

The number of pesticides, particularly insecticides and her-
bicides, registered for domestic and agricultural use in
Australia exceeds those in other countries and regions, includ-
ing the USA and the European Union (Babina et al. 2012).
Annual insecticide and herbicide sales in Australia exceeded
1.8 billion Australian dollars in 2012–2013 financial year
(APVMA 2014). However, as no integrated pesticide usage
reporting system exists in Australia, quantitative data are
scarce (Radcliffe 2002).

Biomonitoring is a tool increasingly used for exposure as-
sessment (NRC 2006), and urinary metabolites are commonly
used biomarkers of exposure for non-persistent chemicals.
Biomonitoring data of pesticides exist for populations in
Europe (Becker et al. 2006; Schettgen et al. 2002; Becker
et al. 2006; Roca et al. 2014), North America (CDC 2015;
Fortin et al. 2008), and China (Guodong et al. 2012), but there
are no large-scale data currently available for the general
Australian population. Here, we present a preliminary age
and sex-stratified characterization of exposure to select organ-
ophosphate insecticides, pyrethroid insecticides, the insect re-
pellent N,N-diethyl-meta-toluamide (DEET), and the

Table 1 Pyrethroid and
organophosphate
insecticides commonly
available for domestic
and agricultural use in
Australia identified via
Public Chemical
Registration Information
System Search

Pyrethroids Organophosphates

Allethrin Azinphos-methyl

Bioallethrin Chlorfenvinphos

Bifenthrin Chlorpyrifos

Bioresmethrin Diazinon

Cyfluthrin Dichlorvos

Cyhalothrin Dimethoate

Cypermethrin Ethion

Deltamethrin Fenamiphos

Esbiothrin Fenitrothion

Esfenvalerate Maldison/malathion

Flumethrin Methidathion

Fluvalinate Mevinphos

Imiprothin Omethoate

Permethrin Phorate

Phenothrin Prothiofos

Pyrethrin Profenofos

Pyrethrum Propetamphos

Transfluthrin Temephos

Tetramethrin Terbufos

Trichlorfon

Source: APVMA (2015)
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herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-
trichlorophenoxyacetic acid (2,4,5-T) in a convenience sam-
ple of Australian residents using a simple and cost-effective
pooled urine-sampling approach.

Materials and methods

Study population and sample collection

For this cross-sectional study, de-identified specimens
were obtained from a community-based pathology labora-
tory (Sullivan Nicolaides Pathology, Taringa) from
surplus-archived urine that had been collected and ana-
lyzed as part of routine testing throughout the state of
Queensland, Australia, with the majority of samples col-
lected from sub-tropical South East Queensland. Urine
specimens were collected from November 2012 to
November 2013 in sterile polyethylene urine specimen
containers, refrigerated at 4 °C for up to 3 days, and then
frozen. As this was a pre-existing, convenience popula-
tion, no specific sampling protocols were employed.
This work was approved by the Univers i ty of
Queensland ethics commit tee (approval number
2013000397). The involvement of the Centers for
Disease Control and Prevention (CDC) laboratory was
determined not to constitute engagement in human subject
research.

Pooling protocol

Descriptive information about each specimen was limited to
date of sample collection, sex, and date of birth of the individ-
ual. Before pooling, samples were stratified by age and sex
into the following strata: 0–4, 5–14, 15–29, 30–44, 45–59,
and >60 years. The mean age of each pool was calculated
from the average age of the individuals making up that pool.
A total of 2400 individual specimens were combined into 24
pools, with 100 individual specimens contributing to each
pool; there were 2 pools for each of the 12 age-sex strata.
Specimens were pooled based on volume, where each indi-
vidual in the pool contributed the same volume; thus, the
concentration measured in each pool is equivalent to the ar-
ithmetic mean of the concentration in each individual sample
contributing to the pool (Caudill 2010). During pooling, indi-
vidual urine specimens were thawed, homogenized, and
aliquoted, after which the pooled sample was well mixed,
divided into smaller aliquots, and frozen until analysis. A syn-
thetic urine sample was included as a procedural blank
(Calafat and Needham 2009). No measures of creatinine or
specific gravity were available for individual samples.

Chemical analysis

Pooled urine samples were shipped on ice to the CDC
(Atlanta, USA) for chemical analysis and analyzed for several
pesticide biomarkers (Table 2), specifically six non-specific
organophosphate metabolites, dimethyl phosphate (DMP), di-
methyl thiophosphate (DMTP), dimethyl dithiophosphate
(DMDTP), diethyl phosphate (DEP), diethyl thiophosphate
(DETP), and diethyl dithiophosphate (DEDTP); four specific
organophosphate metabolites, 3,5,6-trichloro-2-pyridinol
(TCPY), malathion dicarboxylic acid (MDA), 2-isopropyl-4-
methyl-6-hydroxypyrimidine (IMPY), and paranitrophenol
(PNP); four pyrethroid metabolites, 3-phenoxybenzoic acid
(3-PBA), 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), cis-
3-(2,2-dibromovinyl)-2,2-dimethyl cyclopropane carboxylic
acid (DBCA), and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl
cyclopropane carboxylic acid (trans-DCCA); two phenoxy
acid herbicides, 2,4-D and 2,4,5-T; and DEET and its metab-
olites 3-diethylcarbamoyl benzoic acid (DCBA) and N,N-
diethyl-3-(hydroxymethyl) benzamide (DHMB). For analysis,
we used 96-well plate-based or online solid-phase extraction
and high-performance liquid chromatography–isotope dilu-
tion–tandem mass spectrometry approaches as described be-
fore (Kuklenyik et al. 2013; Davis et al. 2013; Odetokun et al.
2010). Accuracy and precision for each analytical run were
monitored through the use of calibration standards, reagent
blanks, and quality control materials of high and low concen-
trations. The limits of detection (LODs) ranged from 0.08 to
0.50 ng/mL and are listed in Table 3.

Statistical analysis

The influence of age (in years) on chemical concentration was
assessed via curvilinear regression, as follows:

Concentration ¼ Aþ β1 � Ageþ β2 � Age−Mean ageÞ2
�

Concentrations below the LOD were replaced with the
LOD divided by the square root of 2 (Hornung and Reed
1990). All regression analyses were conducted using Stata
statistical software v12.1 (StataCorp, College Station, TX,
USA). Criteria for significance were set as p < 0.05.

Results

Organophosphate insecticide metabolites were detected in
>96 % of pooled samples with the exception of DMDTP
(75 %), DETP (83 %), and DEDTP, which was not detected
in any sample. Overall, the concentrations of these organo-
phosphate metabolites were relatively low (geometric mean
[GM] 13.6, 10.6, 0.41, 6.18, and 1.25 ng/mL for DMP,
DMTP, DMDTP, DEP, and DETP, respectively) and ranged

23438 Environ Sci Pollut Res (2016) 23:23436–23448



from <0.1 to 19.2 ng/mL for DAPs and from <0.1 to 3.09 ng/
mL for the specific metabolites (GM 1.00, 0.38, and 1.76 ng/
mL for MDA, IMPY, and PNP, respectively). The highest
concentrations were for TCPY with GM 23.0 ng/mL and
range 2.0–36.8 ng/mL (Table 3).

Pyrethroid metabolites DBCA, 3-PBA, and trans-DCCA
were detected at GM 1.25, 1.21, and 1.89 ng/mL, respectively,
with a maximum concentration of 5.51 ng/mL for trans-
DCCA in females, 5–15 years (Table 3). 4-F-3-PBAwas un-
detectable in all samples. Similarly, phenoxy acid herbicide
metabolites 2,4-D and 2,4,5-T were low (maximum concen-
tration 7.83 ng/mL and undetectable in all pools, respective-
ly). The detection frequency of parent compound DEET was
low (17 %), but metabolites DCBA and DHMBwere detected
in all pooled samples, with GM concentrations of 65.9 and
0.83 ng/mL, respectively (Table 4). All analytes were non-
detectable in the synthetic urine sample with the exception
of DCBA (0.55 ng/mL), a concentration quite close to the
LOD for this analyte (0.48 ng/mL). Because the lowest
DCBA concentration detected in the pools was nearly one

order of magnitude greater (4.23 ng/mL; Table 3), we applied
no blank correction to any DCBA results.

The association of age with urinary concentrations was
examined using curvilinear modeling (see Supplementary
Material 1 for regression coefficients). There was a significant
association with age only for the organophosphate metabolites
DMDTP, DETP, DMTP, TCPY, and PNP (Fig. 1). The per-
centage of variability explained by the model was 56, 42, 27,
28, and 22 %, respectively (Supplementary Material 1). The
association of age with concentration was generally U-shaped,
with highest concentrations at increasing extremes of age (i.e.,
youngest and oldest age strata), as well as a slight additional
increase in concentration for the younger age groups only.

Discussion

For the first time, we report age- and sex-stratified urinary
metabolites of organophosphate and pyrethroid insecti-
cides, an insect repellent, and select phenoxy acid

Table 2 Compound
abbreviations, parent chemicals,
and metabolites by chemical class

Abbreviation Full name Parent chemical Chemical class

DMP dimethyl phosphate Organophosphate insecticides Organophosphate

DMTP Dimethyl thiophosphate Organophosphate insecticides Organophosphate

DMDTP Dimethyl dithiophosphate Organophosphate insecticides Organophosphate

DEP Diethyl phosphate Organophosphate insecticides Organophosphate

DETP Diethyl thiophosphate Organophosphate insecticides Organophosphate

DEDTP Diethyl dithiophosphate Organophosphate insecticides Organophosphate

TCPY 3,5,6-Trichloro-2-pyridinol Chlorpyrifos, chlorpyrifos-methyl Organophosphate

MDA Malathion dicarboxylic acid Malathion Organophosphate

IMPY 2-Isopropyl-4-methyl-6-
hydroxypyrimidine

Diazinon Organophosphate

PNP Paranitrophenol Parathion, methyl parathion Organophosphate

4-F-3-PBA 4-Fluoro-3-phenoxybenzoic
acid

Cyfluthrin Pyrethroid

DBCA cis-3-(2,2-dibromovinyl)-2,2-
dimethyl cyclopropane
carboxylic acid

Deltamethrin Pyrethroid

3-PBA 3-Phenoxybenzoic acid Cyhalothrin, cypermethrin,
deltamethrin, fenpropathrin,
permethrin, tralomethrin

Pyrethroid

trans-DCCA trans-3-(2,2-dichlorovinyl)-2,2-
dimethyl cyclopropane
carboxylic acid

Permethrin, cypermethrin, cyfluthrin Pyrethroid

2,4-D 2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid
(and its esters)

Phenoxy acid
herbicide

2,4,5-T 2,4,5-Trichloro phenoxyacetic
acid

2,4,5-Trichloro phenoxyacetic acid Phenoxy acid
herbicide

DEET N,N-diethyl-meta-toluamide N/A DEET

DCBA 3-(diethylcarbamoyl) benzoic
acid

N,N-diethyl-meta-toluamide DEET

DHMB N,N-diethyl-3-(hydroxymethyl)
benzamide

N,N-diethyl-meta-toluamide DEET

Environ Sci Pollut Res (2016) 23:23436–23448 23439
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herbicides in a convenience sample of the general
Australian population using samples pooled by age and
sex. Pyrethroid and organophosphate insecticides are
widely available in Australia (Table 1), and this fact was
reflected by the high detection frequency (>90 %) of all
metabolites measured, with the exception of DEDTP and
4-F-3-PBA. The low detection frequency of DEDTP and
4-F-3-PBA (we did not detect these compounds in any

samples) is similar to studies in other countries (CDC
2015; Roca et al. 2014; Becker et al. 2006; Guodong
et al. 2012). The herbicide 2,4-D and metabolites of the
insect repellent DEET, DHMB, and DCBA were also de-
tected in all pooled samples and at relatively high
concentrations.

Age has previously been demonstrated to be associated
w i t h i n s e c t i c i d e con c en t r a t i o n s , w i t h h i gh e r

Fig. 1 Urinary total concentration (ng/mL) versus age (years) for pesti-
cide metabolites with significant age-concentration relationships, DMTP
(a), DMDTP (b), DETP (c), TCPY (d), and DCBA (e). The triangles
denote the female pools, and the squares denote the male pools. The

horizontal line indicates the mean concentration of four pools in each
age stratum. The curvilinear regression line (solid line) with 95th
confidence intervals (dotted lines) are presented

Environ Sci Pollut Res (2016) 23:23436–23448 23443



concentrations typically found in young children (CDC
2015). However, for most of the metabolites in this study,
we observed no association between concentration and age
(Supplementary Material 1). Age was only significantly
associated with concentrations of five organophosphate
metabolites, namely, DMDTP, DMTP, DETP, TCPY, and
PNP, and the association was curvilinear (Fig. 1), with higher
concentrations in the younger and older (>60) age strata. With
the exception of DMDTP (56 %) and DETP (42 %), the var-
iability in metabolite concentration explained by age was low
(<30 %) and the magnitude of the effect size of age on mea-
sured concentration was relatively small (Supplementary
Material 1), where the greatest difference in concentration
between age strata was less than one order of magnitude.
This suggests that factors other than age and sex, such as
specific behavioral and lifestyle factors, for example, domestic
use patterns of pesticide products, also influence urinary
concentrations.

The concentration differences in the youngest
(<5 years) and oldest age strata (>60 years) may be relat-
ed to absolute differences in external exposure compared
to other age groups and/or age-related differences in be-
havior and physiology. Young children and older persons
may have greater exposure to insecticides because of a
relatively greater period of time spent in the indoor envi-
ronment, where concentrations of these compounds are
typically higher than outdoors (Rudel and Perovich
2009). Infants occupy different microenvironments than
adults and often for prolonged periods of time. Because
the floor is a critical zone for very young children
(<2 years of age), consumer products that result in wide-
spread floor contamination or are only applied to the
floor, such as Btrigger-spray^ insecticides or aerosols,
may be particularly relevant for children’s exposures.
Young children experience proportionally greater chemi-
cal exposures than adults due to physiological differences,
including a relatively greater surface area to volume ratio
(for dermal exposure), and increased respiratory and met-
abolic rates (Makri et al. 2004; WHO 2011). Early life
exposures are of particular concern because of the dispro-
portionate future years of life, providing a longer time
frame to manifest a disease that has a long latency period
(Scheuplein et al. 2002; WHO 2011).

Older adults may also have relatively higher urinary
concentrations of certain pesticide biomarkers because of
differences in lifestyle factors and physiology compared
with younger age groups. Glomerular filtration rate de-
creases with age and is associated with decreased clear-
ance of metabolites from the blood (ABS 2013).
Additionally, the age distribution of the Australian popu-
lation varies geographically, with older adults (>65 years)
making up a larger proportion of the population in inner
regional areas than in major cities (Baxter et al. 2011). A

previous study demonstrated that urinary concentrations
of several insecticide metabolites were higher for partici-
pants residing in inner regional areas of South Australia
compared to the major city, and this was attributed to
agricultural practices (Babina et al. 2012). In the current
study, no data was available regarding the geographic dis-
tribution of individuals contributing to the pooled samples
or regarding the potential for occupational pesticide expo-
sures. It is, therefore, possible that geographic differences
across the age pools may also have contributed to the
observed association of greater concentrations of some
pesticide metabolites in urine pools from older adults.
Stratification of pooled samples via sex, age, and geo-
graphic distribution would be necessary to determine the
individual effect of age and geographic distribution on
concentrations. Additionally, the potential contribution of
occupationally exposed individuals is likely to be a very
small proportion of the 2500 individual specimens, as the
pathology collection center used to source the specimens
is located in South East Queensland and primarily serves
residential Brisbane.

Concentrations of non-specific organophosphate me-
tabolites DMTP, DEP, and DETP measured in Australian
pooled urine (GM 10.6, 6.18, and 1.84 ng/mL, respective-
ly) were generally higher than concentrations reported in
general populations in Canada (~2.03, 2.30, and not mea-
sured, respectively; Haines and Murray 2012) and the
USA (2.28, <LOD, and <LOD, respectively; CDC
2015). DMTP, DEP, and DETP are non-specific organo-
phosphate biomarkers derived from the metabolism of a
wide array of commonly available organophosphates in
Australia, such as chlorpyrifos (128 products), diazinon
(45 products), and maldison/malathion (25 products;
APVMA 2015). Urinary concentrations of TCPY, a spe-
cific metabolite of chlorpyrifos, reported in this study
(GM 22.6 ng/mL [0–4 years] and 26.3 ng/mL [5–
14 years]) were similar to those reported in children in
South Australia (3–6 years, n = 115, arithmetic mean
21.5 μg/g creatinine; Babina et al. 2012) but substantially
higher than urinary concentrations reported in children in
Spain (6–11 years, n = 125, GM 3.36 ng/mL; Roca et al.
2014) and USA (6–11 years, n = 386, GM 1.12 ng/mL;
CDC 2015) (Table 4). Chlorpyrifos is still available for
limited domestic applications in Australia and widely
available for agricultural use. By contrast, in the USA,
in 2000, chlorpyrifos was restricted from homeowner ap-
plications as well as some agricultural applications (US
EPA 2000), and since then, urinary concentrations of
TCPY in the general USA population have been in de-
cline (CDC 2015). PNP, a metabolite of parathion and
parathion methyl, was detected in all pools in our study
(GM 1.76 ng/mL, range 1.04–3.09 ng/mL). Interestingly,
PNP concentrations in children 0–4 years (GM 1.90 ng/

23444 Environ Sci Pollut Res (2016) 23:23436–23448



mL) were lower than those reported by Babina et al.
(2012) during the period of 2003–2006, which may reflect
declining exposures as use of parathion and parathion
methyl was phased out in Australia in 2011, prior to the
commencement of this study (Agriculture Victoria 2015).

The concentrations of pyrethroid metabolites DBCA,
3-PBA, and trans-DCCA (GM 1.25, 1.21, and 1.89 ng/
mL, respectively) in this study were similar to concentra-
tions reported in Spain (0.9, 4.76, and 2.16 ng/mL, re-
spectively; Roca et al. 2014) and some adult populations
in the USA (<0.4, 1.52, and 3.41 ng/mL, respectively;
Davis et al. 2013) but higher than those reported in
Canada (Fortin et al. 2008), France (Le Grand et al.
2012), Germany (Becker et al. 2006; Schettgen et al.
2002), Poland (Wielgomas and Piskunowicz 2013;
Wielgomas et al. 2013), and USA National Health and
Nutrition Examination Survey (NHANES) (CDC 2015)
(all <0.1, <0.8, and <0.5 ng/mL, respectively; Table 4).
With the exception of DBCA, which is a metabolite of
deltamethrin, 3-PBA and trans-DCCA are non-specific
metabolites for the commonly available pyrethroids
cypermethrin, deltamethrin, and permethrin. Studies in
the USA have shown that pyrethroid metabolite concen-
trations vary by geographical region and by pest control
practices in the home, with dietary habits having less of
an impact than for organophosphates (Lu et al. 2006).
Higher pyrethroid metabolite concentrations in this study
may therefore reflect more frequent or intense use of these
household insecticides in South East Queensland.

Concentrations of primary DEET metabolite DCBA,
ranging from 4.23 to 850 ng/mL (GM 65.9 ng/mL), are
similar to the range reported in 2007–2008 NHANES
(<0.93 to 5760 ng/mL; CDC 2016a) but not as high as
in the 2009–2010 survey cycle (<0.48 to 30,400 ng/mL;
CDC 2016b). These relatively high urinary concentrations
(compared with other pesticide metabolites; Tables 3 and
4) may be related to low cost and high availability of
DEET-containing products (Costanzo et al. 2007), partic-
ularly in Northern Queensland where DEET is used to
protect against mosquito-borne diseases (Larson et al.
2000). Queensland has a hot, sub-tropical climate with a
high-pest burden, which may explain relatively greater
use of household insecticides. For this reason, the sam-
pled population is unlikely to be representative of the
general Australian population for all pesticide metabolites.

We have made a number of assumptions that must be
considered when interpreting the results of this study: (1)
pathology specimens do not introduce significant bias into
the study population, (2) pooled samples provide an ac-
curate measurement of mean concentration, and (3) spot
samples provide a reasonable estimate of internal expo-
sure over a given time frame. The study population
consisted of convenience samples collected during the

course of routine pathology testing. No creatinine or spe-
cific gravity data were available for the samples used in
this study. However, for the interpretation of pooled mea-
surements as representative measures of average concen-
tration, variation in individual sample hydration status is
expected to be averaged out and not introduce significant
bias to the estimated average concentrations and excretion
rates. For some compounds, there was a considerable dif-
ference in measured concentration for replicate pools
within an age strata. For example, measured concentra-
tions of TCPY in 0–4-year-old pools ranged from 12 to
36.8 ng/mL, while DCBA concentrations ranged from
61.6 to 769 ng/mL in 5–14-year-old pools (Table 3). As
each pool contains a large number of individual samples
(n = 100), the concentration of any one individual is un-
likely to influence the pool mean, and thus, this variability
is likely a reflection of actual variation in exposure within
the given demographic stratum. One limitation of a
pooled sampling approach is that it cannot provide any
information on variance within a population. Ad hoc
methods can be applied to estimate upper bound reference
values, which may be important in a health risk context
(Aylward et al. 2014).

The use of pooled specimens is advantageous as it
saves significantly on analytical costs, reduces the time
and resources required for recruitment, and may avoid
ethical difficulties associated with reporting individual re-
sults (reviewed in Heffernan et al. 2014), and pooled pa-
thology specimens have been successfully used previous-
ly to measure other short half-life chemicals in the
Australian population (Gomez-Ramos et al. 2016; Thai
et al. 2016; Heffernan et al. 2015; Van den Ede et al.
2015).

Here, we present results of the first large-scale biomon-
itoring study of pesticide metabolites in a convenience
sample of the general Australian population. We demon-
strate broad exposure to organophosphate and pyrethroid
insecticides as well as to one insect repellent in Australia
consistent with the availability of commercial pesticide-
containing products in Australia for domestic and agricul-
tural applications.
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