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Abstract A composite graphite felt (GF) modified with tran-
sition metal was fabricated and used as cathode in heteroge-
neous electro-Fenton (EF) for methyl orange (MO) degrada-
tion. Characterized by scanning electron microscopy (SEM)
and X-ray photoelectron spectroscopy (XPS), the morphology
and surface physicochemical properties of the cathodes after
modification were observed considerably changed. After
loading metals, the current response became higher, the accu-
mulation of H2O2 and the degradation efficiency of MO were
improved. Under the same conditions, GF-Co had the highest
catalytic activity for electro-reduction of O2 to H2O2 and MO
degradation. At pH 3, 99% ofMO degradation efficiency was
obtained using GF-Co after 120 min treatment and even at
initial pH 9, 82 % of that was obtained. TOC removal effi-
ciency reached 93.8 % using GF-Co at pH 3 after 120 min
treatment while that was 12.3% using GF. After ten-time runs,
the mineralization ratio of the GF-Co was still 89.5 %, sug-
gesting that GF-Co was very promising for wastewater treat-
ment. The addition of isopropanol proved that ·OH played an
important role in degradation of MO.

Keywords Heterogeneous electro-Fenton . Hydroxyl
radical . Graphite felt . Transition metals . Methyl orange

Introduction

Electro-Fenton (EF) is one of the powerful and widely used
advanced oxidation processes (AOPs) for the treatment of
industrial wastewater containing non-biodegradable organic
pollutants (Brillas and Martinez-Huitle 2015; Martinez-
Huitle et al. 2015; Sirés et al. 2014). The EF system can
continuously supply H2O2 through the two-electron reduction
of oxygen on the cathode (Eq. 1). Meanwhile, Fe2+ is added to
react with H2O2 for producing ·OH following Eq. (2)
with the Fe2+ regeneration by a direct cathodic reaction
(Eq. 3) (Brillas et al. 2009).

O2þ2Hþþ2e→H2O2 ð1Þ

Fe2þþH2O2→Fe3þþ⋅OHþ OH− ð2Þ

Fe3þ þ e →Fe2þ ð3Þ

However, the homogeneous EF requires an optimum of
pH = 3 and a certain amounts of Fe2+ and the effluent must
be neutralized, which results in the generation of abundant
sludge (Garcia-Segura et al. 2012; Wang et al. 2013b). So,
heterogeneous EF oxidation has become prevalent for
wastewater treatment, where soluble Fe2+ is replaced
by Fe containing solids without the need of low pH
and iron sludge treatment (Ai et al. 2007b; Ammar
et al. 2015; Dhakshinamoorthy et al. 2012; Feng et al.
2011; Navalon et al. 2011; Zhang et al. 2012).

In the past decades, the potential applications of heteroge-
neous catalysts have been investigated widely. Various kinds

Responsible editor: Philippe Garrigues

* Minghua Zhou
zhoumh@nankai.edu.cn

1 Key Laboratory of Pollution Process and Environmental Criteria,
Ministry of Education, Tianjin, China

2 Key Laboratory of Urban Ecology Environmental Remediation and
Pollution Control, College of Environmental Science and
Engineering, Nankai University, Tianjin 300350, China

Environ Sci Pollut Res (2017) 24:1122–1132
DOI 10.1007/s11356-016-7389-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-016-7389-3&domain=pdf


of iron oxides and iron hydroxides, such as Fe3O4, α-Fe2O3,
and α-FeOOH have already been used to activate H2O2.
However, many of them show lower catalytic activity than
soluble Fe2+ and need the aid of ultrasound (Huang et al.
2012; Segura et al. 2012) and UV/visible light irradiation
(Liang et al. 2012; Zhao et al. 2013), increasing the cost for
wastewater treatment.

Recently, other ways have been developed to en-
hance the activity of heterogeneous catalysts, e.g., re-
ducing the size of catalysts to nano-scale to increase
the surface energy (Valdes-Solis et al. 2007), loading
the catalysts on carriers with high surface area to im-
prove their dispersion (Zhao et al. 2012). Many re-
searchers also have developed new methods to obtain
heterogeneous catalysts. For example, Wang et al.
(2013a) used ferrite-carbon aerogel (FCA) monoliths
with different iron/carbon ratios as heterogeneous cata-
lyst for metalaxyl degradation. Wang et al. (2015b)
used mesoporous copper ferrite (meso-CuFe2O4) as a
heterogeneous EF catalyst for the degradation of or-
ganic contaminants.

In EF process, it is essential to choose an appropriate cath-
ode material for effective production of H2O2. Carbonaceous
materials are the most familiar materials used as cathode, such
as graphite (Scialdone et al. 2013; Zhang et al. 2008a), carbon
or graphite felt (Oturan et al. 2013; Panizza and Oturan 2011;
Pimentel et al. 2008; Zhou et al. 2012), carbon sponge ( zcan
et al. 2008, 2009), activated carbon fiber (Wang et al. 2005),
and carbon-PTFE air-diffusion electrode (Brillas et al. 2000).
Among them, graphite felt (GF) has been regarded as one of
the most widely used cathode materials due to their large 3D
active surface, mechanical integrity, commercial availability,
easy acquisition, and efficient cathodic regeneration of Fe2+

(Zhou et al. 2012). To further improve the electro-catalytic
activity of these carbonaceous materials, various attempts
have been made for a more efficient H2O2 production
(Zhang et al. 2008b, c, 2009). Zhou et al. (2014) used ethanol
and hydrazine hydrate to modify GF as cathode in EF
system and showed the hydrogen peroxide accumulation
increased by 160 % after modification. Bonakdarpour
et al. (2011) reported metal-carbon composite catalysts
for electro-synthesis of H2O2 and showed Co-carbon
had the best catalytic activity. In our previous work, a
simple method using carbon black and PTFE was firstly
developed to modify graphite felt and after modifica-
tion, the yield of H2O2 could be significantly increased
by about 10.7 times (Yu et al. 2015a).

In the present work, we prepared metal–carbon graphite
felt as cathode for EF process. The structure, morphology,
and formation mechanism of the composite cathode were in-
vestigated. To evaluate its catalytic activity in the heteroge-
neous EF process, a model azo dye, methyl orange (MO), was
chosen as the target pollutant.

Experimental

Transition metal-based catalysts and electrodes
preparation

All chemicals used in this study were of analytical grade and
used as received without further purification. The GF
(Shanghai Qijie Carbon Material Co., Ltd.) were degreased
in an ultrasonic bath with acetone and deionized water in
sequence, dried at 80 °C for 24 h. Appropriate amounts
of carbon black and metal nitrate salts were mixed in an
ultrasonic bath for 30 min and dried overnight at 70 °C
in an oven. The ferrous precursor consisted of
Fe(NO3)2·6H2O with a 99.99 % purity. Similar nitrate
salts were used for Co, Ce, and Cu as well. The mix-
ture was heat treated in a ceramic tube furnace at
900 °C under flowing N2 for 2 h. The transition
metal-based catalysts were marked as C-metal .
Appropriate amounts of C-metal (0.3 g), PTFE, distilled
water (30 mL), and n-butanol (3 %) were mixed in an
ultrasonic bath for 10 min to create a highly dispersed
mixture. The pretreated GF were immersed into the
mixture and sonicated for 30 min and then dried at
80 °C for 24 h. At last, the samples were annealed at
360 °C for 30 min. The composite electrodes were
marked as GF-C, GF-Fe, GF-Co, GF-Ce, and GF-Cu,
respectively.

Electro-generation of H2O2 and MO degradation

The H2O2 electro-generation experiments were performed in
an undivided cell (0.1 L) at the current density of 50 A/m2

with 0.05 M Na2SO4 as the supporting electrolyte at room
temperature, stirring at 300 rpm with a magnetic bar. Ti/
IrO2-RuO2 (4 × 2 cm) was used as anode and the modified
GF (4 × 5 cm, thickness 5 mm) was selected as cathode. The
distance between the anode and cathode was 2.5 cm. At time
intervals, 1 mL samples were taken for analyzing the concen-
tration of H2O2. The degradation of MO by EF process was
carried out in the same apparatus at initial MO concentration
of 50 mg/L at the current density of 50 A/m2. The solution pH
was adjusted to 3 after 0.2 mM Fe2+ was added into the solu-
tion as the catalyst. The MO samples were taken to determine
the degradation efficiency.

Analysis

Linear sweep voltammetry (LSV) was carried out to compare
the electro-chemical behavior during H2O2 production. The
performance was recorded by the CHI660D workstation
(CH Instruments, Chenhua, Shanghai, China) at a scan rate
of 10 mV/s in a three-electrode system (0.1 L), using the
modified GF as the working electrode, Ti/IrO2-RuO2 as
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counter electrode, and saturated calomel electrode (SCE) as
the reference electrode at ambient temperature. The surface
structure of the electrode was studied by scanning electron
microscopy (SEM; LEO-1530VP, Germany). The surface el-
emental composition of the as-prepared electrodes were deter-
mined by XPS (Perkin-Elmer, a RBD upgraded PHI-5000 C
ESCA system, Physical Electronics, USA) with Mg K
radiation.

The concentration of H2O2 was monitored byUV-Vis spec-
trophotometer (UV-2600, Shimadzu) at λmax = 400 nm using
the potassium titanium (IV) oxalate method (Yu et al. 2015b).
The current efficiency for H2O2 production was calculated
according to the formula (4) (Brillas et al. 2009):

CE %ð Þ ¼ nFCV
Z t

0
Idt � 100 ð4Þ

where n is the number of electrons transferred for oxygen re-
duction for H2O2, F is the Faraday constant (96,485 C/mol), C
is the concentration of H2O2 (mol/L),V is the bulk volume (L), I
is the current (A), and t is the electrolysis time (s).

The absorbance (A) of MO was determined by the same
spectrophotometer at a wavelength of 464 nm. TheMO remov-
al efficiency (η) was calculated using the following formula:

η %ð Þ ¼ A0−At

A0
� 100 ð5Þ

where A0 and At denote the absorbance of the MO solution at
initial and given time, respectively.

The total organic carbon (TOC) of the final sample in the
EF process was determined by a TOC analyzer (Analytikjena
multi N/C 3100, Germany).

Energy-related parameters are essential figures of merit for
comparing the viability of EF and related methods between
them and against other electro-chemical technologies.
Operating at constant I, energy consumption per unit volume
is obtained from the formula (6) (Brillas et al. 2009):

Energy consumption kWh m−3� � ¼ UIt
V

ð6Þ

WhereU is the average cell voltage (V), I is the current (A),
t is the electrolysis time (h), and V is the bulk volume (L).

Results and discussion

Optimization of transition metal-based catalysts

In order to obtain the optimal mass ratio of the transi-
tion metal to carbon black for GF-metal, the perfor-
mance of MO degradation was tested. As shown in
Fig. 1, while metal content was low, with the increas-
ing of mass ratio of the transition metal to carbon
black, MO degradation improved, and then it de-
creased. The degradation efficiency reached the corre-
sponding maximum of 99.2, 94.2, 89.5 and 70.1 %
with 1 wt.% Co, 1 wt.% Fe, 1 wt.% Ce, and
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Fig. 1 Effect of metal loadings
on the degradation of MO: a Co,
b Fe, c Ce, and d Cu. Conditions,
0.05 M Na2SO4 and 50 mg/L
MO; current density, 50 A/m2

(pH = 3); air flow rate, 0.5 L/min
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0.5 wt.% Cu, but for GF-C and GF the degradation
eff ic iency were only 35.5 and 12.6 % within
120 min. It indicated that the MO removal efficiency
significantly increased after transition metals were
loaded. This was mainly due to more ·OH production
with the existence of transition metal ions in the solu-
tion (Ai et al. 2013). However, a further increase of
the transition metals content might cause an inhibition
for MO degradation due to the loss of ·OH by reaction

with excess transition metal ion, take Fe2+ for example
(Eq. 7) (Nidheesh and Gandhimathi 2012):

Fe2þþ•OH→Fe3þþOH‐ ð7Þ

So 1 wt.% Co, 1 wt.% Fe, 1 wt.%Ce, and 0.5 wt.% Cu was
selected as the best dosage for MO degradation, respectively.

In order to investigate electro-catalytic activity of the as-
prepared electrodes, LSV was carried out. As shown in Fig. 2,
all transition metal-based electrodes exhibited higher current
response for O2 reduction than the GF without loading transi-
tion metal. This result indicated that the presence of transition
metal was helpful for increasing the cathode conductivity and
thus reducing the cathode potential. Among the transition
metal-based electrodes, the GF-Co electrode showed the
highest current response while the current response of GF-
Cu electrode was the lowest. This trend was in agreement with
that of MO removal, which is reasonable since the electro-
chemical reaction rate is determined mainly by current (Yu
et al. 2015b).

H2O2 accumulation in the heterogeneous EF system

Since H2O2 production is very important for electro-Fenton
process, it is necessary to identify the H2O2 production capacity
of these transition metal-based cathodes. Figure 3a, b shows the
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Fig. 3 Effect of metal loading on
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current efficiency. Conditions,
0.05 M Na2SO4; current density,
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accumulation of H2O2 with different metal loadings at pH of 3
and 7, respectively. After 120 min electrolysis, the concentra-
tion of H2O2 reached 554.8, 474.7, 454.1, 440, 380.5, and
35.6 mg/L at pH = 3 using GF-Co, GF-Fe, GF-Ce, GF-Cu,
GF-C, and GF, respectively. Accordingly, the concentration of
H2O2 reached 516.8, 442.7, 404.1, 378.6, 315.2, and 25.5 mg/L
at pH = 7. Similarly, GF-Co had the highest current efficiency
for H2O2 production (Fig. 3c, d), which reached 41 and 38% in
2 h at pH 3 and 7, respectively. These results were in agreement
with the LSV results (Fig. 2). The results indicated GF-Co had
the highest catalytic activity for electro-reduction of O2 to

H2O2. This was in agreement with other literatures
(Bonakdarpour et al. 2011). There was a slight increase of the
H2O2 accumulation at pH 3 because a low pH was favorable to
H2O2 production (Eq. 1). In summary, the prepared GF-metal is
a very good cathodematerial for H2O2 production and potential
to be used in electro-Fenton process.

Characterizations of the prepared electrodes

Figure 4 shows the SEM images of unmodified GF and
modified GF. Before the transition metal was loaded,

Fig. 4 SEM image of a GF, b GF-C, c GF-Co, d GF-Fe, e GF-Ce, and f GF-Cu
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the GF showed a clean fiber structure composed of an
entangled network of carbon microfilaments with diam-
eters around 15 μm. After the transition metal was load-
ed, a large numbers of interconnected particles appeared
on the fiber of GF, which would obviously change the
cathode surface characteristics. These carbon particles
and porous structure on the electrode surface could pro-
mote O2 electro-sorption and electro-reduction and pol-
lutants degradation (Jin et al. 2011; Wu et al. 2010).
Figure 4c shows GF-Co had a more uniform surface
with particles, which might render GF-Co having the
highest catalytic activity.

The surface element of the modified GF was studied
by XPS analysis. Compared with GF-C (Fig. 5a), not
only C and O elements but also iron element was ob-
served and the ratio between O and C (O/C) increased in
GF-Fe (Fig. 5b), which indicated that the number of

oxygen-containing functional groups increased after Fe
was loaded. The F element was also detected, which
was probably due to the addition of PTFE during
modification.

For GF-Fe, peak fitting of C1s and O1s were carried
out, and the results are shown in Fig. 5c, d. Based on the
literatures (Wang et al. 2013a), for C1s spectra, the main
peak at 284.6–284.7 eV was attributed to graphitized car-
bon (C=C). The other three peaks should be attributed to
the defects on the GF structure(C=C, 285.1 eV), C–OH
(286.0–286.3 eV), and C–O (286.8–287.0 eV). Regarding
the O1s spectra, the split peaks were located at 532.2–
532.7, 531.0–531.1, and 533.9–534.2 eV, which should
be assigned to O–H and C–O (Wang et al. 2015a).

Figure 5e presents the high-resolution spectra of Fe 2p.
The peaks centered at 713.7 and 725.1 eV were assigned
to Fe(III). The peak centered at 722.0 eV was attributed to
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Fe0 (Ai et al. 2007a). Therefore, the iron species was
mainly composed of Fe0 and Fe2O3. These oxygen-
containing groups and ferrite-carbon black hybrid could
be acted as the active sites capable of accelerating the
electro-chemical reactions and make dissolved oxygen ac-
cessible to the cathode surface facilitating electro-
generation of H2O2 (Miao et al. 2014).

The degradation of MO in the heterogeneous EF system

It is well known that pH can remarkably affect Fenton
reaction (Fan et al. 2010). In acid condition, soluble
Fe2+ can react with H2O2 to produce ·OH which could
degrade organic pollutants even into CO2 and H2O, but
in alkali condition, ferric species would precipitate as

ferric hydroxides, which made it more difficult to estab-
lish a good redox system between H2O2 and Fe2+/Fe3+

(Brillas et al. 2009). The degradation efficiency of MO
with the optimum metal loading under different pH values
is shown in Fig. 6. In general, degradation efficiency of
MO decreased with an increase of pH, which accords with
EF reaction. However, degradation efficiency of MO with
1.0 wt.% Co loading were 82 % within 120 min treatment
even at pH 9 while 99 % at pH 3 (Fig. 6a), which was
better than the results reported in other literatures (Torres
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Table 1 Final pH of the
treated solution after
120 min

Initial pH 3 5 7 9

Final pH

Co 3.2 3.6 3.7 3.6

Fe 3.0 4.7 5.4 7.7

Ce 3.1 4.7 5.4 6.5

Cu 3.1 4.5 5.0 8.5
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et al. 2007; Zhang et al. 2015). According to the pH
values in Table 1, the pH of solution at initial pH 3
remained almost unchanged during treatment while the
solutions at pH ≥5 were strongly acidified, which was
attributed to the formation of carboxylic acids (El-
Ghenymy et al. 2012; Isarain-Chavez et al. 2010). This
could explain why degradation efficiency of MO was still
high even at alkali condition.

On the other hand, the kind of metal loading could
affect the catalytic activity of the electrodes (Ai et al.,
2007a, b, 2008). At pH 3, degradation efficiency of MO
were 99, 93, 89, and 81 % with 1.0 wt.% Co, 1.0 wt.% Fe,
1.0 wt.% Ce, and 0.5 wt.% Cu, respectively. It indicated
that GF-Co had the highest catalytic activity for H2O2

electro-generation by O2 electro-reduction and further het-
erogeneous EF process (Bonakdarpour et al. 2011). This
result was also demonstrated in Fig. 7, in which the TOC
removal efficiency was investigated with different metal
loadings. At the pH of 3 and 7, the TOC removal effi-
ciency were 93.8 and 86.2 %, 90.2 and 80.3 %, 85.1
and 70.2 %, 70 and 50.8 %, 35.2 and 14.4 %, and 12.3
and 4.5 % using GF-Co, GF-Fe, GF-Ce, GF-Cu, GF-C
and GF, respectively. It proved that the electrodes had a
better catalytic activity after loading metals. Compared
with the degradation efficiency of MO, it also indicated
that most of MO was mineralized into H2O and CO2.
Table 2 shows that the degradation kinetic rate constant
(k) with different metal loadings under different pH
values, which was obtained by assuming a pseudo-first
reaction rate and could explain the degradation trends
more directly. The degradation kinetic rate constant

decreased with an increase of pH and also as following
order at the same pH: GF-Co, GF-Fe, GF-Ce, GF-Cu,
GF-C, and GF. Particularly, when using GF at pH 3, the
degradation kinetic rate constant was 0.0025 s−1, which
was 25 times higher than that at pH 9, but the degra-
dation kinetic rate constant was 0.030 s−1 using GF-Co
at pH 3, which was two times higher than that at pH 9.
This result demonstrated again that GF-Co had the high
catalytic activity for MO degradation at a wide pH
range.

Stability test and performance comparison

Since the stability of an electrode is important for prac-
tical application, the performance of GF-Co in ten-time

Table 2 The degradation kinetic rate constant (k) with different metal loading under different pH within 120 min treatment

k (s
-1

) pH = 3 pH = 5 pH = 7 pH = 9

GF-Co 0.030 0.024 0.022 0.015

GF-Fe 0.021 0.020 0.016 0.0088

GF-Ce 0.017 0.015 0.013 0.0071

GF-Cu 0.014 0.012 0.010 0.006

GF-C 0.0065 0.005 0.004 0.0004

GF 0.0025 0.0018 0.0011 0.0001
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Fig. 8 The stability test of GF-Co in ten-time continuous runs.
Conditions, 0.05 M Na2SO4 (50 mg/L MO); current density, 50 A/m2

(pH = 3, 1.0 wt.% Co)
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continuous runs was investigated for MO degradation.
As shown in Fig. 8, the MO degradation efficiency
was almost stable with a slight decrease during the
ten-time runs. At the first time, the MO degradation
efficiency was 99.5 % at pH 3 within 120 min treat-
ment and at the tenth time, that was still 89.5 %. It
indicated that the GF-Co electrode was relatively stable
and reusable during the process of MO removal. The
obtained results demonstrated that the GF-Co electrode
had good stability, which was promising for long-term
practical application.

Table 3 shows the comparison of the results of MO
degradation with other literatures. In the present work,
the energy consumption for MO degradation within 2 h
was only 7.0 kWh m−3, which was lower than the result
of the experiment using Ti/BDD anode (Ramírez et al.
2013). And the TOC removal efficiency using GDE/Co
as heterogeneous EF like was 93 %, which was higher
than the result using PbO2 anode (Recio et al. 2011).
These results indicated that the heterogeneous EF like
using GDE/Co shows a high degradation efficiency and

TOC removal for and a low-energy consumption MO
degradation.

Confirmation of hydroxyl radical

Hydroxyl radical oxidation is a key mechanism in AOPs. To
identify the function of ·OH, a hydroxyl radical scavenger,
isopropanol (Richard et al. 1997), was added to the solution
during degradation of MO. The effect of isopropanol
(IPA) addition on the degradation efficiency of MO is
shown in Fig. 9. Without IPA, the degradation efficien-
cy of MO was 99 and 94 % at pH 3 and 7 within
120 min treatment. However, after IPA was added into
the solution, the degradation efficiency of MO de-
creased to 21 and 27 %, respectively. This result indi-
cated that the addition of isopropanol obviously
inhibited the degradation efficiency of MO and ·OH
played an important role in MO degradation.

Conclusions

In this work, feasibility of GF-metal was demonstrated in
the heterogeneous EF process for MO degradation. After
loading metals, the value of O/C increased observed by
XPS, the current response became higher and the degra-
dation efficiency of MO was improved. In the H2O2 pro-
duction experiment, GF-Co was proved to have the
highest catalytic activity for electro-reduction of O2 to
H2O2. With an increase of pH, the degradation efficiency
of MO decreased slightly, but even at initial pH 9, 82 %
of MO degradation efficiency was obtained using GF-Co
after 120 min treatment. In the process of MO degradation
at initial pH ≥5, pH of solution decreased. TOC results
indicated that most of MO was mineralized into H2O and
CO2. GF-Co had a high stability for MO degradation even
after ten-time runs. The addition of isopropanol proved
that ·OH played an important role in degradation of MO.
The results show the GF-Co is very promising for waste-
water treatment.

Table 3 Comparison of MO degradation with other literatures

C0 (mg L−1) j (mA cm−2) Time (h) Degradation
efficiency (%)

TOC removal
(%)

Energy consumption Reference

PbO2 anode 0.25 mM 0.6 A 2 100 28 Recio et al. (2011)

Three-dimensional
electrodes

1150 2 A 0.67 94 (COD) 14.6 kWh (kg COD)−1 Liu et al. (2011)

Ti/BDD anode 100 31 2.3 96 60 (COD) 7.7 kWh m−3 Ramírez et al., (2013)

E-Fenton 100 500 mA 1 72 Isarain-Chavez et al. (2013)

Photo- E-Fenton 500 135 mA 1.5 100 71 Zhao et al. (2010)

E-Fenton-like 50 5 2 99 93 7.0 kWh m−3 Present work
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Fig. 9 Effect of isopropanol on degradation of MO using GF-Co.
Conditions, 0.05 M Na2SO4 (50 mg/L MO); current density, 50 A/m2

(1.0 wt.% Co, 5 mL IPA)
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