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Abstract Our study analyzed the spatio-temporal trends of
four major water quality parameters (i.e., dissolved oxygen
(DO), ammonium nitrogen (NH3-N), total phosphorus (TP)
and permanganate index (CODMn)) at 17 monitoring stations
in one of the most polluted large river basins, Huai River
Basin, in China during 2005 to 2014. More concerns were
emphasized on the attributions, e.g., anthropogenic actives
(land cover, pollution load, water temperature, and regulated
flow) and natural factors (topography) to the changes in the
water quality. The seasonal Mann–Kendall test indicated that
water quality conditions were significantly improved during
the study period. The results given by the Moran’s I methods
demonstrated that NH3-N and CODMn existed a weak and
moderate positive spatial autocorrelation. Two cluster centers
of significant high concentrations can be detected for DO and
TP at the Mengcheng and Huaidian station, respectively,
while four cluster centers of significant low concentrations
for DO at Wangjiaba and Huaidian station in the 2010s.
Multiple linear regression analysis suggested that water tem-
perature, regulated flow, and load of water quality could

significantly influence the water quality variations. Addi
tionally, urban land cover was the primary predictor for
NH3-N and CODMn at large scale. The predictive ability of
regression models for NH3-N and CODMn declined as the
scale decreases or the period ranges from the 2000s to the
2010s. Topography variables of elevation and slope, which
can be treated as the important explanatory variables, exhibit-
ed positive and negative correlations to NH3-N and CODMn,
respectively. This research can help us identify the water qual-
ity variations from the scale-process interactions and provide a
scientific basis for comprehensive water quality management
and decision making in the Huai River Basin and also other
river basins over the world.

Keywords Water quality . Spatial association . Regression
analysis . Land cover . Scale . Topography . Regulated river
basin

Introduction

Exploring the mechanism of water environment variability
related to the water security is an important global issue on
efficient river basin management. A general consensus states
that water quality deterioration becomes more significant as
the urbanization accelerated around the world. Such situation
is especially evident in China, where the water quality prob-
lems are becoming a key limiting factor to the socio-economic
sustainable development. As one of the seven large river ba-
sins in China, water shortages and water quality problems in
the Huai River Basin (HRB), which were caused by the rapid
economic development, increased water consumption and ag-
gravated water pollution since the 1980s, which have attracted
lots of attention (Liu and Xia 2004; Zhao et al. 2010; Zhang
et al. 2013; Zhai et al. 2014; Dou et al. 2015). In particular,
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frequent occurrence of water pollution incidents had greatly
influenced the industrial and agricultural production and ur-
ban water supply in the HRB during the 1990s. After then, the
Chinese government has expanded many efforts, such as the
adjustment of economic structure, industrial pollution control,
sewage treatment plants, and agricultural non-point source
pollution treatment, to improve the water quality in the HRB
since the 2000s. As the China Environment Bulletin (2014)
showed severe water pollution problems existed in approxi-
mately half of monitoring stations. Therefore, an overall anal-
ysis of the spatio-temporal variability of water quality during
the past several years is of great significance to provide the
basis for sustainable water environment management.

The methods in analyzing the trends of water quality can
generally be divided into two groups: (1) modeling the future
trends and (2) detecting the past trends of water quality based
on the observed time-series data (Huang et al. 2012).
Moreover, many statistical techniques have been undertaken
to clarify the potential influencing factors of the variability in
the water quality. It is noteworthy that water quality data has
several particular characteristics (Hirsch and Slack 1984), e.g.,
water quality data series are often rendered non-normal distri-
bution; the seasonality in the water quality data; water quality
is correlated to the size of the flow, etc. Therefore, although
parametric and non-parametric tests both can be applied in the
detection of water quality trends, the later methods with few
assumptions about data structures become more and more
popular after considering the inherent characteristics in the
water quality data series. In consideration of the seasonality
existing in the water quality parameters (Chang 2008), the
seasonal Mann–Kendall test, which is a non-parametric test
method modified by Hirsch et al. (1982), was widely used to
detect the trend of long-term water quality data (Zipper et al.
2002; Djodjic and Bergström 2005; Boeder and Chang 2008),
e.g., Hirsch et al. (1991) observed an increase trend in total
phosphorus concentrations, dissolved solids concentrations,
and sulfate concentrations during 1972–1989 at Apalachcola
River, Florida. Robson and Neal (1996) suggested a signifi-
cant increase in the dissolved organic carbon in Plynlimon,
mid-Wales. Amini et al. (2016) found a monotonic trend in the
groundwater resources for one city and 11 villages in Larestan
and Gerash during the study period, and Bouza-Deaño et al.
(2008), Chang (2008), and Zhai et al. (2014) also investigated
various water quality parameter trends by employing the sea-
sonal Mann–Kendall test.

Spatial autocorrelation is a common phenomenon in the
complicated spatial data analysis, and it often occurs when
the variables are similar with each other at nearby sites
(Tobler 1970). The identification of the spatial autocorrelation
is an important preliminary step for the spatial analysis (Sokal
and Oden 1978a, b; Dormann et al. 2007; Dale and Fortin
2014) and can provide useful information for recognizing
the variation process and identify the existed structures of

water quality variables (Brody et al. 2005; Dormann et al.
2007). One of the efficient methods to determine the spatial
patterns of water quality is the Moran’s I method, which has
been frequently used to analyze the distribution and structure
of water quality variables and measure the non-point-source’s
spatial autocorrelation (Chang 2008; Zhai et al. 2014). On the
other hand, understanding the relationship between the river
basin characteristics and water quality variations is also im-
portant. The regression analysis based on GIS was proved to
be an effective statistical method to diagnose the contributions
of anthropogenic activities and natural impact factors for wa-
ter quality variations (Steele and Jennings 1972; Mueller et al.
1997; Antonopoulos et al. 2001; Simeonov et al. 2003;
Plummer and Long 2007). Some studies have already empha-
sized the influence of watershed characteristics on water qual-
ity using the measured data under different scales (Chang
2008; Boeder and Chang 2008).

In this study, we conducted the spatio-temporal statistical
detection of water quality variation in the upper and middle
reach of HRB, which is the sixth largest river in China and
have been a serious polluted problem in aquatic environment.
A multi-scalar method was employed to diagnose water qual-
ity trends under different scales, i.e., subbasin and buffer scale.
The variables of water quality, land use, and some other an-
thropogenic activity variables (such as point source emission,
water temperature, and regulated flow) derived from the
multi-scale were assumed to be independent in our analysis.
The major objectives of this study were to (1) identify water
quality trends at different scales using temporal analysis meth-
od (seasonal Mann–Kendall test) and spatial analysis method
(Moran’s I methods), (2) explore the spatial and temporal
variations of water quality affected by anthropogenic actives
and natural factors, and (3) compare the variation of water
quality over time on various influencing scale (500 and
1000 m buffer zone versus whole basin). This research will
serve to recognize water quality variation at different scales
and provide a scientific basis for efficient water quality
management.

Materials and methods

Study area

Huai River (30° 55′∼36° 36′ N, 111° 55′∼120° 45′ E),
located in eastern China between the Yangtze River Basin
and the Yellow River Basin (Zuo et al. 2015), flows from
the Tongbai Mountain of Henan province in the western to
Hubei, Anhui, Shandong, Jiangsu provinces in the eastern,
and into the Yangtze River at Sanjiangying of Jiangsu.
(Fig. 1). The HRB encompasses 270,000 km2 accounting
for 3.5 % of the national land area, which is an important
agricultural base with the farmland approximately
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12,192 km2 and agricultural population accounts for
86.1 %. HRB belongs to the water-scarce areas with aver-
age annual rainfall and discharge volume of runoff 911 mm
and 45.2 billion m3 from 1956 to 2000, respectively. The
population and total amount of water resources in HRB
account 16.2 and 3.4 % of China, respectively. Especially
for the water use-to-availability ratio (about 60 %), it ex-
ceeds the international average level of the rational devel-
opment and utilization internationally. The main land uses
are dry farmland (62 %) and paddy (20 %), followed by
forest, grass, water, and urbanization. As a result of the
unique climatic conditions, water morphology and topog-
raphy, the floods and droughts in HRB occurred frequently
during the past years. To help control the flooding and
relieve the water shortages in HRB, approximately
11,000 water projects were constructed by 2000, including
water reservoirs and weir sluices, which largely change the
natural runoff. Besides, a large number of untreated indus-
trial wastewater and domestic sewage directly poured into
the river, which resulted in the ecological environment de-
terioration. Natural water chemistry characteristics exists
significant differences among the regions, which are sub-
ject to the impact of human activities.

Data

Monthly water flows, water chemistry data and sewage
discharge data for 17 monitoring sites are between 2000

and 2014. These used sites are distributed at two tribu-
taries including Shaying River and Guo River (seven sta-
tions and four stations, respectively) and the main stream
of Huai River (six stations). All of the data were provided
by the Huai River Water Resources Commission. Four
commonly used water quality indices, including DO,
NH3-N, CODMn, and TP, which were determined by fol-
lowing the national uniform standards for water quality
(HJ 506–2009; GB 11892–1989; HJ 535–2009; GB
11893–1989), were considered in our study. These indices
have also been employed by many previous studies to
analyze the variability of water quality in HRB (Zhao
et al. 2010; Zhang et al. 2013; Zhai et al. 2014; Dou
et al. 2015). The detailed information of these data and
sites were described in Table 1. Besides, monthly water
discharges data during 2000–2012 were collected from
the Huai River Hydrographic Bureau. We also calculated
the mean annual water quality during two subperiods, i.e.,
2000s (2005–2009) and 2010s (2010–2014), to reduce the
potential effect of interannual and hydroclimatic variabil-
ity for the spatial regression analysis. As the distribution
of the original data (DO, NH3-N, CODMn, TP) were pos-
itively skewed, they were log-transformed to check data
outliers or remove from statistics analysis.

The data of digital elevation model (DEM) was down
loaded from the SRTM 3s Digital Elevation Database pro-
vided by USGS/NASA (Ma et al. 2014). The land cover
data set in 2004 and 2009 were collected from the Global

Fig. 1 Location of study area,
monitoring sites of water quality,
dams and floodgates and sewage
outlets in HRB

21462 Environ Sci Pollut Res (2016) 23:21460–21474



Change Parameters Database of Chinese Academy of
Sciences (available on http://globalchange.nsdc.cn). Land
cover can be divided into six major land types—farmland,
forest, grassland, waters, urban blocks, and unused land
(lands with exposed soil, sand, rocks, or snow and never
has more than vegetated cover during any time of the
year). Surface elevation and mean slope were derived
from the DEM. In order to explore the influence of
anthropogenic and natural factors on water quality
variability, the land cover changes were analyzed at
various spatial scales, i.e., subbasin, 500 and 1000 m
buffer scales in 2004 and 2009.

Methodology

GIS analysis

All of the analysis of land use change, topography character-
istics, and monitoring stations location were analyzed by
ArcGIS 10.2 Desktop GIS software (ESRI 2013). The digital
format of all datasets was unified into the common coordinate
system (Gauss projection coordinates). Two different spatial
scales (i.e., subbasin scale and buffer scale) were considered to
explore the relationship between water quality variability and
land use and topography in this study. Figure 2 shows the

percentages of different kinds of land cover at the two forego-
ing spatial scales at 2004 and 2009 in the HRB.

For the basin scale, the boundary of the subbasins was
delineated by means of the DEM data in the ArcGIS, and
each monitoring station was deemed to be the outlet of
the corresponding subbasins. On the other hand, for the
buffer scale, each water quality monitoring station was
set as geographical buffer centers. In this study, two dif-
ferent buffer widths, i.e., 500 and 1000 m, were
employed to classify the hydrologic units boundaries.
These two chosen buffer widths were also used in other
studies (Sliva and Williams 2001; Chang and Carlson
2005; Li et al . 2009, 2013; Zhao et al . 2015;
Amuchástegui et al. 2016).

Statistical analysis

The seasonal Mann–Kendall test, which is a robust and non-
parametric test method, and proved to be more suitable for the
trend analysis for the variables with seasonality, was used to
diagnose the temporal trends of water quality parameter in our
study (Lettenmaier et al. 1991; Helsel and Hirsch 1992; Chang
2008; Boeder and Chang 2008; Buendia et al. 2016). In addi-
tion, median slope of each user defined season was used to
estimate the variation magnitude.

According to the seasonal Mann–Kendall test, the null
hypothesis H0 of randomness defines that the data

Table 1 Statistical parameters of monthly values from 17 sampled monitoring stations

Station DO NH3-N CODMn TP

Mean STD CV N Mean STD CV N Mean STD CV N Mean STD CV N

Bengbu 7.02 2.26 0.32 119 0.53 0.56 1.06 120 5.44 2.20 0.40 116 0.12 0.09 0.75 112

Linhuaiguan 7.52 1.89 0.25 120 0.72 0.77 1.06 120 4.98 2.60 0.52 107 0.13 0.10 0.78 120

Lutaizi 8.04 1.95 0.24 118 0.55 0.52 0.95 120 5.13 3.14 0.61 95 0.13 0.16 1.19 103

Wangjiaba 7.78 2.13 0.27 120 0.68 0.69 1.02 120 5.33 2.20 0.41 110 0.14 0.05 0.36 91

Wujiadu 7.17 1.81 0.25 118 0.80 0.77 0.95 117 5.21 2.04 0.39 110 0.15 0.07 0.51 120

Xiaoliuxiang 7.66 1.57 0.20 119 0.60 0.53 0.89 120 3.69 0.92 0.25 120 1.48 4.39 2.97 120

Fuyang 6.47 2.72 0.42 117 1.95 2.56 1.31 108 9.39 3.93 0.42 108 0.34 0.53 1.55 106

Huaidian 7.29 1.92 0.26 119 2.88 2.85 0.99 119 8.99 3.74 0.42 104 0.35 0.18 0.51 72

Jieshou 7.64 1.85 0.24 120 2.69 2.61 0.97 120 8.78 3.35 0.38 120 0.29 0.16 0.55 120

Yingshang 7.45 2.94 0.39 102 1.52 1.93 1.27 119 9.11 3.46 0.38 93 0.23 0.10 0.42 100

Jialuhe 6.80 2.13 0.31 119 5.54 6.46 1.17 120 11.97 6.74 0.56 103 0.40 0.33 0.83 105

Shahe 8.36 2.30 0.28 120 0.69 0.99 1.44 120 7.94 3.73 0.47 66 0.14 0.13 0.88 67

Zhoukou 7.44 2.13 0.29 120 3.33 3.10 0.93 120 10.19 4.22 0.41 78 0.29 0.19 0.67 79

Haozhoutielu 5.93 2.58 0.43 84 5.68 5.28 0.93 117 21.16 8.60 0.41 51 0.25 0.19 0.75 87

Luhufuqiao 8.16 2.19 0.27 120 2.93 4.98 1.70 120 6.70 2.70 0.40 120 0.21 0.19 0.92 120

Mengcheng 7.32 2.05 0.28 100 1.70 2.19 1.29 120 10.14 3.70 0.36 94 0.21 0.12 0.59 99

Woyang 6.91 1.70 0.25 108 2.15 2.83 1.32 120 9.76 2.98 0.31 102 0.12 0.08 0.67 105

STD standard deviation, CV coefficient of variation, N sample size, the unit of water quality parameters is mg/L
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(x1, ... , xn) is a sample of n independent and identically
distributed random variables (Chen et al. 2006), which
any seasonal but otherwise trend-free process will not be
violated. Let X = (X1, X2, ... , Xn)

T and
X i ¼ xi1; xi2; :::; xinp

� �
. Where X and Xi are the observed

water quality sample and subsample series respectively,
and Xi contains the ni annual values from month i. The
statistic Si for each month is defined as follows:

Si ¼
Xni−1

k¼1

X
j¼kþ1

ni

sgn xij−xik
� �

1≤k < j≤nð Þ ð1Þ

The SMK test statistic is S ¼ ∑
n

i¼1
Si; under the null hypoth-

esis, we have E(S) = 0, Var Sð Þ ¼ ∑
j
σ j

2þ∑ j; k j≠kσjk . Among

the month i, the variance compared from the observed series
can be calculated as follows:

σ j
2 ¼ nj n j−1

� �
2nj þ 5
� �
18

ð2Þ

σjk ¼
Hjk þ 4

Xn

i¼1

RijRik−n ng þ 1
� �

nh þ 1ð Þ

3
ð3Þ

Hjk ¼
X
i<m

sgn xmj−xij
� �

xmk−xikð Þ� � ð4Þ

The standard normal deviate Z (standardized statistic) fol-
lows a standard normal distribution and is expressed as fol-
lows:

Z ¼

S−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp ; S > 0

0; S ¼ 0
S þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp ; S < 0

8>>>><
>>>>:

ð5Þ

In this study, we select the significance level α at 0.05 and
0.10 in a two-sided test for water quality parameter trend, the
null hypothesis should be accepted if |Z| < Zα/2 = 1.96 and
1.65, respectively, where FN (Zα/2) = α/2, FN being the stan-
dard normal cumulative distribution function, and a being the
size of the significance level for the test (Hirsch et al. 1982).
When the value of S is positive, it represents an upward trend.
In contrast, it would be a downward trend. Furthermore, me-
dian slope indicates the magnitude of water quality trend
(Helsel and Hirsch 1992). The seasonal Kendall slope can
be calculated by dijk = (xij − xik)/(j − k) for (1 ≤ i < j ≤ ni), where
d is the slope, x denotes the variable, n is the sample size, and i,
j are indices.

Spatial autocorrelation analysis is an important field of
spatial statistics research, and it is also one core method for
studying the distribution association among geographic units.
Global indices of spatial autocorrelation have been widely
used to evaluate the degree to which similar observations tend
to occur near each other. As a widely used spatial

Fig. 2 Land use compositions of each land cover type in the a subbasin, b 500 m and c 1000m buffer scale for 17 monitoring stations in 2004 and 2009
(which showed in the left and right column, respectively)
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autocorrelation index, Moran’s I (Moran 1950) reflects the
spatial dependence degree of different variables and can be
expressed as follows:

I ¼ nX n

i¼1

X n

j¼1
Wij

X n

i¼1

X n

j
Wi j X i−X

� �
X j−X

� �

X n

i¼1
X i−X

� �2 ð6Þ

Although useful for determining overall patterns of a par-
ticular dataset, the Global Moran’s I statistic falls short when
examining the relationships between sites of that dataset, and
this shortcoming was addressed with the development of a
Local Moran’s I analysis that yields further information about
where the patterns of autocorrelation exist within the occur-
rences of interest (Anselin 1995). An important distinction
between the analyses is that Local Moran’s I is disaggregated
and therefore examines the degree to which neighboring data
points are similar or dissimilar. The spatial autocorrelation
differences of different objects can be represented by the local
Moran’s I index andMoran scatter plot. The local Moran’s I is
expressed as follows:

I i ¼ nX n

j¼1
Wij

X n

j¼1
Wij xi−x

� �
x j−x

� �

X n

j¼1
x j−x

� � ð7Þ

Where, Xi and Xj represent water quality parameters mon-
itored from station i and station j, respectively. X and Wij are
the average value of water quality and the weight matrix,
calculated by the inverse distance of station i and j. Moran’s
I value ranges from −1 to 1. Positive values of I are associated
with strong geographic patterns of spatial clustering, negative
values of I are associated with a regular pattern, and a value
close to zero (I = 0) represents complete spatial randomness
(O’Sullivan and Unwin 2003). The spatial autocorrelation in-
dices (I) compute the standard normal variate Z by

Z ¼ I−E Ið Þffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ið Þp ð8Þ

Where E(I) and Var(I) are the mean and variance of spatial
autocorrelation indices.

Since the Z-score results reported from Moran’s I analysis
are in essence the slope of a regression line derived from the
scatter plot of the differences between data points and the CO-
type reported is determined by which quadrant (e.g., BHigh-
High (H-H)^, BLow-Low (L-L)^, BHigh-Low (H-L)^, or
BLow-High (L-H)^) (Anselin 1996). The significance level
α is selected for the test, if Z > Zα/2, it indicates the monitoring
station is a significant high or low concentration cluster center
for water quality parameters, namely represents cluster pattern
the BH-H^ or BL-L^. If Z < −Zα/2, the data of the monitoring
station illustrates an outlier (BH–L^ or BL–H^). Otherwise,

regional spatial autocorrelation of variables is not significant
and shows a random distribution.

The data of land use and water quality from the subbasin
and buffer scale are used to identify the relation between them
by the regression analyses. Themultiple linear regression used
widely in other similar studies (Joarder et al. 2008; Yan et al.
2013; Yu et al. 2013) is used to identify the impacts of anthro-
pogenic interventions and natural factors on the variation of
water quality, percentage of land cover at different scales,
elevation and mean slope, water quality load, regulated flows
and water temperature are the independent variables. The pre-
dictor indices and the response variables (influencing factors
on water quality) are log-transformed before regression anal-
ysis. The forms of spatial error models are used from the
formula: Yi = Xiβi, ε = λWε + ξ, where, Yi and Xi are the depen-
dent variable at location i, βi the regression coefficient, ε the
random error terms, λ the autoregressive coefficients of the
spatial error model, Wε the spatially lagged error term, and ζ
the homoskedastic and independent error term. Three exten-
sively used indicators (tolerance: Tol, variance inflation factor:
VIF, condition index: CI) for describing the multicollinearity
degree are employed in the regression diagnostic analysis
(Zhai et al. 2014). More detail descriptions about fitness and
statistical significance test of the regression function can be
seen from these literatures (Wherry 1931; Velleman and Roy
1981; Asterious and Hall 2011).

Results

Spatio-temporal variation trends of water quality

Temporal trends

Figure 3 shows the temporal trends of the four water
quality elements given by the seasonal Mann–Kendall
test at the 17 stations during 2005 to 2014. We can
observe significant increasing trends, which relates to
the improving of water quality (range 0.35–2.51 %/year)
for DO at the Mengcheng station in the Wo River,
Bengbu and Wujiadu in the Huai Mainstream, Huai
dian, Zhoukou, Jialuhe and Shahe in the Shaying
River, whereas significant decreasing trend at Jieshou
station in the Shaying River (range 0.23–1.23 %/year).
For NH3-N, all stations show decreasing trends, with
most of them being significant (range 0.12–3.68 mg/L/
year). These stations with insignificant decreasing trends
are distributed in the Huai Mainstream. Similar results
can be showed from the trends analysis for CODMn.
There are approximately 60 % stations exhibit signifi-
cant decreasing trends (range 0.52–12.75 mg/L/year)
with extra 30 % stations showing insignificant down-
ward trends in the Wo River and Huai Mainstream.
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TP shows decreasing trends in most stations with 50 %
of them being significant (range 0.08–0.33 mg/L/year).
It is noteworthy that the three sites in the lower reach
of the Huai Mainstream presents an increasing trend.
The decreasing of NH3-N, CODMn, and TP means the
improvement of water quality; thus, the trends in these
three elements all indicate an improvement of water
quality in most areas in the HRB during 2005–2014.

Spatial variation of water quality for the 2000s and 2010s

Figure 4 and Fig. 5 provide the spatial variation of the
four water quality elements during the divided two sub-
periods (2000s and 2010s). As shown in Fig. 4a and
Fig. 5a, DO condition is better in the Huai Mainstream
and the upper reach of the major tributaries, with higher
average values of DO concentration in these areas. The
comparison between the two subperiods shows that the

DO concentration values increase about 14.1 % from
2000s to 2010s for all the stations as a whole. In detail,
about 88 % of the stations shows an increase in the DO
concentration during the two subperiods, while two sta-
tions present a reduction change (Fuyang decreases
14.3 % and Woyang decreases 4.6 %). Among all the sta-
tions giving an increasing trend, Haozhoutielu, Luhufuqiao
and Bengbu have a higher changes with the increase rate of
33.4 %, 25.1 % and 21.9 % respectively. Figure 4b and
Fig. 5b show that the NH3-N concentration is higher in
the major tributaries than the Huai Mainstream. The reduc-
tion of NH3-N concentration in all stations indicates an
improvement of the water quality. The average decreasing
rate is 53.0 % from 2000s to 2010s for all the stations as a
whole. Furthermore, the average reduction rates of the
Huai Mainstream, Shaying River, and Wo River are 31.5,
63.3, and 67.1 %, respectively. Particularly, the most obvi-
ously improvement is observed in the Luhufuqiao station

Fig. 3 Trends in water quality for a DO, b NH3-N, c CODMn, d TP, 2005–2014
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with the rate of −85.2 % during the two subperiods. A
similar spatial extent can be observed between the
CODMn and NH3-N, i.e., high values in the major tribu-
taries and low values in the Huai Mainstream of the HRB.
For the stations (accounting for 76.5 % of all stations)
showing decreasing trends of CODMn between the two
subperiods, the average reduction rate is 17.9 %, while
the other four stations showing increasing trends increase
by 26, 4.8, 12.5, and 16.1 % at Lutaizi, Fuyang,
Yingshang, and Mengcheng, respectively. The average re-
duction rate of the CODMn concentration in the Huai
Mainstream, Shaying River, and Wo River are 7.8, 16.5,
and 26.0 %, respectively. For TP, water quality is improved
in 47.1 % stations, and the most obvious change is in the
Xiaoliuxiang with the reduction rate of 55.9 % followed by
Jialuhe (55.9 %) and Haozhoutielu (44.6 %) from the
2000s to 2010s. It should be noted that the percentage of

stations showing increase in the TP concentration (52.9 %)
is a liter higher than that with decreasing changes. For
example, TP concentration increases by 94.6 and 54.1 %
in the stations Menfcheng and Fuyang, which means that
the water quality in these stations is deteriorated.

Spatial autocorrelation of water quality trends

Global spatial autocorrelation analysis

Table 2 shows a weak and moderate positive spatial
autocorrelation in NH3-N and CODMn with the values
of Moran’s I varying from 0.23 to 0.31 and 0.23 to
0.34, respectively. The Moran’s I values of DO also
indicate a weak positive spatial autocorrelation for the
whole period and 2010s, while there a weak and nega-
tive spatial autocorrelation in the 2000s. Similarly, TP

Fig. 4 Spatial trends of water quality for a DO, b NH3-N, c CODMn and d TP during the 2000s in the HRB
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varies randomly through space with different types of
spatial autocorrelation that can be observed in different
periods.

In addition, the increase in Moran’s I values of
CODMn, DO and TP between the 2000s and the 2010s
can be possibly caused by the moderation of external
disturbances while the declines in NH3-N indicates that

the localized problems of water quality should be care-
fully further concerned. DO and TP with lower Moran’s
I values, indicate existed spatial heterogeneity in water-
shed characteristics might contribute the variations of
DO and TP concentrations. It is possible to cause the
increases by regional anthropogenic interventions or nat-
ural impact factors such as a large amount of the dams

Fig. 5 Spatial trends of water quality for a DO, b NH3-N, c CODMn and d TP during the 2010s in the HRB

Table 2 Moran’s I values and
standardized statistic Z scores of
water quality trends form 2005 to
2014 and in the 2000s and the
2010s for 17 sites in HRB

Year DO NH3-N CODMn TP

Moran’s I Z Moran’s I Z Moran’s I Z Moran’s I Z

2005–2014 0.07 0.91 0.30 2.58* 0.28 2.76* −0.09 −0.35
2000s −0.10 −0.27 0.31 2.63* 0.23 2.57* −0.06 −0.02
2010s 0.16 1.61 0.23 2.14* 0.34 2.90* 0.14 1.45

*Significant at the 95 % confidence level
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and floodgates contracted in HRB, pollution emissions
into the rivers and extreme events.

Local spatial autocorrelation analysis

Once the Global Moran’s I analysis is completed and re-
veals a high degree of clustering within the dataset, the
Local Moran’s I analysis is performed to further examine
the nature of individual relationships between the data
points. Table 3 shows the p-score results from Local
Moran’s I analysis and reveals areas of clusters with the
significance level greater than 95 % determined by the p-
test. Two cluster centers with significant high concentra-
tions can be detected for DO and TP in the 2010s at
Mengcheng and Huaidian, respectively, while four cluster
centers with significant low concentrations for DO at the
stations Wangjiaba and Huaidian in the 2010s and for
CODMn in the whole period and 2010s at Shahe. Besides,
one LH and two HL outlier can be detected for TP at
Wangjiaba in the 2010s, and at Shahe for the whole period
and 2000s, respectively. The results in Table 3 indicates
that no significant autocorrelation exists in NH3-N series
for all the three periods. The significant HL outlier for TP
at Shahe in 2000s changes into the significant LH outlier
and moves downstream towards the Wangjiaba station in
2010s.

Relation of water quality and anthropogenic activities
and topography

Pollution emissions

To quantify the magnitude and significance level of the
relationship between anthropogenic intervention factors
and three water quality parameters NH3-N, CODMn and
TP, the multiple regression analysis, which is an effective
and wildly used method is employed in this study. The
results of multiple linear regression models between the
concentration of each water quality element and the flow,
water quality load and water temperature, monitored at
four stations (Lutaizi, Wangjiaba, Fuyang and Meng
cheng) of the HRB from 2000 to 2012 are given in
Table 4. Table 4 shows that the multicollinearity is not
serious among Tw, Q, and water quality load series when
Tolmin (the minimum tolerance) > 0.14, VIFmax (the max-
imum variance inflation factor) < 9 and CImax (the maxi-
mum condition index) < 30. The statistic results in the
Durbin–Watson and Breusch–Godfrey test for the residuals
indicates that the regression models exhibits significant
uncorrelated (P < 0.05) for the stations of Lutaizi,
Wangjiaba, and Fuyang, while insignificant uncorrelated
for TP series in the Lutaizi station. Therefore, it is unbiased
and effective for the coefficients of regression models.

Table 3 The significance level of local spatial autocorrelation analysis

Stations DO NH3-N CODMn TP

2005–2014 2000s 2010s 2005–2014 2000s 2010s 2005–2014 2000s 2010s 2005–2014 2000s 2010s

Bengbu 0.41 0.99 0.15 0.55 0.64 0.31 0.76 0.61 0.76 0.83 0.80 0.43

Linhuaiguan 0.88 0.70 0.92 0.54 0.54 0.59 0.90 0.74 0.90 0.66 0.58 0.39

Lutaizi 0.90 0.89 0.89 0.10 0.10 0.19 0.07 0.11 0.07 0.61 0.63 0.31

Wangjiaba 0.08 0.98 0.00(LL) 0.79 0.79 0.79 0.27 0.57 0.27 0.73 0.61 0.03(LH)

Wujiadu 0.88 1.00 0.51 0.59 0.48 0.75 0.46 0.70 0.46 0.73 0.72 0.93

Xiaoliuxiang 0.96 0.95 0.96 0.63 0.63 0.68 0.88 0.83 0.88 0.91 0.90 0.80

Fuyang 0.83 0.83 0.84 0.38 0.38 0.46 0.69 0.56 0.69 0.90 0.81 0.35

Huaidian 0.14 0.84 0.02(LL) 0.90 0.90 0.86 0.54 0.84 0.54 0.90 0.71 0.01(HH)

Jieshou 0.85 0.84 0.90 0.72 0.72 0.73 0.94 0.86 0.94 0.79 0.75 0.76

Yingshang 0.74 0.95 0.39 0.68 0.66 0.76 0.74 0.81 0.74 0.53 0.41 0.96

Jialuhe 0.93 0.86 0.94 0.11 0.11 0.18 0.36 0.20 0.36 0.39 0.44 0.85

Shahe 0.99 0.97 0.95 0.13 0.11 0.24 0.03(LL) 0.07 0.03(LL) 0.00(HL) 0.00(HL) 0.11

Zhoukou 0.93 0.87 0.96 0.12 0.10 0.22 0.09 0.13 0.09 0.97 0.91 0.44

Haozhoutielu 0.97 0.59 0.87 0.06 0.05 0.15 0.14 0.16 0.14 0.89 0.91 0.44

Luhufuqiao 0.40 0.31 0.20 0.13 0.10 0.46 0.17 0.36 0.17 0.75 0.75 0.75

Mengcheng 0.14 0.85 0.05(HH) 0.21 0.15 0.76 0.90 0.94 0.90 0.84 0.79 0.56

Woyang 0.13 0.02(LH) 0.64 0.07 0.07 0.11 0.95 0.87 0.95 0.86 0.94 0.66

The italicized data indicate the stations are the cluster centers or outliers. LH, HL, LL and HH represent BL–H^, BH–L^, BL–L^ and BH–H^ spatial
patterns respectively

Significant at the 95 % confidence level
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From the columns R and Radj
2, all the correlation coeffi-

cients and adjusted determination coefficients are greater than
0.70 and 0.32, respectively, except for TP series at Lutaizi
station, which suggests a good fit between the regression
models and the observed data. Furthermore, Tw, Q and load
of water quality are significantly correlated to water quality
variation. Tw is significantly (P < 0.05) correlated to NH3-N
changes at Lutaizi station, NH3-N’s load changes (P < 0.05)
and Tw changes (P < 0.10) for Wangjiaba, NH3-N’s load and
Tw changes (P < 0.05) for Fuyang and Q (P < 0.05), and NH3-
N’s load (P < 0.10) for Mengcheng. On the other hand,
CODMn’s load is significantly (P < 0.05) correlated to
CODMn variation at Lutaizi station, while Tw (P < 0.05) for
Wangjiaba, CODMn’s load and Q (P < 0.10) for Fuyang and
CODMn’s load, and Q and Tw (P < 0.05) for Mengcheng.
Similarly, TP’s load is significantly (P < 0.05) correlated to
TP variation at Wangjiaba station, while TP’s load and Q
(P < 0.05) for Fuyang and TP’s load and Q (P < 0.05) and
Tw (P < 0.10) for Mengcheng.

Land cover and topography

To investigate the influence of land cover and topogra-
phy on water quality variations, the spatial regression
models (Table 5) in the 2000s and 2010s at various
scales (subbasin, 1000 m buffer and 500 m buffer) are
established to identify the significant explanatory vari-
ables for NH3-N, CODMn and TP, respectively. The re-
gression diagnostic shows that multicollinearity is not
serious among land cover and topography variables

(Tolmin > 0.1, VIFmax < 20, CImax < 30). Besides, the
residuals from the regression models are considered to
be uncorrelated at the significance level of 0.05 or 0.10.
Thus, the estimated coefficients in the established re-
gression functions are perceived as unbiased and
effective.

The 18 spatial regression models in Table 5 indicates that
the topography variables (elevation and slope) are positively
correlated to NH3-N at the 0.05 significance level while neg-
atively correlated to CODMn at the 0.1 significance level. The
predictive ability of regressionmodels for NH3-N and CODMn

generally declines from the 2000s to 2010s as shown in lower
R2 values in the 2000s. Similar conclusion can also be sum-
marized as the scale decreases. This suggests that other factors
that have not been included in the regression models have
become important to explain the variation of water quality.
At the subbasin scale, urban land cover is the primary predic-
tor for NH3-N and CODMn. As for NH3-N, the second signif-
icant factor is farmland at the subbasin scale and 500 m buffer
scale while is the farmland land cover at the 1000 m buffer
scale. The positive sign of the coefficients between the farm-
land and NH3-N suggests that the agriculture development is
the driving source of nutrient concentrations. As for CODMn,
the topography variables, farmland, and forest land cover are
the main explanatory variables. Farmland and forest exhibit
negative coefficients for CODMn. In the 2000s, the variation
of NH3-N and CODMn at the subbasin scale can be partially
explained by the land cover of urban, elevation, and forest. At
the 1000-m buffer scale, farmland, forest and waters can ex-
plain the variation in NH3-N and CODMn in 2000s. At the

Table 4 Water quality (NH3-N, CODMn and TP) estimated from multiple linear regression models

Parameters Station Coefficient R Radj
2 Tolmin VIFmax CImax DW P

Constant Tw Q Load

NH3-N Lutaizi 0.082 0.01** −5.013E-5 0.002 0.72 0.359 0.535 1.869 15.77 1.789 0.075

Wangjiaba 0.081 0.008* 5.837E-5 0.007** 0.937 0.836 0.61 1.64 16.446 2.623 0

Fuyang −0.496** 0.058** 0 0.034** 0.971 0.923 0.222 4.495 26.047 1.349 0

Mengcheng 1.386 −0.065 0.005** 0.021* 0.84 0.608 0.623 1.604 27.634 1.803 0.009

CODMn Lutaizi 0.926** −0.002 0.001 0.002** 0.869 0.673 0.351 2.852 16.723 1.519 0.004

Wangjiaba 0.41** 0.03** 0.01 0.002 0.945 0.858 0.14 8.869 25.072 2.879 0

Fuyang 0.879** 0.009 −0.001* 0.004** 0.702 0.323 0.246 4.069 22.063 1.445 0.094

Mengcheng 3.859** −0.149** −0.004** 0.008** 0.868 0.671 0.671 1.49 26.351 1.707 0.004

TP Lutaizi 0.055** 5.639E-5 −2.092E-5 0.003 0.5 −0.22 0.552 1.812 14.951 2.468 0.437

Wangjiaba 0.066** 0.026 0.003 0.018** 0.902 0.75 0.313 3.198 15.671 1.735 0.001

Fuyang 0.12 0.001 −0.001** 0.054** 0.75 0.416 0.25 3.997 20.282 1.522 0.05

Mengcheng 0.616* −0.032* −0.002** 0.423** 0.88 0.7 0.452 2.211 21.517 2.486 0.003

The Tolmin, VIFmax and CImax are diagnostic indicators for multicollinearity between the variables Load, Q and Tw series. R (relation coefficient) and
Radj

2 (adjusted coefficient) are statistic parameters for regressionmodel. DWand P represent the statistic value and significance level for Durbin–Watson
test and Breusch–Godfrey test for residuals, respectively

* and ** significant at the 90 and 95 % confidence levels, respectively
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500 m buffer scale, elevation and slope are the significant
factors to explain the variation of NH3-N and CODMn. As
for TP, slope and forest exhibit negative coefficients in both
periods at different spatial scales. At the 500 m buffer scale,
farmland is the primary predictor for TP.

Discussions

Spatio-temporal statistical analysis

Due to the rapid development of regional socio-eco
nomic in the HRB, anthropogenic activities including
water consumption and pollution emission control play
an important role in the water quality improvement, and
result in large spatial variability in water quality para
meters.

Trend analysis results for DO, NH3-N, CODMn, and
TP indicate a significant improvement of water quality
conditions from 2005 to 2014, and the stations with the
improvement of water quality accounts for 88.2 % (15/
17), 100 % (17/17), 82.4 % (14/17), and 47.1 % (8/17)

of all the sample sites for the four water quality ele-
ments, respectively. For each element, the Huai Main
stream and the upper reach of the major tributaries
had better DO condition, while the major tributaries
had higher NH3-N and CODMn concentration than the
Huai Mainstream. Besides, it indicated that the water
quality of Huai Mainstream was deteriorated if only
the TP indicators were considered. Lots of pollution
control measures including industrial pollution control,
sewage treatment plants, and agricultural non-point
source pollution control taken by local government
since 2000, contributed to the significant improvement
of water quality in the HRB. By the implementation of
the 10th and 11th Five-Year Plan in China, the total
amount of pollution emission declined to 4.7 billion t,
which contained the total discharge of pollutant emis-
sion of ammonia factors and chemical oxygen reduced
to 1.042 million t and 140,000 t, respectively. On the
other hand, the dam operation might also be the poten-
tial caused to the improvement of water quality condi-
tions since that the HRB is a highly regulated river
basin with large amounts of dams and floodgates.

Table 5 Water quality (NH3-N, CODMn, and TP) estimated from spatial regression models

Parameters Multiple linear regression models R2 Tolmin VIFmax CImax DW Sig

NH3-N

2000s Subbasin 0.023 × Urban + 0.009 × Elevation − 0.072 × Forest + 0.851 0.734 0.120 9.809 15.18 2.824 **

2000s 1000m 0.001 × Farmland − 0.017 × Forest − 0.154 × Slope − 0.005 ×
Waters + 0.870

0.661 0.157 17.182 19.08 2.361 *

2000s 500m 0.012 × Elevation − 0.223 × Slope + 0.002 × Urban + 0.389 0.635 0.113 8.875 26.332 2.294 *

2010s Subbasin 0.009 × Urban + 0.004 × Elevation + 0.036 × Farmland − 3.101 0.478 0.137 16.115 29.35 2.839 *

2010s 1000m 0.001 × Farmland − 0.015 ×Waters − 0.009 × Grassland + 0.379 0.449 0.383 11.845 26.618 2.829 *

2010s 500m 0.005 × Elevation − 0.001 × Farmland − 0.078 × Slope + 0.299 0.403 0.44 2.275 15.827 2.655 *

CODMn

2000s Subbasin 0.071 × Urban + 0.007 × Elevation − 0.024 × Forest + 1.276 0.735 0.16 6.10 20.14 2.572 **

2000s 1000m 0.001 × Farmland − 0.012 × Forest − 0.006 ×Waters + 1.241 0.625 0.174 17.036 25.523 2.295 **

2000s 500m 0.009 × Elevation − 0.222 × Slope − 0.01 × Forest − 0.007 ×
Grassland + 0.916

0.579 0.144 6.939 14.319 2.205 *

2010s Subbasin 0.108 × Urban − 0.56 ×Waters + 0.058 × Farmland + 6.863 0.713 0.299 17.273 26.324 2.576 **

2010s 1000m −0.199 × Slope − 0.017 × Forest + 0.001 × Farmland + 1.391 0.561 0.396 10.223 21.056 2.363 *

2010s 500m −0.127 × Slope − 0.005 × Forest − 0.001 × Farmland + 1.107 0.533 0.56 1.786 9.65 2.295 *

TP

2000s Subbasin 0.95 ×Waters + 0.789 × Unused land − 0.803 × Grassland + 0.167 0.321 0.388 8.6 15.18 2.36 *

2000s 1000m 0.021 ×Waters + 0.009 × Elevation − 0.347 × Slope + 0.086 0.533 0.369 15.739 13.262 2.268 *

2000s 500m
0:006� Farmland−0:005�Waters−0:005� Urbanþ
0:003� Elevation−0:005� Grasslandþ 0:574

0.943 0.155 6.449 17.208 2.053 **

2010s Subbasin 0.018 × Farmland + 0.114 × Unused land + 0.001 ×
Elevation + 1.778

0.624 0.28 13.344 10.204 1.961 **

2010s 1000m −0.004 × Forest − 0.048 × Slope + 0.012 × Unused land + 0.002
×Waters + 0.178

0.497 0.278 11.095 22.004 2.796 *

2010s 500m 0.117 × Farmland − 0.028 × Slope + 0.147 0.529 0.44 1.784 19.65 2.436 *

* and ** significant at the 90 and 95 % confidence levels, respectively
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Influence of pollution emissions

As two important influential factors contributing to water
quality concentration increasing, industrial pollution accounts
about 60 % of urban sewage and waste emissions, and point
source emission is mainly resulted from the unreasonably
heavy use of pesticides and fertilizers flowing into the rivers
and significantly increasing the total amount of NH3-N,
CODMn, and TP elements. Water quality can be affected by
the hydrological variables (water flow), which contribute to
the migration and transformation of pollutants in the river, and
the water environmental variables (water temperature), which
indirectly reflect the degree of the pollutants degradation in
water body. Similar analysis can also be seen in the previous
studies (Buck et al. 2004; Chang and Carlson 2005; Dou et al.
2013; Zhang et al. 2013; Zhao et al. 2015).

Influence of land cover and topography

The regression analysis results between water quality and land
cover in this study suggested that the land cover types could
influence the water quality parameters (NH3-N and CODMn)
at different degrees. We found that urban land cover was sig-
nificantly and positively correlated to the NH3-N and CODMn

variations at subbasin scale, and our results were consistent
with most previous researches (Ahearna et al. 2005; Haidary
et al. 2013; Wan et al. 2014). We can also infer that the accel-
erating urbanization process in China and the huge changes of
underlying since 2000 might also be the causes for the chang-
es in water quality conditions. At subbasin scale, farmland and
urban blocks were the main source of non-point source pollu-
tion in the HRB compared to the other land use types, agreeing
that NH3-N and CODMn came primarily from agricultural and
urban blocks land uses (Jones et al. 2001; Sonoda et al. 2001).
Besides the farmland and urban blocks, industrial and domes-
tic factors also can contribute to affect the water quality con-
ditions (Zhao et al. 2015). However, the relationships between
these factors and water quality elements (NH3-N and CODMn)
were only significant at the subbasin and 1000 m buffer scale.
In our study, we can also observe positive coefficients be-
tween industrial land use and water quality which was oppo-
site to the result given by Sonoda et al. (2001).

This study performed a negative coefficient between slope
and NH3-N and CODMn in both periods at the buffer scale.
That is to say, water quality concentration decreased as the
slope variability increased. In common, the concentration of
dissolved oxygen containing in the water body will be higher
if water in rivers flows faster (Chang 2008) and contribute to
declining the water quality concentration. However, Pratt and
Chang (2012) suggested that gentle slope could slow water
movement, and it contributed to mixing pollutants and
provided a longer time to oxidize and decompose them.
Similar results that increased slope variability positively

correlating to the increases of water quality concentrations
could be seen from the study of Richards et al. (1996) and
Sliva and Williams (2001).

Variations linking with scales

Our analysis demonstrated that the buffer size play an impor-
tant role on the significant relations for different types of land
cover and water quality indicators. The conclusions in our
study agreed with the previous studies, which indicated that
the bigger scale drainage area had a more significant influence
than the smaller scale buffer (Sliva and Williams 2001; Nash
et al. 2009). Our study area has large area (270,000 km2) and
population density, and it is known that water quality variables
are influenced by the scale of land cover assessment. As
shown from the results, urban blocks and farmland land cover
were the significant factors that could explain NH3-N and
CODMn variations at larger scales. Diffusion sources emis-
sions from agricultural land, industries, and domestic sewage
pouring into the rivers distantly can increase the water quality
concentration.

Therefore, the plans including the diffusion sources emis-
sions control, industrial restructuring, and pollution control
projects should be taken by local government and focus on
the large scale. Besides, forest, grassland, and waters are ben-
efit to improve water quality conditions at larger scales.
However, the composition proportion of forest, grassland,
and waters within HRB are currently only about 10, 1, and
1 %, respectively, and it still needs to further improve the land
cover conditions consistent with the world average level.

Conclusions

This study aims to detect the spatio-temporal variation of wa-
ter quality, identify these important influence factors of water
quality variations, and reveal the influence mechanisms of
land use on water quality variations, along with scale-
process interactions on the variations at multiple scales in
the HRB. This study will provide a basis for water pollution
control, water environment protection and ecological restora-
tion of the HRB. The conclusions are as follows:

(1) This study showed a decreased trend for NH3-N and
CODMn parameter, while diverging trends for DO and
TP parameter. NH3-N and CODMn concentrations exhib-
ited decreasing trends at all stations with 76.5 and 60 %
of them were significant, respectively). TP showed sig-
nificant decreasing trends for half stations with increas-
ing trends in extra three stations distributed in the Huai
Mainstream. In addition, DO concentrations exhibited
significant increasing trends for 50 % stations and only
the Jieshou station showed significant decreasing trend.
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Overall, the analysis demonstrated significant improve-
ment of water quality during 2005–2014 in the HRB.

(2) There was a weak and moderate positive spatial autocor-
relation for water quality parameters NH3-N and CODMn

while DO exhibited a weak positive spatial autocorrela-
tion for the whole period and in 2010s. Two cluster cen-
ters of significant high concentrations were detected for
DO and TP at Mengcheng and Huaidian respectively,
while four cluster centers of significant low concentra-
tions for DO at Wangjiaba and Huaidian in the 2010s.
The control measures of point source emissions could
explain the spatial patterns appearance, and these local
management efforts for improving water quality condi-
tions included a large amount of regulated dams and
floodgates, economic structure adjustment and sewage
treatment plants and so on.

(3) Multiple regression models were used to explain the re-
lationship between water quality parameters and envi-
ronmental variables. Water temperature, regulated flow,
and load of water quality variables exhibited a significant
correlation to water quality variation. Water quality var-
iations could be determined differently from each station
for each water quality parameters. Urban land cover was
the primary predictor for NH3-N and CODMn at larger
scales. The predictive ability of regression models for
NH3-N and CODMn declined as the scale decreases or
the period ranges from 2000s to 2010s. Topography var-
iables of elevation and slope exhibited positive and neg-
ative correlations to NH3-N and CODMn, respectively.

(4) Water quality variations can be affected by many factors
(anthropogenic activities or natural factors) such as point
source pollution emissions, hydrological variables al-
tered by intensive dams and floodgates, land use, topog-
raphy and extreme events and so on. Future appropriate
water quality management policy made by local govern-
ment for water quality improvement should be based on
the deeply understanding how anthropogenic activities,
land use and natural factors impact on water quality var-
iations and how scale affects the linkages over time and
space.
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