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Abstract Declines of amphibian populations have been a
worldwide issue of concern for the scientific community dur-
ing the last several decades. Efforts are being carried out to
elucidate factors related to this phenomenon. Among these
factors, pathogens, climate change, and environmental pollu-
tion have been suggested as possible causes. Regarding envi-
ronmental pollutants, some pesticides are persistent in the en-
vironment and capable of being transported long distances
from their release point. In Costa Rica, some pesticides have
been detected in protected areas, at locations where amphibian
populations have declined. Information about toxicity of pes-
ticides used in Costa Rican agriculture to amphibians is still
scarce, particularly for native species.

Toxicity tests with chlorothalonil, a fungicide intensively
used in Costa Rica, were carried out exposing tadpoles of
three Costa Rican native species: Agalychnis callidryas,
Isthmohyla pseudopuma, and Smilisca baudinii in order to
evaluate acute and chronic toxicity as well as the biomarkers

cholinesterase activity (ChE), glutathione-S transferase activ-
ity (GST), and lipid peroxidation (LPO).

96-h LC50: 26.6 (18.9–35.8) μg/L to A. callidryas, 25.5
(21.3–29.7) μg/L to I pseudopuma and 32.3 (26.3–39.7)
μg/L to S. baudinii were determined for chlorothalonil.
These three species of anurans are among the most sensitive
to chlorothalonil according to the literature. Besides, GSTwas
induced in S. baudinii after exposure to sub-lethal concentra-
tions of chlorothalonil while evisceration occurred in
S. baudinii and A. callidryas tadpoles exposed to lethal con-
centrations of the fungicide. Chronic exposure to sub-lethal
concentrations accelerated development in S. baudinii and
caused lesions in tail of S. baudinii and I. pseudopuma tad-
poles. Our results demonstrate that chlorothalonil is highly
toxic to native amphibian species and that low concentrations
can cause biochemical responses related to phase II of bio-
transformation and effects on development.
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Introduction

Declines of amphibian populations have been a worldwide
issue of concern for the scientific community during the last
several decades (Pounds and Crump 1994; Alford and
Richards 1999; Lips et al. 2005; Mendelson et al. 2006;
Whitfield et al. 2007; Blaustein et al. 2011). Several factors
have been suggested as possible causes for these population
declines; among them pathogens, specifically the infection
caused by Batrachochytrium dendrobatidis (Bd) (Berger
et al. 1998; Lips et al. 2006; Gillespie et al. 2015), climate
change (Pounds 2001; Li et al. 2013), habitat loss and frag-
mentation (Becker et al. 2008), invasive species (Adams
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1999; Kats and Ferrer 2003), environmental pollution
(Sparling et al. 2001) and the interaction of these factors
(Collins and Storfer 2003; Rohr and Palmer 2013).

Costa Rica, with only 51,100 km2 of terrestrial and
568,000 km2 marine territories, is among the 20 most biodi-
verse countries in the word, almost 100 thousand species have
been described for the country and it represents 4.75 % of
world’s biodiversity (SINAC 2009). As of 2009, 192 amphib-
ian species have been described in Costa Rica, making this
among the top 13 most species-rich countries for amphibians
(Bolaños 2009). Of those amphibian species described, 63
(33%) are considered from vulnerable to extinct (2) according
to IUCN red list. One of the extinct species is the emblematic
golden toad (Incilius periglenes) which was endemic in
Monteverde’s cloud forest, Costa Rica (IUCN 2015).

Despite of the rich biodiversity, Costa Rican ecosystems
face threats caused by human activities like other regions.
Regarding amphibian populations, these pressures include
global climate change, habitat loss due to land use conversion
to productive or urbanistic activities, pollution, invasive spe-
cies and diseases (Lips et al. 2005; Whitfield et al. 2009). In a
country where agriculture is the main economic activity, pes-
ticides are one of the major risks regarding chemical pollution.
Furthermore, the use of pesticides in local agriculture is high
compared to developed and even other developing countries
and some compounds forbidden in many other places are used
here (de la Cruz et al. 2014).

Pesticides are considered among the environmental pollutants
related to amphibian declines. Pesticides can cause organism
mortalities but also, even at low environmental concentrations
they might have negative effects on amphibian’s growth and
development (Hayes et al. 2006). Besides, some of these com-
pounds are persistent in the environment and capable of being
transported long distances from their point of release. In Costa
Rica, some pesticides used in agriculture have been detected in
air and fog samples collected from protected areas, far from their
site of use and at places where amphibian populations have
declined (Daly et al. 2007; Shunthirasingham et al. 2011).
Information about effects of pesticides and other environmental
pollutants on neotropical amphibian species is scarce and neces-
sary. Especially as atmospheric drift might transport pollutants
from croplands to protected areas.

The risk posed by fungicides to amphibian populations
should be considered as it is one of the most imported and used
groups of pesticides in Costa Rica (de la Cruz et al. 2014).
Specifically, chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile)
is applied in banana, melon, coffee, chayote and other fruit and
vegetable crops, along the country (Bravo et al. 2013).
Chlorothalonil is a multi-site contact fungicide which causes
toxicity by complexing with sulphydryl containing proteins, af-
fecting glutathione reserves. Aside from fungi, this thiol-related
mechanism has also been described in fish and aquatic inverte-
brates (Elskus 2012). Chlorothalonil’s toxicity is considered

high for amphibians, fish, and aquatic invertebrates (de la Cruz
et al. 2014; Van Scoy and Tjeerdema 2014); acute effects are
expected on fish and invertebrates with environmental concen-
trations above 5.25 and 1.8 μg/L respectively while chronic
effects are expected above 3 and 0.6 μg/L respectively for those
groups (Elskus 2012). Chlorothalonil’s half-life in aquatic envi-
ronments goes from 2 h to 8 days (Grabuski et al. 2004). In
Costa Rica, concentrations as high as 11 μg/L have been docu-
mented in surfacewater samples (Castillo et al. 2000). Daly et al.
(2007) reported presence of chlorothalonil in air and soil samples
from different sites in Costa Rica, the higher concentrations
measured were 17.3 ng/m3 in air and 1.06 ng/g in soil, both in
samples collected at the central area of the country.

Evaluation of the effects of this pollutant on amphibians is
necessary in order to suggest and eventually establish protec-
tive limits to its use. For toxicity assays with amphibians, early
life stages (embryo and larvae) are frequently used; several
endpoints can be evaluated in these tests, among them, sur-
vival, growth, development, behavior, deformities and several
biochemical biomarkers (Sparling et al. 2010). Information on
acute and chronic toxicity as well as early warning physiolog-
ical responses can be obtained. Typically, ecotoxicological
information for amphibians is obtained using a few surrogates,
well known and laboratory Badapted^ species. This might
pose an inconvenience as life history and other important eco-
logical traits vary greatly among amphibians and it might af-
fect the way they are exposed to pollutants (Sparling et al.
2010). In this regard, evaluating the toxicity of chlorothalonil
on tropical species would contribute to build up information
regarding the effects of this relevant pesticide.

In this work, we aimed to undertake the evaluation of one
of the factors suspected to interact in the complex causing
amphibian population declines: the toxicity and other effects
caused by environmental pollutants. Specifically, we evaluat-
ed effects caused by chlorothalonil, a fungicide used in Costa
Rican agriculture, to tadpoles of three native anurans species.

Material and methods

Toxicity of chlorothalonil was evaluated on tadpoles of three
Costa Rican native species: Agalychnis callidryas, Isthmohyla
pseudopuma, and Smilisca baudinii. The three species are
listed as Least Concern by the IUCN (IUCN 2015). All the
tests were carried out at the Laboratory for Ecotoxicology
Studies (ECOTOX) of the Central American Institute of
Studies on Toxic Substances (IRET) at the Universidad
Nacional (UNA) in Heredia.

Tadpole collection and maintenance

All tadpoles were acclimatized to laboratory conditions during
at least 1 week before any assay, they were fed ad libitum,
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three times per week with TetraVeggie spirulina-enhanced
flakes (Tetra®) and water was 50 % renewed weekly.
Collection of eggs or tadpoles of each species was carried
out according to their reproductive habits.

A. callidryas

Eight egg masses were collected from vegetation surrounding
a pond located outside Tirimbina Rainforest Center in
Sarapiqui. Egg masses were transported in plastic containers
with water from the pond and at the ECOTOX laboratory they
were placed in aquariums with a shallow amount of carbon
filtered, UV treated tapwater (UV water). Leaves containing
the eggs were held with adhesive tape to aquarium walls just
above the water surface, until they hatched and the tadpoles
fell into the water. All A. callidryas tests were started using
tadpoles on stages 26–27 (Gosner 1960).

I. pseudopuma

Four egg masses were collected from temporary or permanent
natural ponds located in mountain area of San Rafael in
Heredia. Organisms were transported in plastic container with
site water to the laboratory where they were treated as de-
scribed for A. callidryas. Toxicity tests were started with tad-
poles on stages 25–27 (Gosner 1960).

S. baudinii

Two hundred recently hatched tadpoles were collected from
the Palo Verde wetland, at Palo Verde National Park in
Guanacaste, transported to laboratory in water from the site
and then transferred to clean UV treated tapwater. Toxicity
tests using S. baudinii started with tadpoles on stages 28–34
(Gosner 1960).

Acute test

Acute, static, 96-h toxicity tests were carried out to find
chlorothalonil’s LC50 for each species. A minimum of six
pesticide concentrations were tested in every assay (Table 1),
a negative (UV treated tapwater) and a solvent control (meth-
anol added to UV water in a volume equal to the one added to
the highest concentration of chlorothalonil stock in the corre-
sponding assay) were also set for every test. Tadpoles were
exposed individually in 1 L glass containers with 500 mL of
exposure solution. For every treatment, nine replicates were
set and tadpoles were randomly distributed among treatments
and replicates. Animals were not fed during the assay and
mortality was recorded every 24 h.

Chronic test

Chronic effects (growth and development) were evaluated in
tadpoles exposed to sub-lethal concentrations (Table 1) (de-
fined according to the outcome of acute tests) of chlorothalonil
in a semi-static assay. At least three concentrations of fungi-
cide plus controls were tested; with nine replicates per treat-
ment and 500 mL of exposure solution. During the test, tad-
poles were fed three times per week with approximately
15 mg of tetraVeggie/individual and once a week transferred
into containers with freshly prepared solutions. Weight, total
length, and developmental stage were registered weekly until
tadpoles reached stage 42 or died (Gosner 1960).

For each experiment, exposure solutions were prepared by
adding an aliquot of a stock solution to the exposure medium
(UV water). Stock solution (1162 μg/mL) was prepared from
97.5 % pure chlorothalonil standard (Dr. Ehrenstorfer,
Germany) dissolved in HPLC-grade, 99.97 % methanol (J.T.
Baker) and kept at 4 °C. Aliquots were taken using a micro
volume syringe (SGE Analytical science).

Concentration of chlorothalonil was evaluated at the begin-
ning and at the end of acute and chronic tests: a 20 mL sample
of each exposure solution was extracted (liquid/liquid extrac-
tion) with 98 % pure n-hexane (SupraSolv®) and re-
suspended in a final volume of 99.8 % pure isooctane
(SupraSolv®). Determination of chlorothalonil in the extracts
was performed using gas chromatography coupled to mass
spectrometry (GC-MS) and electron capture detection (GC-
ECD). For determination, an external calibration curve of
chlorothalonil was processed. Initial concentrations were con-
firmed with a regression to nominals of R2 = 0.86; no
chlorothalonil was detected in samples collected at the end
of assays, either acute (96-h) or chronic (7 days). For this

Table 1 Chlorothalonil’s ranges of concentrations (μg/L) used in
definite acute and chronic tests with tadpoles

Test Agalychnis
callidryas

Isthmohyla
pseudopuma

Smilisca
baudinii

Acute 70 100 60

35 50 40

17.5 25 20

8.75 12.5 10

4.37 6.25 5

2.2 3.12 2.5

Chronic 20 20 20

15 15 10

10 10 5

5 5

2.5
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reason, acute tests should be interpreted as static 96-h expo-
sure with an initial pulse of the nominal concentrations and the
chronic tests, the exposure to a weekly pulse of the fungicide
during the time the assay lasted. A 10 % error associated with
the analytical methods should be considered for the
quantification.

Four physical-chemical parameters: pH (Corning pH
meter 220), dissolved oxygen (WTW Oxi 325), temper-
ature and conductivity (WTW Cond 315i) were moni-
tored in exposure solutions during the tests. Average
and standard deviation of these parameters kept during
the assays were pH = 6.6 ± 0.25; dissolved oxygen =
5.3 ± 1.35 mg/L; conductivity = 108.8 ± 4.5 μS/cm and
temperature = 25.1 ± 0.7 °C.

Biomarkers

Muscle (tail) cholinesterase activity (ChE), liver glutathione-S
transferase activity (GST), and liver lipid peroxidation (LPO)
were evaluated in tadpoles after 96 h of exposure to sub-lethal
concentrations of chlorothalonil. Samples were homogenized
in an appropriate buffer and processed as described in Mena
et al. (2014) for biomarker determinations. Briefly, protein
content in sample homogenates was determined by the meth-
od of Bradford (1976) using γ-globulin as standard. ChE ac-
tivity was measured using the method of Ellman et al. (1961),
using 1 mM acetylthiocholine and 0.1 mM 5,5′ dithiobis-2-
dinitrobenzoic acid (DTNB) as substrate and conjugate; reac-
tion was measured at 415 nm during 15 min and expressed as
nmol/min/mg protein. GST activity was determined as de-
scribed by Habig et al. (1974), exposing samples to 1 mM
CDNB and 1 mM GSH and monitoring the reaction at
340 nm during 3 min.; activity reported as nmol/min/mg pro-
tein. Lipid peroxidation was measured by the thiobarbituric
reactive species (TBARS) (Oakes and Van Der Kraak 2003)
and expressed as nmol TBARS per mg of protein.

Data analysis

Toxicity parameters: (LC50) and 95 % confidence limits were
calculated using IBM® SPSS® Statistics 22 (trial version).
Concentration data were log-transformed and effect data were
Probit-transformed.

To determine the effects of clorothalonil on total length,
weight and development stage of tadpoles, we used linear
mixed-effect models (LMMs) as suggested by Cox (2010).
The total length, weight and development stage of tadpoles
were specified as response variables. We used specified treat-
ment as fixed factor and the number of individuals as random
effect to account for repeated measures in each tadpole.
During the analysis, the variables were classified as significant
if the 95 % confidence intervals (CI) did not overlap zero
(which represents the negative control).

We constructed linear models for each species to assess the
effect of clorothalonil for each biomarker (LPO level, ChE
and GST activities). Models were compared with null models
(hypothesizes a difference of 0) and ranked according to their
Akaike Information Criterion adjusted for small sample sizes
(AICc). When a treatment effect was detected, we conducted
model-averaged effect sizes (Mazerolle 2006); this is an
information-theoretic alternative to multiple comparisons
(e.g., Burnham et al. 2011). We log-transformed response var-
iables if they showed non-normality.

The analyses of chronic effects and biomarkers were con-
ducted in R version 3.1.2 (R Development Core Team 2014)
using the package Blme4^ (Bates et al. 2014) to conduct
LMMs, and the package BAICcmodavg^ to calculate AICc
and model-averaged effect sizes (Mazerolle 2006).

Results

Acute toxicity

The tadpoles of the three native species tested showed a high
and very similar sensitivity to chlorothalonil (Table 2, Fig. 1).
Additionally, in A. callidryas and S. baudinii acute assays, it
was observed that tadpoles which died during the first 24 h
exposed to lethal concentrations of chlorothalonil, a spontane-
ous rupture of linea alba and posterior evisceration was ob-
served (Fig. 2). In A callidryas, after 15 h of exposure, this
effect was observed in one out of nine tadpoles exposed to
40 μg/L, two out of nine tadpoles exposed to 50 μg/L and
three out of nine individuals exposed to 60 μg/L. During acute
tests, we had a hundred percent survival of controls.

Chronic effects

Exposure to chlorothalonil did not affect the variables associ-
a ted with growth and development measured in
I. pseudopuma individuals compared to controls (Fig. 3a–c).
In contrast, development of S. baudinii tadpoles exposed to
20 μg/L of the fungicide showed a positive difference com-
pared to controls (95 % CI 0.69, 3.43) (Fig. 3f); while total

Table 2 Acute 96-h toxicity (median lethal concentration values
[LC50] with 95 % confidence intervals) in μg/L of chlorothalonil to
tadpoles of three amphibian species

Species Gosner
stage

LC50 Lower 95 %
confidence
limit

Upper 95 %
confidence
limit

A. callidryas 26–27 26,6 18,9 35,8

I.pseudopuma 25–27 25,5 21,3 29,7

S. baudinii 28–31 32,3 26,3 39,7
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length and body weight were not affected in this
species (Fig. 3d, e). In the case of S. baudinii, the solvent
control affected significantly the body weight of the tadpoles,
therefore, for animals exposed to chlorothalonil, this variable
was tested against the solvent control (Fig. 3e).

As an additional observation, during chronic exposure, le-
sions were observed on tails of S. baudinii and I. pseudopuma
tadpoles exposed to the fungicide but not in the controls
(Fig. 4). In S. baudinii, this effect was observed in five out
of nine tadpoles exposed to 5 μg/L, six out of nine exposed to
10 μg/L and six out of nine exposed to 20 μg/L.

During chronic tests with I. pseudopuma no mortalities
occurred in the negative control. In the case of S. baudinii,
three individuals in the control died during the experiment
before reaching stage 42, their data was analyzed for the peri-
od they lived. Chronic tests with A. callidryas were ended
because of mortality of more than four replicates in controls
during the first week of exposure. In this case, the batch of
organisms used to start chronic test came from different egg
masses than the ones used for acute assays.

Biomarkers

The analysis of model selection identified an effect of
chlorothalonil treatments for I. pseudopuma ChE activity
and S. baudinii GST activity (Table 3).

ChE activity was not affected in tadpoles of A. callidryas
and S. baudinii exposed to chlorothalonil (Fig. 5a, c). In the
case of I. pseudopuma, tadpoles exposed to 3 μg/L had a
lower ChE activity compared to tadpoles exposed to higher
concentrations of the pesticide (Fig. 5b).

A significant increase in GST activity was observed in
livers of S. baudinii tadpoles exposed to 10 and 20 μg/L of
chlorothalonil compared to controls and lower concentrations
of the pesticide (Fig. 5f). A positive dose-response relation-
ship was observed in this species (Fig. 5f), indicating an in-
duction of phase II biotransformation process caused by the
fungicide.

We measured LPO liver levels as a possible sign of oxida-
tive stress induced by exposure of tadpoles to the fungicide;
however, no significant increase of this biomarker was ob-
served in any of the three species tested (Fig. 5g–i).

Discussion

The three species tested showed a similar sensitivity to
chlorothalonil and this level of sensitivity agrees with obser-
vations made on other amphibian species (Yu et al. 2013).
Also, this data confirms that larval stages of amphibians are
more sensitive to chlorothalonil than other aquatic organisms
(invertebrates and fish) (Yu et al. 2013). Compared to data-
bases reports and literature, the three species tested are among

Fig. 1 Mortality in tadpoles of three frog species, 96 h after exposure to a
range of concentrations of chlorothalonil
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the most sensitive to chlorothalonil (US-EPA 2015; Kegley
et al. 2015). Previous works developed in Costa Rica found
also a high toxicity of chlorothalonil to A. callidryas tadpoles
(Johnson et al. 2013; Ghose et al. 2014). The studies men-
tioned, used formulations of the fungicide and evaluated acute
and chronic endpoints also. The acute 96-h LC50 reported by
them is higher than the one reported in this study, but still
agrees with the fact that compared to other species,
A. callidryas is very sensitive to chlorothalonil. According to

our data, this species is more sensitive to the pure compound
than to the formulation. Regarding the toxicokinetics of pes-
ticides, some research shows that through dermal exposure,
the process of absorption of chemicals in amphibians is two
orders faster thanmammals (Brühl et al. 2013) which could be
related with the higher sensitivity observed.

Considering other anurans, a great variation of sensitivity
among species has been reported. For instance, McMahon
et al. (2011) observed significant mortality in tadpoles of

Fig. 3 Model estimates and 95 % CI for total length, body weight and development of I. pseudopuma and S. baudinii tadpoles exposed to sublethal
concentrations of chlorothalonil. Confidence intervals below or above zero denote a difference with regard to control. SC = solvent control

Fig. 2 Exposed viscera in
tadpoles of S. baudinii (a) and
A. callidryas (b) which died
during first 24 h of exposure to
lethal concentrations of
chlorothalonil
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two frog species exposed to chlorothalonil at a concentration
below the range tested in this work (16.4 ng/L) while the
exposure of Osteopilus septentrionalis tadpoles to the a con-
centration thousand times higher (17.6 μg/L) did not cause
mortality (McMahon et al. 2013). This last report agrees with
our results regarding sub-lethal concentrations. In other exam-
ple, McMahon et al. (2012) applied chlorothalonil in concen-
trations above 164 μg/L to a mesocosm where Osteopilus
septentrionalis and Rana sphenocephala tadpoles among
aquatic organisms were present. The treatment with the fun-
gicide in this case increasedmortality of the tadpoles and other

groups. For the species we tested, this concentration would be
lethal to a hundred percent of the animals.

Chlorothalonil is a multi-site contact fungicide, which in
aquatic organisms is known to affect immune responses and
interfere with glutathione-related and oxidase-like enzymes
(Elskus 2012; Van Scoy and Tjeerdema 2014). In humans,
the occurrence of dermatitis has been reported in individuals
exposed to this compound (Penagos 2002) and this effect has
been attributed to irritant properties of the substance (Lensen
et al. 2007). During acute assays with A. callidryas and
S. baudinii, evisceration was observed in tadpoles exposed
to lethal concentrations and we hypothesize that this effect
might be attributed to a rupture of the linea alba because of
the pesticide irritant properties. It would be necessary to
confirm our findings with histological analysis. In this case,
due to overnight mortality, some decomposition had already
occurred in the samples and it was not possible to properly
process them.

During chronic exposure, damage in tails was observed in
S. baudinii and I. pseudopuma tadpoles. Yu et al. (2013) re-
ported a similar effect of chlorothalonil on amphibians and
they suggest that it might be related with an apoptotic process.
It has been observed that xenobiotics have the capacity to
produce skin lesions: recently it was found that after a short
exposure to endosulfan, morphology and structure of the skin
of Bufo bufo tadpoles suffered alterations and degenerative
processes (Bernabò et al. 2013). Other pesticides may produce
similar effects, in Sri Lanka, tadpoles of an endemic species
were exposed chronically to chlorpyrifos, dimethoate, glyph-
osate and propanil. They developed malformations at high
frequencies, mainly kyphosis, scoliosis, skin ulcers and edema
(Jayawardena et al. 2010).

Regarding sub-lethal chronic effects, in most of the cases
reported so far, exposure to pesticides has been observed to
affect negatively the growth and development of tadpoles
(Brunelli et al. 2009; Sparling and Fellers 2009; Baker et al.
2013). In the specific case of chlorothalonil, its sub lethal
toxicity to A. callidryas has been studied and it resulted in a
reduction of biomass in tadpoles exposed to the chemical for
periods of 8 or 12 days (Johnson et al. 2013; Ghose et al.
2014; Alza et al. 2016). Also, Yu et al. (2013) found that

Table 3 Candidate set of linear models for the biomarkers GST, LPO
and ChE of three Costa Rican anuran native species, with their respective
treatment and null model. Number of parameters (K), Akaike’s
Information Criterion values (AICc), difference in AICc regard to best
model (ΔAICc), and AICc weights (w)

Model K AICc ΔAICc w

A. callidryas

GST~1 2 194 0 0.99

GST~treatment 7 203 9 0.01

LPO~1 2 20.8 0 0.99

LPO~treatment 7 29.6 8.7 0.01

ChE~1 2 -14.2 0 0.99

ChE~treatment 7 -5.3 8.9 0.01

I. pseudopuma

GST~1 2 174 0 1

GST~treatment 7 193 19.4 <0.00

LPO~1 2 37.1 0 1

LPO~treatment 7 55.2 18 <0.00

ChE~treatment 7 53.4 0 0.968

ChE~1 2 60.2 6.8 0.032

S. baudinii

GST~treatment 7 138 0 1

GST~1 2 153 14.9 <0.00

LPO~1 2 22.7 0 0.976

LPO~treatment 7 30.1 7.4 0.024

ChE~1 2 46 0 0.9942

ChE~treatment 7 56.3 10.3 0.0058

Fig. 4 Lesions on S. baudinii (a)
and I. pseudopuma (b) tadpoles
tails during chronic exposure to
chlorothalonil
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96-h exposure to chlorothalonil reduced length of Xenopus
leavis tadpoles.

The study we conducted maintained a prolonged exposure
of tadpoles to the fungicide. In these conditions, we had no
effect on I. pseudopuma growth or development; but in
S. baudinii, development was positively affected by the expo-
sure. This response has already been observed with the herbi-
cide acetochlor in the presence of an exogenous dose of 3, 3′,
5-triiodothyronine (T3), which is the active form of thyroxine
(T4) hormone, both involved in the metamorphosis activation.
It produced an accelerated development of Rana pipiens fore-
limbs and this was attributed to an enhancement of the hor-
mone action caused by the presence of the pesticide (Cheek
et al. 1999). In X. laevis, when exposed to acetochlor and T3,
the metamorphosis was accelerated. The authors relate the
course of action of acetochlor with gene transcription during
metamorphosis (Crump et al. 2002).

Acceleration of development associated with pollutants
interacting with thyroid hormones is an endpoint already con-
sidered in toxicity testing (OECD 2009). In this regard,
Grabuski et al. (2004) suggested the potential of
chlorothalonil as an endocrine dusruptor as it can potentially
interfere with endogenous hormones. In mammals, it has been
reported that this fungicide can be an agonist of the aryl

hydrocarbon receptor (AhR) (Elskus 2012), which can be a
molecular pathway to endocrine disrupting effects.
Considering the outcome of our test with S. baudinii, we sug-
gest that further investigation should be aimed to elucidate this
issue. Based on our observations, we recommend the evalua-
tion of malformations and behavioral effects as well as the
continuation of the assays post-metamorphosis in order to
identify possible alterations caused by the compound during
juvenile and adult stages. This would be especially valuable
considering that I. pseudopuma inhabits areas where declines
have occurred (Abarca 2012) and the life cycle stage and
parameters we evaluated did not reveal significant chronic
effects on this species.

No significant ChE inhibition was observed inmuscle sam-
ples of A. callidryas or S. baudinii, this is reasonable as this
fungicide is not associated with a mechanism of ChE inhibi-
tion. It is still important to consider and measure ChE activity
as its inhibition has been related to several pollutants others
than organophosphates and carbamates (Lionetto et al. 2011).
Tadpoles of I. pseudopuma exposed to 3 μg/L of
chlorothalonil had a lower ChE activity compared to individ-
uals exposed to higher concentrations of the pesticide but not
lower compared to controls. We consider this difference unre-
lated with a possible inhibition caused by the pesticide as ChE

Fig. 5 Biomarkers measured in tadpoles exposed to sub-lethal
concentrations of chlorothalonil: muscle ChE activity (a–c), liver GST
activity (d–f) and liver LPO (g–i). Bars represent mean ± 95 % CI of the

biomarker measured for each treatment. Differences among treatments in
an experiment are indicated with lowercase letters. C = negative control,
SC = solvent control.
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inhibitors are known to show a clear dose-response relation-
ship (Thomson 1999; Pathiratne et al. 2008;Mena et al. 2012).
However, nonmonotonic responses like this have been ob-
served in the dose-mortality relationship of three amphibian
species exposed to chlorothalonil (McMahon et al. 2011).
Also, immunological parameters of fish exposed to
chlorothalonil have shown nonmonotonic responses (Shelley
et al. 2009).

Chlorothalonil’s mode of action is related to interference
with glutathione and cellular sulfhydryl enzymes (Van Scoy
and Tjeerdema 2014), which are involved in phase II of bio-
transformation. In this work, we found evidence of biotrans-
formation phase II induction in tadpoles of S. baudinii ex-
posed to sub-lethal concentrations of chlorothalonil. The role
of GST in biotransformation of chlorothalonil has been broad-
ly described in bacteria (Wang et al. 2011) but also in aquatic
vertebrates (fish) (Davies 1985). Ezemonye and Tongo (2010)
reported the induction of GST in amphibians (adult toads)
exposed to endosulfan and diazinon, furthermore they found
that the liver is a good tissue to measure this activity. On the
other hand, we did not find signs of oxidative stress evidenced
as lipid peroxidation. This absence of oxidative stress has been
observed in amphibians exposed to pesticides (Venturino et al.
2003), even when phase II responses are evident, like in our
case. This might be attributed to the reported low activity of
the mixed-function oxidases belonging to the cytochrome
P450 family in amphibians (Huang et al. 1998; Venturino
et al. 2003; Jung et al. 2004), being xenobiotics metabolized
via phase II without a significant induction of phase I reactions
and a lower oxidative process.

This work represents one of the few efforts in order to char-
acterize the sensitivity of tropical amphibian species to pesti-
cides. Two studies carried out in Costa Rica (Daly et al. 2007;
Shunthirasingham et al. 2011) evidenced that pesticides used in
agriculture in the lowlands of the country (including
chlorothalonil) are atmospherically transported and found at
places where habitat degradation is not evident. Although the
three species tested in this work are listed as Least Concern by
the IUCN (IUCN 2015), there is already evidence of the pres-
ence of pesticides, including chlorothalonil, in areas they inhabit:
Cordillera Volcanica Central (Daly et al. 2007), the Caribbean
Region (Castillo et al. 2000) and the Pacific Region (Mena et al.
2014). Accordingly, these and other amphibians are exposed to
pollution and consequences as those shown in this work, during
their life cycle (aquatic and terrestrial). Declines of some am-
phibian populations have been documented in pristine areas
where Bd and temperature variability have been identified as
causes for those events (Lips et al. 2008; Rohr and Raffel
2010). At the same time, La Marca et al. (2005) warn about
the lack of information regarding environmental pollutants re-
leased by human activities and their effects on neotropical am-
phibian species. In this regard, efforts should be undertaken in
order to elucidate the role of pollutants and hopefully their

interaction with other environmental stressors as part of the fac-
tors influencing amphibian declines.

Conclusions

In the present study, we report that amphibian species that
inhabit pristine areas of Costa Rica are sensitive to
chlorothalonil, a pesticide that has been found to be
transported atmospherically and that is intensively used in
the country. Thus, efforts should be made in order to reduce
the use of pesticides in the country and also focus on the
protection of amphibian populations that are currently affected
by declines.

Induction of phase II biotransformation indicates that rele-
vant environmental concentration of chlorothalonil can be in-
ducing biological responses that are related to its mode of
action.

This study evaluated the chronic effects of a prolonged
exposure to chlorothalonil on anurans. Because the tadpoles
of S. baudinii showed impaired growth and development, it is
recommended to investigate the possible role of this pesticide
as an endocrine disruptor. It is also suggested to assess effects
on juveniles and adults of the species tested.

Spontaneous rupture of linea alba and posterior eviscera-
tion was observed in the tadpoles exposed to lethal concentra-
tions of chlorothalonil as well as lesions in tail at sub-lethal
concentrations, these effects could be related to histological
alterations of the skin, but further studies are needed to con-
firm this.
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